34 research outputs found

    RML: Runtime Monitoring Language

    Get PDF
    Runtime verification is a relatively new software verification technique that aims to prove the correctness of a specific run of a program, rather than statically verify the code. The program is instrumented in order to collect all the relevant information, and the resulting trace of events is inspected by a monitor that verifies its compliance with respect to a specification of the expected properties of the system under scrutiny. Many languages exist that can be used to formally express the expected behavior of a system, with different design choices and degrees of expressivity. This thesis presents RML, a specification language designed for runtime verification, with the goal of being completely modular and independent from the instrumentation and the kind of system being monitored. RML is highly expressive, and allows one to express complex, parametric, non-context-free properties concisely. RML is compiled down to TC, a lower level calculus, which is fully formalized with a deterministic, rewriting-based semantics. In order to evaluate the approach, an open source implementation has been developed, and several examples with Node.js programs have been tested. Benchmarks show the ability of the monitors automatically generated from RML specifications to effectively and efficiently verify complex properties

    On the connection of probabilistic model checking, planning, and learning for system verification

    Get PDF
    This thesis presents approaches using techniques from the model checking, planning, and learning community to make systems more reliable and perspicuous. First, two heuristic search and dynamic programming algorithms are adapted to be able to check extremal reachability probabilities, expected accumulated rewards, and their bounded versions, on general Markov decision processes (MDPs). Thereby, the problem space originally solvable by these algorithms is enlarged considerably. Correctness and optimality proofs for the adapted algorithms are given, and in a comprehensive case study on established benchmarks it is shown that the implementation, called Modysh, is competitive with state-of-the-art model checkers and even outperforms them on very large state spaces. Second, Deep Statistical Model Checking (DSMC) is introduced, usable for quality assessment and learning pipeline analysis of systems incorporating trained decision-making agents, like neural networks (NNs). The idea of DSMC is to use statistical model checking to assess NNs resolving nondeterminism in systems modeled as MDPs. The versatility of DSMC is exemplified in a number of case studies on Racetrack, an MDP benchmark designed for this purpose, flexibly modeling the autonomous driving challenge. In a comprehensive scalability study it is demonstrated that DSMC is a lightweight technique tackling the complexity of NN analysis in combination with the state space explosion problem.Diese Arbeit präsentiert Ansätze, die Techniken aus dem Model Checking, Planning und Learning Bereich verwenden, um Systeme verlässlicher und klarer verständlich zu machen. Zuerst werden zwei Algorithmen für heuristische Suche und dynamisches Programmieren angepasst, um Extremwerte für Erreichbarkeitswahrscheinlichkeiten, Erwartungswerte für Kosten und beschränkte Varianten davon, auf generellen Markov Entscheidungsprozessen (MDPs) zu untersuchen. Damit wird der Problemraum, der ursprünglich mit diesen Algorithmen gelöst wurde, deutlich erweitert. Korrektheits- und Optimalitätsbeweise für die angepassten Algorithmen werden gegeben und in einer umfassenden Fallstudie wird gezeigt, dass die Implementierung, namens Modysh, konkurrenzfähig mit den modernsten Model Checkern ist und deren Leistung auf sehr großen Zustandsräumen sogar übertrifft. Als Zweites wird Deep Statistical Model Checking (DSMC) für die Qualitätsbewertung und Lernanalyse von Systemen mit integrierten trainierten Entscheidungsgenten, wie z.B. neuronalen Netzen (NN), eingeführt. Die Idee von DSMC ist es, statistisches Model Checking zur Bewertung von NNs zu nutzen, die Nichtdeterminismus in Systemen, die als MDPs modelliert sind, auflösen. Die Vielseitigkeit des Ansatzes wird in mehreren Fallbeispielen auf Racetrack gezeigt, einer MDP Benchmark, die zu diesem Zweck entwickelt wurde und die Herausforderung des autonomen Fahrens flexibel modelliert. In einer umfassenden Skalierbarkeitsstudie wird demonstriert, dass DSMC eine leichtgewichtige Technik ist, die die Komplexität der NN-Analyse in Kombination mit dem State Space Explosion Problem bewältigt

    Uncertainty in runtime verification : a survey

    Get PDF
    Runtime Verification can be defined as a collection of formal methods for studying the dynamic evaluation of execution traces against formal specifications. Aside from creating a monitor from specifications and building algorithms for the evaluation of the trace, the process of gathering events and making them available for the monitor and the communication between the system under analysis and the monitor are critical and important steps in the runtime verification process. In many situations and for a variety of reasons, the event trace could be incomplete or could contain imprecise events. When a missing or ambiguous event is detected, the monitor may be unable to deliver a sound verdict. In this survey, we review the literature dealing with the problem of monitoring with incomplete traces. We list the different causes of uncertainty that have been identified, and analyze their effect on the monitoring process. We identify and compare the different methods that have been proposed to perform monitoring on such traces, highlighting the advantages and drawbacks of each method

    Complete Model-Based Testing Applied to the Railway Domain

    Get PDF
    Testing is the most important verification technique to assert the correctness of an embedded system. Model-based testing (MBT) is a popular approach that generates test cases from models automatically. For the verification of safety-critical systems, complete MBT strategies are most promising. Complete testing strategies can guarantee that all errors of a certain kind are revealed by the generated test suite, given that the system-under-test fulfils several hypotheses. This work presents a complete testing strategy which is based on equivalence class abstraction. Using this approach, reactive systems, with a potentially infinite input domain but finitely many internal states, can be abstracted to finite-state machines. This allows for the generation of finite test suites providing completeness. However, for a system-under-test, it is hard to prove the validity of the hypotheses which justify the completeness of the applied testing strategy. Therefore, we experimentally evaluate the fault-detection capabilities of our equivalence class testing strategy in this work. We use a novel mutation-analysis strategy which introduces artificial errors to a SystemC model to mimic typical HW/SW integration errors. We provide experimental results that show the adequacy of our approach considering case studies from the railway domain (i.e., a speed-monitoring function and an interlocking-system controller) and from the automotive domain (i.e., an airbag controller). Furthermore, we present extensions to the equivalence class testing strategy. We show that a combination with randomisation and boundary-value selection is able to significantly increase the probability to detect HW/SW integration errors

    Process Mining for Smart Product Design

    Get PDF
    corecore