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Abstract

Delay differential equations (DDEs) play an important role in the
modeling of dynamic processes. Delays arise in contemporary control
schemes like networked distributed control and can cause deterioration
of control performance, invalidating both stability and safety properties.
This induces an interest in DDE especially in the area of modeling
and verification of embedded control. In this article, we present an
approach aiming at automatic safety verification of a simple class of
DDEs against requirements expressed in a linear-time temporal logic.
As requirements specification language, we exploit metric interval
temporal logic (MITL) with a continuous-time semantics evaluating
signals over metric spaces. We employ an over-approximation method
based on interval Taylor series to enclose the solution of the DDE
and thereby reduce the continuous-time verification problem for MITL
formulae to a discrete-time problem over sequences of Taylor coefficients.
We encode sufficient conditions for satisfaction as SMT formulae over
polynomial arithmetic and use the iSAT3 SMT solver in its bounded
model-checking mode for discharging the resulting proof obligations,
thus proving satisfaction of time-bounded MITL specifications by the
trajectories induced by a DDE. In contrast to our preliminary work in
[44], we can verify arbitrary time-bounded MITL formulae, including
nesting of modalities, rather than just invariance properties.
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1 Introduction

“Indecision and delays are the parents of failure.”

[attributed to George Canning, 1770–1827]

Ordinary differential equations (ODEs) are traditionally used to model the
continuous behavior within continuous- or hybrid-state feedback control
systems. Significant research has consequently been pursued to achieve auto-
matic verification for such dynamical systems, among it seamless integration
of safe numeric ODE solving with satisfiability-modulo-theory solving [9, 14].
In practice, delay is introduced into the feedback loop if components are
spatially or logically distributed. Such delays may significantly alter the
system dynamics and unmodeled delays in a control loop consequently have
the potential to invalidate any stability and safety certificate obtained on
the delay-free model. An appropriate generalization of ODE able to model
delays within the framework of differential equations is provided by delay
differential equations (DDEs), as suggested by [3].

DDEs play an important role in the modeling of natural or artificial
processes with time delays in biology, physics, economics, engineering, etc.
As a consequence, attention has gone to developing tools permitting their
mechanical analysis. However, such tools still are mostly confined to numeric
simulation, e.g. by Matlab’s dde23 algorithm. Numerical simulation, despite
being extremely useful in system analysis, fails to present reliable certifi-
cates of system properties due to numeric approximation. Techniques for
safely enclosing set-based initial value problems of ODEs, be it safe interval
enclosures [30, 40, 25], Taylor models [4, 31], or flow-pipe approximations
based on polyhedra [7], zonotopes [15], ellipsoids [22], or support functions
[24], consequently need to be lifted to DDEs.

A safe enclosure method using Taylor series with coefficients in interval
form was presented in [44]. To avoid dimension explosion incurred by the
ever-growing degree of the Taylor series along the time axis, the method
depends on fixing the degree for the Taylor series and moving higher-degree
terms into the parametric uncertainty permitted by the interval form of
the Taylor coefficients. By using this data structure to iterate bounded
degree Taylor over-approximations of the time-wise segments of the solution
to a DDE, the approach identifies the operator that yields the parameters
of the Taylor over-approximation for the next temporal segment from the
current one. Employing constraint solving to analyze the properties of this
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operator, an automatic procedure is obtained to provide stability and safety
verification for a simple class of DDEs of the form

d

dt
~x(t) = f(~x(t− δ)) (1)

with linear or polynomial vector field f : RN → RN , where the derivative
at t is a function of the trajectory at t− δ, i.e., the signal value determines
the future evolution with delay of δ. The limitation of the method proposed
in [44] is that its coverage of safety properties is confined to the verification of
state invariants only. Improving on the previous work in [44], the contribution
of the current article lies in verifying a class of safety requirements specified
using linear-time temporal logic.

The method proposed in this article again addresses DDEs in the form
of Eq. (1) and builds upon the safe enclosure method for DDEs presented in
[44], yet addresses verification of behavioral properties expressed in metric
interval temporal logic (MITL) [1, 11, 33]. MITL is a linear temporal logic
that is meaningful when the states evolve in metric spaces, an assumption
met by continuous-state systems as in Eq. (1). It is considered as a real-
time extension of linear temporal logic (LTL), where the modalities of LTL
are constrained with timing bounds. In particular, given a continuous
dynamical system (1) with its initial condition(s) and a temporal logic
specification expressed in time-constrained MITL, we employ the interval-
based Taylor over-approximation method to enclose the solution of the given
DDE. This facilitates effective reduction of the signal-based, continuous-time
and continuous-state MITL verification problem to a related discrete-time
MITL verification problem expressible in terms of timed state sequences.
By using any bounded model checking (BMC) tool built on top of an
arithmetic SMT solver being able to address polynomial arithmetic, we obtain
a procedure able to provide safety certificates for DDE relative to temporal
logic specifications. In our case, we use the iSAT32 implementation of the
iSAT algorithm [13] that provides techniques for bounded and unbounded
verification problems like k-induction [39] and Craig interpolation [29].

For dealing with temporal properties expressed in MITL, the key step
is to safely determine truth values of atomic propositions, i.e., to generate
sufficient conditions for their validity over a time frame based on the Taylor
over-approximation of the DDE (1). Based on this, the solver is able to verify
more complex formulae of temporal logic also involving Boolean connectives

2http://projects.informatik.uni-freiburg.de/projects/isat3/
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and temporal modalities, like the (bounded) until operator. Our approach
is characterized by the soundness guarantees obtained due to the over-
approximation of the DDE and the sufficient conditions used for substituting
the exact MITL semantics. The accuracy of approximation can be selected;
an automatic refinement method dynamically adapting the accuracy in case
of a negative verdict, however, remains to be developed. We demonstrate
how our approach works in practice by presenting verification of temporal
properties on example systems.

Structure of the article. After discussing related work in Section 2,
we formulate the temporal verification problem on DDE in the form of
Eq. (1) by defining syntax and continuous-time, continuous-state signal-
based semantics of MITL formulae, our requirements specification language
(Sect. 3). Section 4 develops interval-based Taylor over-approximation as a
safe time-wise discretization to the solution of the DDEs, providing a time-
invariant operator generating a timed state sequence on Taylor coefficients.
In Section 5, we adapt the interpretation of MITL to the timed state sequence
such that it safely recovers the original semantics on the actual solution of
the DDE in terms of conditions on the Taylor coefficients of the time-discrete
model. Finally, we conclude our paper in Section (6) presenting some ideas
for further refinement and future directions of our work.

2 Related Work

Driven by the demand for safety cases (in a broad sense) for safety-critical
control systems, we have over the past decades seen a rapidly growing
interest in automatic verification procedures for system models involving
continuous quantities and dynamics described by, a.o., differential equations.
Traditionally ordinary differential equations (ODEs) are used for describing
system dynamics and safety properties have been specified in terms of a set
of unsafe states formulating the verification problem as reachability analysis.
Reachability analysis, which involves computing appropriate approximations
of the reachable state sets, plays a fundamental role in addressing such safety
verification challenges. Consequently, significant research has been invested
in reachability analysis of such dynamical systems [30, 4, 31, 7, 15, 22, 24].
In contrast to this extensive literature on computing the reachable state
space for ODEs, the reachability analysis to dynamic systems modelled by
delay differential equations (DDEs) is in its infancy and thus provides an
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open area of research.

Zou, Fränzle et al. proposed in [44] a safe enclosure method using
interval-based Taylor over-approximation to enclose a set of functions by a
parametric Taylor series with parameters in interval form for a simple class of
DDEs in the form of Eq. (1). This method dealt only with simple invariants
as safety properties. In [35], Prajna et al. extended the barrier certificate
methodology for ODEs to the polynomial time-delay differential equations
setting, in which the safety verification problem is formulated as a problem
of solving sum-of-square programs. The work in [18] presents a technique for
simulation-based time-bounded invariant verification of nonlinear networked
dynamical systems with delayed interconnections by computing bounds on
the sensitivity of trajectories (or solutions) to changes in initial states and
inputs of the system. A similar simulation method integrating error analysis
of the numeric solving and the sensitivity-related state bloating algorithms
was proposed in [6] to obtain safe enclosures of time-bounded reach sets for
systems modelled by DDEs.

Confining safety properties to a set of unsafe states, as in the afore-
mentioned work, considerably restricts the ability of designers to adequately
express the desired safe behavior of the system that may involve a number
of critical properties such as timing requirements and bounded response.
Metric temporal logic (MTL), introduced by Koymans [20], is popular for-
malism for expressing such properties as a real-time extension of linear
temporal logic (LTL) [28] to specify real-time properties. Then, Alur et
al. in [1] introduced metric interval temporal logic (MITL) to address the
undecidability problem of MTL by relaxing the punctuality of the temporal
operators. The bounded-time verification or falsification of such properties
has been studied for continuous/hybrid systems in [10, 11, 37, 34, 27], yet
DDEs are not handled. In this paper, however, we present an approach
aiming at automatic safety verification of a class of DDEs in the form of
Eq. (1) against requirements expressed in MITL formulae. In contrast to
our preliminary work in [44], yet we can verify arbitrary time-bounded
MITL formulae including nesting of modalities rather than just invariance
properties.

3 Problem Formulation

In this section, we formulate the verification problem of a simple class of
DDEs in the form of Eq. (1) against a class of safety requirements specified



82 P. Nazier Mosaad, M. Fränzle, B. Xue

using an appropriate linear-time temporal logic. As we deal with continuous
state and time, we adopt metric interval temporal logic (MITL) [1] for the
purpose of requirements specification language. In this section, we review
its syntax and its continuous-time, signal-based semantics.

Let R be the set of the real numbers. Our time domain is the set
of nonnegative real numbers R≥0. Also, the trajectory of the DDE of Eq.
(1) on an initial condition x([0, δ]) ≡ c ∈ R is a function x(t) such that
x : R≥0 → RN satisfies the initial condition and ∀t ≥ δ : d

dt~x(t) = f(~x(t−δ)),
where the positive integer N denotes the dimension of the state space. In
order to specify the temporal properties of interest, we exploit MITL with
continuous semantics, as meaningful when the states evolve in metric spaces
like in Eq. (1). We say that P(C) denotes the powerset of a set C and assume
that AP is a set of atomic propositions. Then, the predicate mapping
M : AP → P(RN ) is a set valued function that assigns to each atomic
proposition ρ ∈ AP a set of states M(ρ) ⊆ RN . In this paper, we take
the set of atomic propositions AP to be bound constraints e ∼ c on state
expressions, where e is an expression formed over the state variables, like
x1x2 − 2 sinx3, and being compared via a relation ∼ ∈ {<,≤, >,≥} to a
constant c ∈ Q. Such atomic propositions come equipped with their natural
semantics.

3.1 Metric Interval Temporal Logic

Metric interval temporal logic (MITL) [1] is a linear-time temporal logic
designed for capturing properties of signals evolving over quantitative and
thus metric rather than qualitative time, an assumption met by continuous-
state systems as in Eq. (1). It is a real-time extension of linear temporal logic
(LTL), where the modalities of LTL are constrained with quantitative timing
bounds. Metric temporal logic (MTL) was first introduced by Koymans
[20] to specify real-time properties. In order to address the undecidability
problem of MTL, Alur et al. in [1] relaxed the punctuality of the temporal
operators s.t. they cannot constrain to singleton intervals. We employ MITL
to formally characterize the desired behavior of DDEs. Along the following
lines, we review and suitably adapt the syntax and the continuous-time and
continuous-space semantics of MITL as presented in [1, 33].

Definition 1 (Syntax of MITL). An MITL formula ϕ is built from a set
of atomic propositions AP using Boolean connectives and timed-constrained
versions of the until operator. It is inductively defined according to the
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grammar

ϕ ::= > | ρ | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

where ρ ∈ AP , > is the Boolean constant true and I ⊆ Q≥0 is a nonsingular
interval imposing timing bounds on the temporal operators, where Q≥0 is the
set of non-negative rational numbers.

We can derive the constant false by ⊥ ≡ ¬>. Also, we can define
additional, time-constrained version of, temporal operators such as release
RI , eventually 3I , and always 2I as follows:

ϕ1 RI ϕ2 ≡ ¬((¬ϕ1) UI (¬ϕ2)),

3I ϕ ≡ > UI ϕ, and

2I ϕ ≡ ⊥ RI ϕ ≡ ¬3I ¬ϕ.

Notice that the release operator is a temporal modality that is dual
to the until operator. A formula ϕ1 RI ϕ2 holds if ϕ2 always holds, a
requirement that is released as soon as ϕ1 becomes valid w.r.t. the time
bounds I.

Also, note that MITL has no next operator as the time domain is dense.
For I = [0,∞], we can remove the subscript I from the temporal operators,
obtaining the traditional modalities of LTL. Finally, we would like to point
out that the decidability problem of MITL in the continuous semantics for
both model checking and satisfiability problems is out of the scope of this
paper. For details about the decidability problem, we refer the reader to
[1, 32]. Furthermore, it is an open issue whether the model property of DDE
w.r.t. MITL formulae is decidable.

3.1.1 Negation Normal Form

We consider MITL formulae in negation normal form (NNF), which can be
achieved by pushing all negations inside into the atoms [36]. If we admit the
release modality and disjunction in our syntax, then every formula ϕ has a
semantically equivalent negation normal form nnf(ϕ). Such an NNF can be
obtained by applying De Morgan’s laws as well as the dualities between until
and release in order to push negations inwards, and thereafter eliminating
double negations. This is done by exploiting the following equivalences as
rewrite rules from left to right:



84 P. Nazier Mosaad, M. Fränzle, B. Xue

¬¬ϕ1 ≡ ϕ1,

¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2,

¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2,

¬(ϕ1 UI ϕ2) ≡ ¬ϕ1 RI ¬ϕ2,

¬(ϕ1 RI ϕ2) ≡ ¬ϕ1 UI ¬ϕ2.

These rewrite rules can also be lifted to the derived operators as follows:

¬3I ϕ ≡ 2I ¬ϕ,
¬2I ϕ ≡ 3I ¬ϕ.

3.1.2 Continuous-Time, Continuous-State Semantics of MITL

The continuous semantics of MITL formulae is used to express specifications
on the desired temporal evolution to the solutions of DDEs in the form of
Eq. (1). This semantics is based on real-valued signals x : R≥0 → RN over
time. We say that expression e over the state variables x satisfies atomic
formula e ∼ c at time t ≥ 0, denoted e, t |= e ∼ c, iff e(t) ∼ c holds. Based
on this, semantics of arbitrary MITL formulae is defined inductively, with
the semantics of Boolean connectives ¬ and ∧ as well as the constant >
being standard. The semantics of the time-constrained until operator is
defined as follows: e, t |= ϕ1 UI ϕ2 iff for some t′ ∈ I, e, t + t′ |= ϕ2 holds
and furthermore e, t |= ϕ1 for all t ∈ (t, t+ t′).

By convention, we say that the DDE of Eq. (1) with an initial value
x([0, δ]) ≡ c satisfies an MITL formula ϕ if the expression e(t) over its
solution trajectory satisfies ϕ in the sense of e, 0 |= ϕ. In what follows, we
employ the interval-based Taylor over-approximation method from [44] to
enclose the solution of such a DDE. As this method factually generates a
discrete sequence of Taylor coefficients rather than a continuous trajectory,
we are thus able to reduce a correctness problem over continuous time into
a corresponding problem of a time-invariant operator over discrete time.
Therefore, it is however necessary to recover the continuous semantics on
the actual solution of the DDE from the timed state sequence semantics on
the Taylor coefficients.
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4 Computing Enclosures for DDEs by Taylor Mo-
dels

In this section, we review the bounded degree interval-based Taylor over-
approximation method for a simple class of DDEs first presented in [44]3. In
order to compute an enclosure for the trajectory x(t) defined by an initial
value problem of the DDE (1), a template interval Taylor form of fixed
degree k is defined as

fn(t) = an0 + an1t+ · · ·+ ank
tk, (2)

where fn encloses the trajectory for time interval [nδ, (n+ 1)δ], the constant
δ is the feedback delay from Eq. (1), and an0 , . . . , ank

are interval-vector
parameters. The trajectory induced by DDE (1) can be represented by
a piece-wise function, with the duration of each piece being the feedback
delay δ. To compute the enclosure for the whole solution of the DDE, we
need to calculate the relation between the interval Taylor coefficients in
successive time steps as pre-post-constraints on these interval parameters. For
notational convenience, we denote the interval parameters [an0 , . . . , ank

] by
a matrix A(n) in RN×(k+1). The relation between A(n) and A(n+ 1) can be

computed, exploiting different orders of Lie derivatives f
(1)
n+1, f

(2)
n+1, . . . , f

(k)
n+1,

as follows:

f
(1)
n+1(t) = g(fn(t)), f

(2)
n+1(t) =

d f
(1)
n+1(t)

d t
, . . . , f

(k)
n+1(t) =

d f
(k−1)
n+1 (t)

d t
, (3)

i.e., the first order is obtained directly from the given DDE (1) and the
(i+ 1)-st order is computed from the i-th order by symbolic differentiation.
Then, the Taylor expansion of fn+1(t) with fixed degree k is derived as
follows:

fn+1(t) = fn(δ) +
f
(1)
n+1(0)

1!
t+ · · ·+

f
(k−1)
n+1 (0)

(k − 1)!
tk−1 +

f
(k)
n+1(ξn)

k!
tk , (4)

where ξn is a vector ranging over [0, δ]N .

3The corresponding prototype implementation of the interval Taylor over-approximation
method for DDEs as well as some examples are available for download from
https://github.com/liangdzou/isat-dde.
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From Eq. (4), by comparing the coefficients of monomials with the same
degree at the two sides and by replacing ξn by the interval vector [0, δ]N , we
can obtain a time-invariant operator which represents the relation between
A(n) and A(n + 1). The details of this construction can be found in [44]
or retrieved from the example underneath. Hence, we safely enclose the
trajectory induced by the DDE (1) by a discrete-time model providing a
timed state sequence on a state space S ⊆ RN×(k+1).

4.1 Time-Wise Discretization of DDEs into Timed State Se-
quences

We demonstrate on a running example taken from [44] how to provide the
discrete-time model that encloses the solution of a DDE like Eq. (1). The
running example is the DDE

ẋ(t) = −x(t− 1) (5)

with the initial condition x([0, 1]) ≡ 1. Fig. 1 shows the solution of ODE
ẋ = −x without delay (the dashed line) and with 1 second delay (the solid
line). Obviously, the difference between the ODE and the DDE is substantial
and necessitates analysing the behaviour of the DDE.

Figure 1: Solutions to the ODE ẋ = −x (dashed graph) and the related DDE ẋ(t) =
−x(t − 1) (solid line), both on similar initial conditions x(0) = 1 and x([0, 1]) ≡ 1,
respectively.
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The method provided in [44] aims at over-approximating the solu-
tion of DDE (5) by iterating bounded degree interval-based Taylor over-
approximations of the time-wise segments of the solution to the DDE. That
way, we identify the operator that yields the parameters of the Taylor over-
approximation for the next temporal segment from the current one. For
instance, suppose we are trying to over-approximate the solution of DDE (5)
by polynomials of degree 2. Then we can predefine a template Taylor form
fn(t) = an0 + an1t+ an2t

2 on interval [n, n+ 1], where an0 , an1 , and an2 are
interval parameters able to incorporate the approximation error eventually
necessarily incurred by bounding the degree of the polynomial to (in this
example) 2. Here, fn(t) corresponds to the solution x of DDE (5) at time
n+ t, i.e., fn(t) over-approximates x(n+ t) in the sense of x(n+ t) ∈ fn(t).

In order to compute the Taylor model, the first and second derivative

f
(1)
n+1(t) and f

(2)
n+1(t) of solution segment n+1 based on the preceding segment

(where both segments are of duration 1 each) have to be calculated. The

first derivative f
(1)
n+1(t) is computed directly from Eq. (5) as

f
(1)
n+1(t) = −fn(t) = −an0 − an1t− an2t

2 .

The second derivative f
(2)
n+1(t) is computed based on f

(1)
n+1(t) by

f
(2)
n+1(t) =

d (f
(1)
n+1(t))

d t
= −an1 − 2an2t .

By using a Lagrange remainder with fresh variable ξn ∈ [0, 1], we obtain

fn+1(t) = fn(1) +
f
(1)
n+1(0)

1!
t+

f
(2)
n+1(ξn)

2!
t2

= (an0 + an1 + an2)− an0t−
an1 + 2an2ξn

2
t2.

Then, the operator expressing the relation between Taylor coefficients
in the current and the next step can be derived by replacing both fn(t) and
fn+1(t) with their parametric forms an0 + an1t+ an2t

2 and an+10 + an+11t+
an+12t

2 in the above equation and pursuing coefficient matching. As a result,
one obtains the operatoran+10

an+11

an+12

 =

[
1 1 1
−1 0 0
0 − 1

2 −ξn

][
an0

an1

an2

]
(6)
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mapping the coefficients of the Taylor form at step fn to the coefficients of
the Taylor form of fn+1. The coefficients change at every δ time units (every
second in the given example) according to the above operator, which therefore
defines a discrete-time dynamical system corresponding to the DDE. The
discrete-time operator can be rendered time-invariant, yet interval-valued
by substituting the uncertain time varying parameter ξn with its interval
[0, δ]. Hence, we can safely enclose the solution of DDE (5) by a sequence
of parametric Taylor series with parameters in interval form. In the case of
system (5), as well as for any other linear DDE, the operator generating this
sequence is a set-valued linear operator definable by an effectively computable
interval matrix.

4.2 Bounded Model Checking Mode in iSAT3

In order to encode the Taylor model corresponding to a DDE, we use
bounded model checking (BMC) mode in iSAT3 [38]. The iSAT3 solver is
a satisfiability checker for Boolean combinations of arithmetic constraints
over real- and integer-valued variables as well as a bounded model-checker
for transition systems over the same fragment of arithmetic. It is a stable
version implementation of the iSAT algorithm [13]. The solver can efficiently
solve bounded verification problems that involve polynomial (and, if needed,
transcendental) arithmetic. Hence, it is a good option to solve our proposed
problem due to the Taylor forms involved. Also, it allows us to verify/falsify
a variety of MITL formulae built on atomic predicates defined over simple
bounds, linear, and nonlinear constraints [21]. Bounded model checking
(BMC) of a transition system aims at finding a run of bounded length kdepth
which

• starts in an initial state of the system,

• complies with the system’s transition relation, and

• ends in a state in which a certain (un)desired property holds.

The bounded model checking engine then constructs a formula which is
satisfiable if and only if a trace with above properties exists.4 In case of
satisfiability, any satisfying valuation of this formula corresponds to such a

4It should be noted that this semantic property does not imply that the solver engine
subsequently checking that formula for satisfiability can exactly determine its satisfiability.
In the case of iSAT, a sound, yet incomplete unsatisfiability check is implemented, as
necessitated by the undecidable fragment of arithmetic addressed.
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trace. For encoding the discrete transition system on Taylor model in BMC
mode, iSAT3 has an input file format consisting of four sections:

• DECL: This part contains declaration of all variables (i.e., variables of
the dynamic system, Taylor coefficients of the Taylor over-approximation
solution, the duration of each segment t ∈ [0, δ], the uncertain time-
varying parameter ξ ∈ [0, δ]).

• INIT: This part is a formula describing the initial state(s) of the system
to be investigated.

• TRANS: This formula describes the transition relation in symbolic form;
in our case the evolution of the time-discrete Taylor model. We encode
a template interval Taylor form of fixed degree k, i.e., fn(t), and the
relation between interval Taylor coefficients in the current and the next
step. Variables may occur in primed (e.g., a′) or unprimed (e.g., a)
form. A primed variable represents the value of that variable in the
successor step, i.e., after the transition has taken place.

• TARGET: This formula characterises the state(s) whose reachability is
to be checked; in our case it represents satisfaction of the given MITL
formula.

The solver unwinds the transition relation kdepth times, conjoins the resulting
formula with the formulae describing the initial state(s) and the target
state(s), and then solves the obtained formula. For our transition relation
in terms of Taylor coefficients, the solver recursively for each time frame
[0, kdepthδ] constructs the following formula:

init (~a0) ∧
kdepth−1∧
i=0

trans (~ai, ~ai+1) ∧ target (~akdepth),

where ~a is the interval-vector of the Taylor coefficients of the fixed-degree
Taylor polynomial fn(t).

Back to our running example in Sect. 4.1, the iSAT3 encoding for
this example is as shown in Listing (1). In the DECL part, we declare all
variables; the variables of the dynamic system, i.e., x, the Taylor coefficients
of degree 2, i.e., a0, a1, and a2, the duration of each segment t ∈ [0, 1], and
the uncertain time varying parameter ξ ∈ [0, 1]. Notice that the range of
each variable has to be bounded in iSAT3. We initialize the system variable
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x and the Taylor coefficients in INIT part according to the given initial
condition(s) in our example. Then, in the TRANS part, we state the interval
Taylor form of degree 2, i.e., fn(t) corresponds to the solution x of DDE
(5), as shown in line 22, and the relation between Taylor coefficients in
the current (unprimed variables) and the next segment (primed variables)
according to the generated operator (6), where the segments are of duration
1 each.

1 DECL

2 -- the range of each variable has to be bounded

3 float [-1000, 1000] a0 , a1 , a2 , x;

4 float [0,1] t, xi;

5
6 INIT

7 -- initial value of solution

8 x = 1;

9
10 -- initialize Taylor coefficients

11 a0 = x;

12 a1 = 0;

13 a2 = 0;

14
15 TRANS

16 -- relation betw. Taylor coefficients in current and next step

17 a0’ = a0 + a1 + a2;

18 a1’ = -a0;

19 a2’ = -0.5*a1 - xi*a2;

20
21 -- x(t) is given by a Taylor form of degree 2

22 x’ = a0’ + a1 ’*t + a2 ’*(t^2);

23
24 TARGET

25 -- state to be reached , e.g.

26 x = -0.25;

Listing 1: The encoding in iSAT3 of the running example in Sect. 4.1.

4.3 Proving Continuous-Time Properties on the Time Dis-
cretization

Operator (6) straightaway defines a safe temporal discretization of the DDE
system in Eq. (1), i.e., an operator generating a classical timed state sequence
in the sense of [1, 10]. We can, however, not simply apply the discrete-time
interpretation of MITL to this timed state sequence, as it ranges over a
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different state space —namely the Taylor coefficients— than the requirements
specification in terms of the original state variables. Therefore, we have to
translate forth and back between the different state spaces and time models.
In detail, the iterated execution of operator (6), starting from an initial
vector a00 , . . . , a0k of Taylor coefficients encoding the initial solution segment
x([0, δ]), generates a timed state sequence over (interval) Taylor coefficients,
with time stamps ti = iδ, rather than a continuous signal over the state
variables x1, . . . , xN . Reflecting this encoding, we need a translation step
generating conditions over the timed sequence of Taylor coefficients from
which we are able to recover the original continuous-time, continuous-state
signal-based semantics on the actual solution x of the DDE, as defined in
Sect. 3.1.

As has already been observed in [44], such a mapping is straightforward
when invariance properties are to be dealt with, for which a sufficient —yet,
in the light of over-approximation of the solution, obviously not necessary—
condition can be obtained as follows. For an invariance requirement 2x ∈
Safe, where Safe is a set of safe states, the requirement in the n-th segment
is translated to the stronger condition

∀t ∈ [0, δ]∀ξ ∈ [0, δ]∀a0 ∈ An,0, . . . , ak ∈ An,k : fn(t) ∈ Safe, (7)

where fn is the underlying Taylor form and An,0 to An,k are the intervals
Taylor coefficients stemming from the n-th iteration of the operator (6). As
this Taylor form provides an over-approximation of the solution x over time
frame [nδ, (n+ 1)δ], the condition (7) implies ∀t ∈ [nδ, (n+ 1)δ] : x(t) ∈ Safe.
Consequently, the continuous-time safety property 2x ∈ Safe for system (5)
is translated into a sufficient condition according to Eq. (7) for t, ξ ∈ [0, 1]
over the sequence of Taylor coefficients of Taylor polynomial of degree 2.
As its violation is an existential statement both instantiations of Taylor
coefficients within given intervals and existentially quantified time points t
and ξ, a solver for satisfiability modulo theory over the existential theory of
polynomial arithmetic can be used to solve the safety verification problem.
It requires polynomial constraint solving due to the Taylor forms, i.e.,
polynomial expressions involved in the statement fn(t) ∈ Safe.

Different proof schemes can be implemented using such a solver: using k-
induction [39] or interpolation-based unbounded proof schemes [29], absence
of any time point in the sequence of valuations generated by operator (6)
satisfying ∃n ∈ N,∃t ∈ [0, 1],∃ξ ∈ [0, 1],∃a0 ∈ An,0, . . . , ak ∈ An,k : fn(t) 6∈
Safe can be shown, thereby rigorously showing safety of the DDE system
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under investigation. Bounded model checking of the same system could, on
the other hand, generate counterexamples to safety, which may however be
spurious due to the over-approximation involved in the Taylor enclosure.

5 Solving Continuous-Time MITL Formulae by Re-
duction to Time-Discrete Taylor Approximati-
ons

We extend the above idea of generating sufficient conditions for MITL
specifications on DDEs in terms of the sequences of enclosing (interval)
Taylor coefficients. The aim is to cover a large fragment of MITL, expanding
well beyond the invariance properties addressed in [44]. As explained in the
previous section, we have obtained a generator for a timed state sequence

—the operator (6)— representing the solution of the DDE, yet ranging
over a different state space, namely the Taylor coefficients. Hence, the
continuous interpretation of the MITL formulae over DDE solutions has
to be translated into a semantically appropriate discrete interpretation on
a timed state sequence with time stamps ti = iδ. This translation needs
to restore, in the sense of providing sufficient conditions for the solution
being a counterexample (i.e., a witness of violation of the property), the
continuous semantics of the MITL formulae over the discrete model of the
timed state sequence. We do so by first transforming the MITL formula into
negation normal form, then generating a sufficient condition by adding the
appropriate conditions to the Taylor model that meet the semantics of the
property for searching for (possibly spurious) counterexamples with the help
of an SMT solver.

5.1 Atomic Proposition

According to the MITL syntax of Sect. 3, atomic propositions are of the form
e ∼ c, where e is an expression over the state variables, c is a constant and
∼ an inequational relational operator, i.e., one of <,≤, >,≥. Using bounded
model-checking based on SMT solving, we attempt to find a counterexample
of the MITL formula, or, in other words, look for a witness for the negation of
the MITL formula. As we transform that negated formula into NNF, atomic
propositions occur in positive context only. Then, sufficient conditions for
truth of such propositions throughout a time frame [iδ, (i + 1)δ] can, as
already observed in Eq. (7)), obviously be expressed as follows:
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∀t ∈ [0, δ]∀ξ ∈ [0, δ] ∀a0 ∈ Ai,0, . . . , ak ∈ Ai,k :

n∧
i=1

xi = fi(t) ∧ e ∼ c. (8)

As mentioned in Sect. 4.3, when using SMT solving for finding violations
of condition (8), we use the negation of the universally quantified condition
Eq. (8). As this is an existential formula, it is amenable to standard SMT
solving.

5.2 Boolean Connectives

For solving complex-structured formulae, we use a Tseitin-like definitional
translation [43], where we introduce a fresh Boolean helper variable 〈ψ〉i
for each subformula ψ and each index i of a time frame [iδ, (i+ 1)δ]. The
intuition is that 〈ψ〉i being true implies that ψ holds for each time point
t ∈ [iδ, (i + 1)δ]. Note that this is a one-sided implication, as we cannot
decide properties exactly.

Note that we have in the previous section already obtained appropriate
definitions for the case that ψ is an atomic formula, such that we can define

¬〈e ∼ c〉i ⇒
(
∃t ∈ [0, δ]∃ξ ∈ [0, δ] ∃a0 ∈ Ai,0, . . . , ak ∈ Ai,k :∧n

i=1 xi = fi(t) ∧ e 6∼ c

)
(9)

as sufficient condition for validity of an atomic formula e ∼ c, where e is an
expression over the state variables and 6∼ is the converse of the relation ∼.

Given a compound formula of the form ψ1 = ϕ1 ∧ ϕ2 or ψ2 = ϕ1 ∨ ϕ2,
the encoding for the compound formula is obtained by conjoining to the
“axiomatisations” of ϕ1 and ϕ2 the following definitional translations:

〈ϕ1 ∧ ϕ2〉i ⇔ 〈ϕ1〉i ∧ 〈ϕ2〉i
〈ϕ1 ∨ ϕ2〉i ⇔ 〈ϕ1〉i ∨ 〈ϕ2〉i

Note that a single-sided implication “⇐” from right to left would actually
suffice, as we target sufficient conditions only.

5.3 Unary Temporal Operators

Assume we have an MITL formula ψ1 = 3I ϕ or ψ2 = 2I ϕ featuring a
time-constrained eventually or always temporal operator as its outermost
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operator. Let the lower and upper bound of I for simplicity be integer
multiplies lδ and uδ of δ. For each time frame, the value of a given MITL
formula is encoded with the help of new Boolean variables for the truth
values of its subformulae in particular time instants. The encoding of ψ1

and ψ2 can be recursively understood as follows:

〈3[lδ,uδ]〉i ⇔ 〈3[0,(u−l)δ]ϕ〉i+l, if 1 ≤ l < u

〈3[0,uδ]ϕ〉i ⇔ 〈ϕ〉i ∨ 〈3[0,(u−1)δ]ϕ〉i+1, if 1 < u

〈3[0,δ]ϕ〉i ⇔ 〈ϕ〉i
〈2[lδ,uδ]〉i ⇔ 〈2[0,(u−l)δ]ϕ〉i+l, if 1 ≤ l < u

〈2[0,uδ]ϕ〉i ⇔ 〈ϕ〉i ∧ 〈2[0,(u−1)δ]ϕ〉i+1, if 1 < u

〈2[0,δ]ϕ〉i ⇔ 〈ϕ〉i

Single-sided implications “⇐” from right to left would again suffice for a
sound definitional translation.

In the case of the eventually modality, the condition for detecting
satisfaction of ϕ is somewhat stronger than necessary, actually requiring it
to hold throughout a full time frame rather than just once inside.

5.4 Binary Temporal Operators

Assume we have a subformula of shape ψ1 = ϕ1 UI ϕ2 or ψ2 = ϕ1 RI ϕ2

featuring a time-constrained until or release operator as its outermost con-
nective. For simplicity, we assume that the lower bound of I is 0. Such
a form can always be achieved by prepending the modality with a unary
temporal operator. Then the encoding of a sufficient condition for validity
of ψ1 or ψ2, resp., over time frame [iδ, (i+ 1)δ] is as follows:

〈ϕ1 U[0,uδ] ϕ2〉i ⇔ 〈ϕ2〉i ∨ (〈ϕ1〉i ∧ 〈ϕ1 U[0,(u−1)δ] ϕ2〉i+1), if 1 < u

〈ϕ1 U[0,δ] ϕ2〉i ⇔ 〈ϕ2〉i
〈ϕ1 R[0,uδ] ϕ2〉i ⇔ 〈ϕ2〉i ∧ (〈ϕ1〉i ∨ 〈ϕ1 R[0,(u−1)δ] ϕ2〉i+1), if 1 < u

〈ϕ1 R[0,δ] ϕ2〉i ⇔ 〈ϕ2〉i

As in the case of the eventually modality, the condition for detecting ϕ2

in the case of until and of ϕ1, resp., in the case of release again is somewhat
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stronger than necessary, requiring it to hold throughout the respective time
frame instead of just once inside.

5.5 Correctness

Let ψ be an MITL formula and [ψ]0 be the definitional translation of ψ
obtained by recursively unfolding and conjoining the above definitions of
〈ψ〉0 and all 〈ϕ〉j occurring therein. Let d~x

dt (t+ δ) = f(~x(t)) be a DDE with

initial value ~x([0, δ]) ≡~i, and let A be the interval matrix obtained from it
due to Eq. (6). Let k be the highest index j of any Tseitin variable 〈ϕ〉j
occurring in [ψ]0.

Lemma 1 If ~a0 =̂~i∧
∧k
i=0~ai+1 = A~ai ∧ [ψ]0 ∧¬〈ψ〉0 is unsatisfiable then ~x

satisfies ψ, where ~a0 =̂~i denotes the appropriate initialisation of the Taylor
coefficients and ~x is the exact solution of the DDE.

Proof: The sequence ~a0 =̂~i ∧
∧k
i=0~ai+1 = A~ai of interval Taylor forms

generates an over-approximation of x. The construction of [ψ]0 is such
that ~a0 =̂~i ∧

∧k
i=0~ai+1 = A~ai ∧ [ψ]0 |= 〈ψ〉0 if all trajectories y enclosed

by the sequence of interval Taylor forms, and thus also x itself, satisfies ψ.
Satisfiability of ~a0 =̂~i ∧

∧k
i=0~ai+1 = A~ai ∧ [ψ]0 ∧ ¬〈ψ〉0 consequently is a

necessary condition for violation of ψ by x. 2

Note that ~a0 =̂~i∧
∧k
i=0~ai+1 = A~ai ∧ [ψ]0 ∧¬〈ψ〉0 is a purely existential

statement and thus amenable to standard SAT-modulo-theory solving by
removing the explicit existential quantifiers in each instant of Eq. (9) by
introducing fresh variables.

5.6 Verification Examples

In this section, we use the iSAT3 SMT solver to discharge the above proof
obligations. In order to be able to present the encodings in a compact
form suitable for manual inspection and for publication in print, we slightly
deviate from a strict implementation of the above scheme, and instead
employ the bounded model checking (BMC) mode of iSAT and symbolic
counter variables as abbreviation mechanisms whenever appropriate in the
search for witnesses as counterexamples of the MITL formulae. The results
are, however, the same and the logics behind the encodings is equivalent to
the point it can be in a BMC encoding. In particular, the method for using
existential arithmetic constraints as sufficient conditions to determine the
truth values of propositional (sub)formulae based on the over-approximation
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model of the DDE and thus recover the continuous semantics of the MITL
formula on the actual solution x of the DDE from the timed state sequence
semantics is exactly as in Eq. (9).

We demonstrate the approach based on illustrative examples of DDEs
in the form of Eq. (1). In our examples, we first consider the DDE (5)
presented in Sect. 4.1 with different conjectured MITL formulae to be
verified. Thereafter, we apply our method to an adaptation of Gustafson’s
model of nutrient flow in an aquarium (three dimensional example) [17, p.
589f].

Example 1 We consider the linear DDE ẋ(t) = −x(t − 1) with initial
condition x([0, 1]) ≡ 1 and the conjectured safety property 2[0,10] (x ≤ 1.2).

The bounded degree interval-based sequence of Taylor forms can be generated
by the operator Eq. (6)). Adopting degree 2 Taylor forms, we can encode
this generator in the iSAT3 input language as shown in lines 24–26 of Listing
2. The encoding is a discrete-time dynamic system over the variables x
representing (snapshots of) the DDE solution, Taylor coefficients of the
Taylor over-approximation solution, i.e., a0, a1,, and a2, a time point in each
segment t ∈ [0, 1], and the uncertain time varying parameter ξ ∈ [0, 1]. Also,
we declare a counter to observe the timing bound on the temporal operator.

In order to solve the given MITL formula 2[0,10] (x ≤ 1.2) in iSAT3 in
the sense of trying to construct a counterexample, we

1. in accordance with Eq. (9) search for a time frame within which x,
being defined as the image of the Taylor polynomial for some t ∈ [0, 1],
ξ ∈ [0, 1] in line 29 of the listing, exceeds 1.2, as encoded by condition
x > 1.2 in the target (line 37), and

2. enforce the count of the time frame to be at most 9 (target, line 38),
as time frame n ranges from time n to n+ 1.

For verifying the property at hand, it obviously suffices to check this formula
up to unwinding depth 9.5 Such bounds on unwinding depths can in iSAT3

be set with the --start-depth and --max-depth command line options.

In our example, the solver outputs that the system is safe for unwinding
depth 10, i.e., no state satisfying the target property could be reached within

5iSAT counts unwindings starting from 0 such that an unwinding of depth 9 yields a
trace comprising 10 time instants.
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the relevant depth. This constitutes a rigorous proof that the system actually
satisfies the MITL formula.

1 DECL

2 -- the range of each variable has to be bounded

3 float [-1000, 1000] a0 , a1 , a2 , x;

4 float [0,1] t, xi;

5
6 -- define counter for the bounded verification problem

7 int [0,9] counter;

8
9 INIT

10 -- initial value of x over [0,1]

11 x = 1;

12
13 -- initialize Taylor coefficients

14 a0 = 1;

15 a1 = 0;

16 a2 = 0;

17
18 -- initialize the counter observing the time interval

19 -- covered by the bounded always

20 counter = 0;

21
22 TRANS

23 -- relation between Taylor coefficients current and next step

24 a0’ = a0 + a1 + a2;

25 a1’ = -a0;

26 a2’ = -0.5*a1 - xi*a2;

27
28 -- x(t) is given by a Taylor form of degree 2

29 x’ = a0’ + a1 ’*t + a2 ’*(t^2);

30 -- note the implicit existential quantification of t

31
32 -- increment the counter by 1 after each time frame

33 counter ’ = counter + 1;

34
35 TARGET

36 -- state to be reached in bounded time

37 x > 1.2 and

38 counter <= 9;

Listing 2: The encoding of Example 1 in iSAT3.

Example 2 Consider the same DDE equation as Example (1) with the same
initial condition, but for solving the conjectured safety property of (bounded)
until operator (x ≤ 1.2) U[0,10] (x ≤ 1.0).
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This time, we employ four Boolean helper variables, of which iSAT’s
BMC mode will instantiate a fresh copy in each step:

1. Boolean state variable b records a sufficient condition for x ≤ 1.2 being
true throughout the current time frame in the sense that b is true only
if x(t) ≤ 1.2 holds for each time instant t in the current time frame
(cf. lines 28 and 50 in Listing 3);

2. Boolean state variable c records a sufficient condition for x ≤ 1.0 being
true throughout the current time frame (cf. lines 31 and 52);

3. the Boolean state variable u records a sufficient condition for the
temporal property (x ≤ 1.2) U[0,10−n] (x ≤ 1.0) being true in the
current step, with n being the number of the current step (cf. line 54);

4. Boolean state variable done is a helper variable necessitated by the
confined expressiveness of the BMC mode, which permits reference
to current and next states only. It records whether the termination
condition x ≤ 1.0 has already been true in the past (lines 34 and 55).

1 DECL

2 -- the range of each variable has to be bounded

3 float [-1000, 1000] a0 , a1 , a2 , x1 , x2;

4 float [0,1] t1 , t2 , xi;

5 -- each of the atomic subformulae needs its own

6 -- fresh copy of the state variable x and the time

7 -- instant t due to the quantifier elimination

8
9 -- define counter for bounded verification problem

10 int [0,9] counter;

11
12 -- define Boolean helper variables

13 boole b, c, u, done;

14 -- b records sufficient condition for x <= 1.2

15 -- c records sufficient condition for x <= 1.0

16 -- u records sufficient condition for until

17 -- done records whether c has been true in the past

18
19 INIT

20 x1 = 1;

21 x2 = 1;

22 -- initialize Taylor coefficients

23 a0 = 1;

24 a1 = 0;



Model Checking Delay Differential Equations
Against Metric Interval Temporal Logic 99

25 a2 = 0;

26
27 --initialize b, the sufficient condition of everywhere x <= 1.2

28 (not b) -> (x1 > 1.2);

29
30 --initialize c, the sufficient condition of everywhere x <= 1.0

31 (not c) -> (x2 > 1.0);

32
33 -- initialize done , the variable memoizing x <= 1.0

34 done <-> c;

35
36 -- counter observes the time interval

37 counter = 9;

38
39 TRANS

40 -- description of the transition system of DDE model

41 a0’ = a0 + a1 + a2;

42 a1’ = -a0;

43 a2’ = -0.5*a1 - xi *a2;

44
45 -- tracing the bounded until

46 -- find witness points

47 x1’ = a0’ + a1 ’*t1 + a2 ’*(t1^2);

48 x2’ = a0’ + a1 ’*t2 + a2 ’*(t2^2);

49 -- b is sufficient condition for x <= 1.2 throughout time frame

50 (not b’) -> (x1’ > 1.2);

51 -- c is sufficient condition for x <= 1.0 throughout time frame

52 (not c’) -> (x2’ > 1.0);

53 -- recurrence rules for until

54 u <-> done or (b and u’);

55 done ’ <-> (c’ and counter > 0) or done; -- remembers c

56 (counter > 0) -> (counter ’ = counter -1);

57 (counter = 0) -> (counter ’ = 0);

58
59 TARGET

60 -- for constructing a counterexample , the until formula ought

61 -- to be violated in the initial time instant

62 (not u) and (counter = 9);

Listing 3: The encoding of Example 2 in iSAT3.

Checking above example for an appropriate unwinding depth of at least
9, iSAT will report unsatisfiable, which approves absence of a counterexample
and thus proves the property to be satisfied.

Example 3 This example (taken from [44]) is an adaptation of Gustafson’s
model of nutrient flow in an aquarium [17, p. 589f]. It deals with using
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a radioactive tracer for the food chain consisting of two aquatic plankton
varieties drifting with the currents. The variables in this three-dimensional
system reflect the isotope concentrations in the water, a phytoplankton species,
and a zooplankton species, respectively. The original model was an ODE
model; a concise model would presumably have to use PDE (partial differential
equations) to model spacial variations and the necessary drifts of species in
the predator-prey part of the food chain; our DDE model here is a compromise
between these two extremes. Therefore consider the three-dimensional linear
DDE

~̇x(t) =

−3 6 5
2 −12 0
1 6 −5

 ~x(t− 1

100
) (10)

with initial condition ~x([0, 1]) ≡ [10, 0, 0] and a conjectured MITL formula
specifying the distance between the isotope concentrations of two aquatic
plankton varieties always stays below 10 in a bounded time [0, 50], i.e.,
2[0,50] | x2 − x3 |≤ 10.

Using Taylor models of degree 1, we calculate the operator relating
successive parameter vectors to be

A(n+ 1) =


1 1

100 0 0 0 0
−3 −3ξ1 6 6ξ1 5 5ξ1
0 0 1 1

100 0 0
2 2ξ2 −12 −12ξ2 0 0
0 0 0 0 1 1

100
1 ξ3 6 6ξ3 −5 −5ξ3

A(n) ,

In this example, the solver outputs that the system is safe, which means
that any state satisfying the target property is unreachable within depth 50
w.r.t. the over-approximation model of the DDE. This constitutes a rigorous
proof that the system actually satisfies the given property.

1 DECL

2 -- the range of each variable has to be bounded

3 float [-1000, 1000] a01 , a11 , a02 , a12 , a03 , a13 , x1 , x2 , x3;

4 float [0 ,1/100] t, xi1 , xi2 , xi3;

5
6 -- define counter for the bounded verification problem

7 int [0,49] counter;

8
9 INIT

10 -- initial values for the three components of the state

11 x1 = 10;
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12 x2 = 0;

13 x3 = 0;

14 -- initialize Taylor coefficients

15 a01 = 10;

16 a11 = 0;

17 a02 = 0;

18 a12 = 0;

19 a03 = 0;

20 a13 = 0;

21 -- initialize the counter

22 counter = 0;

23
24 TRANS

25 --description of the transition system of DDE model

26 x1’ = a01 ’ + a11 ’*t;

27 x2’ = a02 ’ + a12 ’*t;

28 x3’ = a03 ’ + a13 ’*t;

29 a01 ’ = a01 + (1/100)* a11;

30 a11 ’ = (( -3)* a01) - ((3* xi1)*a11) + (6* a02)

31 + ((6* xi1)*a12) + (5*a03) + ((5* xi1)*a13);

32 a02 ’ = a02 + (1/100)* a12;

33 a12 ’ = (2* a01) + ((2* xi2)*a11) - (12* a02) - ((12* xi2)*a12);

34 a03 ’ = a03 + (1/100)* a13;

35 a13 ’ = a01 + (xi3*a11) + (6* a02) + ((6* xi3)*a12)

36 - (5* a03) - ((5* xi3)*a13);

37
38 -- increment the counter by 1 for each time frame

39 counter ’ = counter + 1;

40
41 TARGET

42 -- state to be reached in bounded time

43 abs(x2 -x3) > 10 and counter <= 49;

Listing 4: The encoding of Example 3 in iSAT3.

Along these lines, we should point out that the above verification proce-
dure for temporal specifications could obviously fail, in the sense of providing
false negatives and corresponding counter-examples, due to excessive over-
approximation of the DDE’s solution or due to the conditions used for MITL
satisfaction not being necessary, but just sufficient. As the former problem
would be induced by selecting an insufficient bound on the degree of the
Taylor forms, one could simply select a higher degree. Therefore it should,
however, be clear that the negative verdict actually is spurious due excessive
over-approximation. Automatic methods to check whether the reported
counterexample is spurious or not remain to be developed. One solution to
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this problem could be by using counter-example guided abstraction refine-
ment (CEGAR) [8] for enhancing the over-approximation model. Another
solution could be by refining the over-approximation Taylor model using
sensitivity analysis, and hence enhancing the constructed conditions on the
model. That latter solution aims at eliminating the wrapping effect due to
the dependency issue in interval arithmetic. A pertinent algorithm based on
this idea is currently under development and will be exposed in future work.

6 Conclusion and Future Work

In this paper, we have elaborated a method to verify/falsify temporal specifi-
cations of time-delay systems modeled by a simple class of delay differential
equations (DDEs) with a single constant delay. Several dynamical systems
can be modeled by DDEs with a single constant delay as in biology [16, 26],
optics [19], economics [41, 42], ecology [12], to name just a few. As requi-
rements specification language, we have exploited metric interval temporal
logic (MITL) [1] with continuous-time semantics on the solutions of the
DDEs. We have built our method around a fixed degree interval-based
Taylor over-approximation technique [44] in order to provide a safe enclosure
method for DDEs, thereby obtaining timed state sequences spanned by the
piecewise valid Taylor coefficients. In this way, the continuous semantics of
the MITL formulae is reduced to a time-discrete problem on timed state
sequences in terms of Taylor coefficients. Then, we have devised sufficient
conditions on these timed state sequences recovering the continuous-time
interpretation of MITL on the actual solutions of the DDEs. To achieve
this, we have first built sufficient conditions for validation of the atomic
predicates over time frames of the Taylor over-approximation model of DDE.
We have then extended this approach to arbitrary bounded MITL formulae
in negation normal form. Exploiting this as a tableaux or using a related
encoding as a bounded model checking (BMC) problem, we could employ
arithmetic SMT solver addressing (a.o.) polynomial arithmetic as a tool
able to automatically provide certificates of temporal properties for DDEs.
In our case, we have used the iSAT3 solver, which is the third implementa-
tion of the iSAT algorithm [13]. In very first experiments on simple DDEs,
the iSAT3 solver proved able to solve the temporal properties expressed in
MITL formulae, thereby safely determining satisfaction of the formulae in
an over-approximation setting. We were able to verify formulae of temporal
logic also involving Boolean connectives and temporal modalities, like the
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(bounded) until operator.

We have presented some examples to demonstrate our method. The
soundness of the method is guaranteed due to the over-approximation em-
ployed in DDE enclosure by Taylor forms and the sufficient conditions of
determining the truth values of the atomic propositions over the time frames.
Such over-approximation may, however, provide spurious counterexamples
in case of a failing verification attempt, which ought to be disambiguated
from true counterexamples. To resolve that ambiguity in case of a negative
verdict, as a future work, further techniques remain to be developed. We may
build our idea on the general counter-example guided abstraction refinement
(CEGAR) technique [8]. Another solution could be by refinement based on
sensitivity analysis. A pertinent algorithm based on sensitivity analysis is
currently under development and will be exposed in future work.

In control applications, one may furthermore want to combine delayed
feedback, as imposed a.o. by networked control, with immediate state feed-
back modeled by ordinary differential equations (ODEs). We may investigate
in more detail some algorithms to handle such cases in the near future. The
main idea is based on a layered combination of Taylor-model computation
for ODE, e.g., [31], with the ideas imposed in [44] for DDE. In this way, we
may extend our method exposed herein to verify the temporal properties
of dynamical systems modeled by the combination of ODE and DDE. In
subsequent steps, we plan to extend the method even further to more general
kinds of DDE, like DDE with multiple different discrete delays, DDE with
randomly distributed delay, or DDE with time-dependent or more generally
state-dependent delay [23]. Finally, we would like to point out that in this
paper, we essentially have presented a verification method based on model
checking to design time-delay continuous systems modeled by a simple class
of DDEs. This method may also be used in interactive proofs and stepwise
refinement of hybrid systems featuring delayed feedback, akin to the methods
developed for traditional hybrid systems [2, 5].
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