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Summary

Testing is the most important verification technique to assert the correctness of an embedded
system. Model-based testing (MBT) is a popular approach that generates test cases from models
automatically. For the verification of safety-critical systems, complete MBT strategies are most
promising. Complete testing strategies can guarantee that all errors of a certain kind are revealed
by the generated test suite, given that the system-under-test fulfils several hypotheses. This work
presents a complete testing strategy which is based on equivalence class abstraction. Using this
approach, reactive systems, with a potentially infinite input domain but finitely many internal
states, can be abstracted to finite-state machines. This allows for the generation of finite test
suites providing completeness. However, for a system-under-test, it is hard to prove the validity
of the hypotheses which justify the completeness of the applied testing strategy. Therefore, we
experimentally evaluate the fault-detection capabilities of our equivalence class testing strategy
in this work. We use a novel mutation-analysis strategy which introduces artificial errors to a
SystemC model to mimic typical HW/SW integration errors. We provide experimental results
that show the adequacy of our approach considering case studies from the railway domain (i.e.,
a speed-monitoring function and an interlocking-system controller) and from the automotive
domain (i.e., an airbag controller). Furthermore, we present extensions to the equivalence class
testing strategy. We show that a combination with randomisation and boundary-value selection
is able to significantly increase the probability to detect HW /SW integration errors.



Zusammenfassung (auf Deutsch)

Testen ist die wichtigste Verifikationstechnik, um die Korrektheit eines eingebetteten Systems zu
iiberpriifen. Modellbasiertes Testen (MBT) kommt seit mehreren Jahren eine grofie Bedeutung
zu. Hierbei werden Testfille automatisch aus Modellen abgeleitet. Besonders vielversprechend fiir
den Test von sicherheitskritischen Systemen sind komplette Testverfahren. Komplette Testver-
fahren garantieren alle Fehler einer bestimmten Fehlerklasse aufzudecken, sofern das zu testende
System einige Eigenschaften erfiillt. In dieser Arbeit setzen wir ein solches Verfahren um. Die-
ser Ansatz basiert auf der Aquivalenzklassenpartitionierung von Reaktiven Systemen mit einem
potentiell unendlich groflen Eingabebereich und einer endlichen Menge von internen Zusténden.
Der daraus resultierende endliche Automat ermoglicht das Erzeugen einer endlichen Menge an
Testfallen, welche Komplettheitseigenschaften aufweist. Da sich die Hypothesen von kompletten
Testverfahren fiir das zu testende System in der Regel nicht beweisen lassen, ist es Ziel dieser
Arbeit, experimentell nachzuweisen, dass das entwickelte Testverfahren eine hohe Fehleraufde-
ckungsrate besitzt. Hierbei verwenden wir ein neuartiges Mutationsanalyse Verfahren, welches
kiinstliche Fehler in ein SystemC-Modell einfiigt und somit typische HW/SW Integrationsfehler
nachempfindet. Eine akzeptable Fehleraufdeckungsrate konnte fiir Fallbeispiele aus dem Bahnbe-
reich (ein System zur Zuggeschwindigkeitsiiberwachung und eine Stellwerkssteuerung) sowie ein
weiteres Fallbeispiel aus dem Automobilbereich (ein Airbag-Steuergerit) nachgewiesen werden.
AuBerdem zeigen wir, dass sich die Fehleraufdeckungsrate durch die Kombination des Aquiva-
lenzklassenverfahrens mit Randomisierung und Grenzwerttests noch deutlich steigern lésst.
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1 Introduction

1.1 Model-Based Testing Applied to the Railway Domain

Nowadays, embedded systems are becoming more and more complex. At the same time, these
systems are used in more contexts and more domains and take over more and more function-
ality—including safety-related functionality. Though safety once relied on human supervision,
it is now replaced by supervision and intervention by embedded systems. Autonomous driving,
autonomous flight and train-protection systems are examples of safety-critical functionality that
allows for a higher degree of safety. However, the safety functionality provided by an embedded
system assumes correct functionality and imposes, in most cases, high reliability and availability
constraints on the system. The higher the level of reliability and availability constraints (i.e.,
the higher the safety criticality), the higher the need for formal methods for the verification and
validation of such systems. Among the verification methods to be considered are formal proofs
and model checking and testing. While formal proofs and model checking are in most cases
applied to formal models, testing can be applied to the final system. In the case of embedded
systems, testing can be applied to the final integrated HW/SW system, but also to subsystems
running on the final target hardware, or in simulators, HW emulators or combinations of these
possibilities. The flexibility of testing—and the fact that testing in most cases is the only way to
assess the functional correctness of a system—probably makes it the most important verification
technique in practice. No train, no driving assistant, no autopilot, no satellite-control software
will get certification credit without being tested.

However, testing is usually incomplete. While formal proofs and model checking allow for ab-
solute statements about the validity of certain properties, it is not usually feasible to test all
possible combinations of inputs. Considering the reactive nature of embedded systems, the
enormous (possibly infinite) space of input combinations is further magnified, because sequences
of element from this infinite space have to be considered. Thus, a finite number of test cases
have to be selected from an un-countably infinite set of possibilities. The loss of generality based
on this selection process cannot be prevented. Yet, an increase in the number of test cases can
raise confidence in the correctness of a system.

In many cases, time to deliver is a critical factor. The success of an embedded-systems supplier
is largely dependent on its ability to satisfy complex customer needs within restricted time
and monetary budgets. Therefore, testing activities must always be conducted in the limited
time-frame of the project. This is why a testing campaign is always assigned end criteria.
Usually, a test-end criterion on the system level concerns requirements coverage. Requirement-
based testing can be considered the state-of-the-art of functional system-level tests. Safety-
related standards [FEur96, ECS09, RTC92] require that every requirement is tested. This is
regarded as a practical guideline for a test engineer. Usually, tests will be specified for each
requirement and then implemented. Since requirements are in principle as precise, concrete
and atomic as possible so they can be implemented by a developer, they can in most cases
provide adequate inputs for test-case specification as well. However, in practice, the manual
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1 Introduction

definition of test cases is time-consuming and error-prone. In most cases, the situation is even
worse because of suboptimal requirements, changes in requirements and resulting inconsistencies
between requirements, implementation and test cases. The task of keeping a higher-level test-
case specification consistent with its concrete implementation is another challenge. All these
challenges and issues make testing activities as vulnerable to faults and errors as the developed
system-under-test (SUT) that is the target of the testing effort and whose reliability is to be
proven by tests.

Model-Based Testing (MBT) can provide an answer to these challenges. MBT aims at the auto-
matic generation of test cases from a formal test model. Instead, of manually defining test cases,
a test engineer specifies a test model. Then the test-case specification and implementation can
be automatically derived from the test model. This shifts the effort needed for manual test-case
specification and implementation to the creation of a test model. Since the test model should be
described in an abstract modelling language—e.g., Unified Modeling Language (UML) /Systems
Modeling Language (SysML) or a Domain Specific Language (DSL)—the abstraction level of
this test model should enable the test engineer to focus on the specification of the expected
behaviour of the SUT. Additionally, the test model will describe the SUT or parts of the SUT as
a whole, making it possible to specify the interaction of requirements in an abstract formalism.
System properties that emerge from the implicit interplay of requirements can be described by
such models.

The automation that results from the use of MBT allows for more tests in shorter time periods.
Furthermore, inconsistencies can be prevented if test-case specification and implementation are
generated from the same source. This single source of information eases change management.
Requirement changes result in an update of the test model, and the generated test cases auto-
matically reflect these changes. This is less costly and less error-prone than investigating the
impact of changed requirements on a set of a thousands of test cases—especially considering the
implicit changes that are attributed to the combination of multiple requirements.

If requirements are traced to model elements, MBT can generate test cases to cover the model
elements related to a requirement. Thus, requirements coverage can be achieved by using a
set of automatically generated tests. However, MBT allows for more sophisticated coverage
criteria than requirements coverage. Having a test model that is independent of a concrete
test approach usually makes it possible to apply arbitrary testing strategies and model-coverage
criteria. Consequently, the use of MBT makes it possible to profit from any advances in MBT,
given that these advances are applicable to the test model under consideration.

Most MBT tools are able to generate test suites which fulfil typical structural-coverage cri-
teria—Ilike covering all states or all transitions in a state machine model. These structural
criteria are surpassed by testing strategies that are complete. Completeness cannot be achieved
in most cases. If, however, assumptions can reasonably be made about the errors an SUT might
exhibit, it is possible to derive test suites that are complete with respect to a fault model. The
model describes a set of systems that may or may not contain errors. This set of systems and
potential errors is, however, restricted by the a-priori assumptions concerning possible faults.
Usually, the set of systems fulfilling the a-priori assumptions—named the fault domain—is of
infinite size. Given that the SUT behaviour is contained in the fault domain, the test suite is
complete: i.e., the test suite will pass if and only if the SUT is correct. For Finite-State Machines
(FSMs) and Deterministic Finite-State Machines (DFSMs), many complete testing theories ex-
ist. This work deals with a testing strategy [HP16a] that is complete with respect to a fault
domain but is applicable to a wider range of systems. Instead of FSMs, which require a finite
input alphabet, our approach is applicable to state-transition systems with input variables of

14



1.2 Goals and Contribution

potentially infinite domains. The internal and output variables of these systems are required to
be of a finite domain.

We will demonstrate the applicability of our approach to real-world case studies from the rail-
way domain. Railways are one of the oldest industries building complex systems with high
safety criticality. Nowadays, legacy systems, like relay-based interlocking systems, are replaced
by modern, digital, interlocking systems. Within the European Train-Control System (ETCS)
programme, interlocking systems and on-board computers are digitalised and modernised. The
high complexity and safety criticality of railways makes the use of formal verification methods
mandatory. For modern interlocking systems, a formal model exists, which has been model
checked and proven [VHP17] to fulfil safety properties. Our work builds on these results and
uses the formal model for HW/SW integration (HSI) tests of modern interlocking systems. Ad-
ditionally, a speed-monitoring function of the ETCS train on-board computer serves as another
case study, demonstrating the applicability of our MBT approach for railways.

1.2 Goals and Contribution

1.2.1 Relation to Previous Work

This work implements a novel MBT testing method originally proposed in [HP16a]. This ap-
proach, called Equivalence Class Partition Testing (ECPT) in the following, is based on a soph-
isticated input-equivalence partitioning which makes it possible to reduce arbitrarily large input
domains to a finite number of equivalence classes. Furthermore, the approach has guaranteed
(mathematically proven) fault-detection capabilities. This property ensures completeness of the
ECPT approach with respect to a formal fault domain: i.e., with respect to a very large, po-
tentially infinite set of potential SUTs. For all members from the fault domain, it is guaranteed
that the test suite generated by the ECPT approach is passed if and only if the SUT is correct.
Every fault in an SUT that is member of the fault domain will be detected by the test suite.

1.2.2 Main Goal of this Work

This work aims to prove that MBT as a formal verification technique is applicable to a wide range
of systems—including complex, real-world case studies from the railway domain. We promote
ECPT testing as a way to thoroughly test an SUT with guaranteed completeness with respect
to a fault model. To give a convincing argument in favour of ECPT testing, we show that
the completeness of our approach actually results in measurable failure-detection capabilities.
Therefore, we use a novel mutation analysis that focuses on the test strength evaluation of HSI
testing.

1.2.3 Main Contributions

The main contributions of our work to the field of MBT can be summarised as follows:

1. Eatension of the ECPT approach: This work presents an implementation of the ECPT ap-
proach and extensions to the approach invented by the authors of [HP16a]. The extensions
include a heuristic optimisation of concrete test data selection: Tests are characterised
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1 Introduction

by a sequence of Input Equivalence Classes (IECs). To make these “symbolic” test cases
executable against an implementation, concrete values from IECs have to be selected. We
will show that the concrete input selection from the IEC has a strong impact on the test
strength under “real-world” conditions: i.e., for systems that cannot be proven to be cap-
tured by a fault domain that can be anticipated a-priori in case of black-box tests. Our
aim is to improve ECPT for the detection of real faults that are not necessarily part of an
anticipated fault domain.

2. Thorough experimental evaluation: To gain evidence for improvements of the fault-detection
capabilities, we need a thorough experimental evaluation. This evaluation shall investig-
ate the test strength (defined as the fault-detection capability of a testing approach) of
the implemented ECPT approach with different input-selection heuristics. Furthermore, it
shall allow for comparison with other testing approaches. This work compares all presented
heuristics with Random Testing (RT), which serves as a minimal benchmark that has to
be surpassed by any sophisticated testing methodology.

3. Proposal of a Novel HW/SW integration test (HSI test) Evaluation Approach: The ECPT
approach offers functional testing of embedded systems at high abstraction levels: i.e., at
the system and HSI levels. Mutation analysis is a way to evaluate testing approaches.
By systematic fault injection to a correct version of the SUT (resulting in an erroneous
version of the SUT called mutant), the fault-detection capabilities of a test suite can be
measured. A variety of work has been done on SW mutation analysis, some of which yields
evidence that artificial mutants serve as good surrogates for real faults. However, in the
domain of HSI testing, no real means exist by which to evaluate the test strength. State-
of-the-art metrics like code coverage are of limited use if testing approaches are evaluated
[JJIT14]. This lack of HSI test mutation analysis led to the development of a novel,
completely automated, mutant generator of SystemC models. This mutant generator not
only mimics typical HW/SW errors, but also errors that can be introduced by HW/SW
incompatibilities.

4. Efficiency considerations for the implementation of the ECPT approach: This work also
aims to provide some insight into the implementation of the testing approach. We present
some core algorithms that render the ECPT approach realisable for real-world examples of
considerable complexity.

5. Proposal of a generic approach for compositional testing of route controllers: Finally, we
provide a formalisation of the generic behaviour of a route controller: i.e., a safety-critical
sub-component of modern interlocking systems that controls train movements in a railway
network. This formalisation can be used to automatically generate a model of route-
controller behaviour that can be used to apply our ECPT to components from modern
interlocking systems.

1.3 Structure of this Thesis

Chapter 2 summarizes the basics that are needed to understand our approach and to make this
work self-contained. Chapter 3 introduces four case studies. Our approach is applied to these
models and experiments are conducted on these models. Next, we detail the ECPT approach in
Chapter 4 and present our extensions of the ECPT approach. This chapter also details the generic
approach for testing route controllers of modern interlocking systems. Chapter 5 introduces our
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1.3 Structure of this Thesis

novel approach for test-strength evaluation of HSI tests. We briefly depict the state-of-the-
art of mutation analysis and then motivate and present our new mutation-analysis method by
using SystemC mutations. This approach is then used for our experiments. Chapter 6 exhibits
and discusses experimental results. Following this, Chapter 7 presents a thorough discussion of
related work before this work is concluded in Chapter 8.
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2 Background

This chapter summarises the basics that are needed to understand our approach and to make
this work self-contained. First, we introduce some basics of the railway domain. Section 2.2
introduces two state-of-the-art approaches to the modelling of systems: SysML and SystemC.
Section 2.3 and the following introduce terminology related to testing, a complete testing theory
for FSMs and finally the complete testing theory based on input equivalence classes that we will
apply in this work.

2.1 The Railway Domain

2.1.1 ERTMS and ETCS

The European Rail-Traffic Management System (ERTMS) is a European standard for rail-traffic
management. It has been established by a directive of the European Council [Eur96]. The
objectives of ERTMS are to improve the interoperability, capacity and safety of rail traffic. The
reason for ERTMS is the wide variety of existing legacy signalling and train-control systems used
in European countries. The existence of these heterogeneous and incompatible systems hampers
the cross-border interoperability of different signalling and train-control systems. This is the
main challenge that has to be overcome for train traffic at an international level. It is addressed
by the ERTMS standard.

ERTMS is composed of ETCS and the Global System for Mobile Communications — Railway
(GSM-R). GSM-R is a railway-specific variant of the widely used mobile-communication stand-
ard, GSM. ETCS is the subsystem of ERTMS that includes the signalling, train control and
train protection functionality.

Safety is a major concern of the ERTMS and ETCS standard. The goal of enhanced safety
in rail transport makes the use of formal methods for verification—as presented in this work
for example—mandatory. The European Commission Decision [Eur(02] mandates to all railway
operators of the European member states that newly created and renewed Trans-European, high-
speed railway systems must conform to the ERTMS standard. Thus, the following decades will
bring the development of modern railway systems that apply to ERTMS. We believe that the
high confidence level needed to ensure safe train operation can only be guaranteed by advanced
verification techniques—especially testing methods with guaranteed fault-detection capabilities.

Before we present the basics of the formal methods needed to understand this work, we briefly
introduce the core elements of modern railway systems to give a general understanding of the tech-
nical domain our verification approaches are applied to. These core elements are the signalling
system, which comprises the interlocking system and the on-board train-protection system.
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2 Background

2.1.2 Interlocking Systems

Under signalling, we understand the process of controlling train movements by signals, block
sections and points. A signal can be a physical track-side element or a virtual on-board signal
that is visible to the train driver. In general, block sections are fragments of track that are used
for the separation of trains. “A train must generally not enter a block section until it has been
cleared by the train ahead” [Pac02]. Signalling has to ensure safe operation of trains in a railway
network. The signalling includes a number of technical procedures and non-technical operating
rules that ensure the safe operation of trains travelling through the network. An interlocking
system is the technical part of a signalling system: i.e., the system controlling the signals, points
and block sections. Again, the main task of an interlocking system is to ensure the safe travel of
trains through the railway network. Therefore, the interlocking system ensures that trains are
guided through routes, for which all points are set properly. Conflicting routes are locked, and
the track is guaranteed to be clear [Pac02].

This work uses the notions and notations of interlocking systems from [VHP17, PHH16a].

Different types of interlocking systems exist. This work is concerned with route-based interlocking
systems. This type of interlocking system is widely used: for example, the complete Danish
signalling system is currently replaced by an ETCS-conforming, route-based interlocking system
in the context of the Danish signalling programme.! In route-based systems, trains are guided
through predefined routes. Each route can be exclusively locked for at most one train at a
time. This concept makes it possible to prevent hazardous situations such as collisions and
derailments. The remainder of this manuscript uses the term interlocking system to refer to
route-based interlocking systems.

2.1.2.1 Components of an Interlocking System

An interlocking system is composed of a railway network and—in case of route-based interlocking
systems—of an interlocking table.

A railway network is the physical/geographical part of an interlocking system. It can be com-
prehended as the part of a track network that is supervised by the interlocking system. It is
composed of different track-side elements: linear sections, points and marker boards.

A linear section is a part of a railway network with at most two neighbouring elements, which
can be other linear sections or points. A point is a section of the network with three neigh-
bouring elements. Linear sections and points are so called train-detection sections (or sections
for convenience), because the occupancy status (i.e., the status “occupied by train” or “free”)
can be detected for each section. This detection is usually performed by physical equipment:
azle counters or track circuits. The ends of a linear section are named down end and up end.
Each linear section can be travelled in an up or down direction. The up and down directions
are the directions in which the distance to a reference location from the network is increasing
or decreasing, respectively. The ends of a point are called stem end, plus end and minus end.
The plus and minus ends are the diverging branches of the stem. The path from stem end to
plus end is the straight path through the point, and the path from stem end to minus end is the

IThe Danish signalling programme is of importance, because we will use some of the results elaborated in the
context of this initiative [Vul5, VHP17]. [Vul5] proposes a formal method for the verification of route-based
interlocking systems. The results in this work will be used by us for the application of MBT to modern
interlocking systems.
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2.1 The Railway Domain

branching path. A point can be switched from its PLUS position to its MINUS position and
vice versa. In the PLUS position, the train can travel from the stem end to the plus end of the
point or from the plus end to the stem end, depending on the travelling direction of the train.
In the minus position, it is possible for trains to travel from the stem to the minus end or vice
versa. Marker boards are virtual signals which perform the same task as physical signals from
legacy interlocking systems. Marker boards are virtual in the sense that they have no physical
representation. Each marker board is associated with a section together with a position and a
direction along this section. If a marker board is in state PASS, trains are allowed to traverse
the associated location on the section in the associated direction; they have to stop if the marker
board is in state HALT.

DOWN mubilo UF;
- . AR meeeeead
L |
' t20 |
i} l il i} il il {} ..
b10 I—ﬂ t10 t1l t12 t13 t14 bl4

mb10 mb13 mb1l4
Figure 2.1: Example Railway Network from [VHP17]

Example 1. Consider the railway network from [VHP17], shown in Figure 2.1.

The network is composed of the linear sections t10, t12, t20, t14 and of the points t11, t13.
Linear section t20 is connected to point t13 on its up end and to point t11 on its down end. t11
is connected to t10 on its stem and to t12 and t20 on its plus and minus ends. The marker board
mb13 is associated with linear section t12 in the up direction.

Additionally, a route-based interlocking system is composed of an interlocking table. The inter-
locking table lists a number of predefined routes, which can be allocated by trains. A route is a
sequence of successive sections to be traversed on the route (called path elements of the route),
and every route starts and ends at a marker board (called source and destination). Each route
defines the states of its elements that are needed to ensure safe traversal of a train from source
to destination. This includes the state of points along the path of the route and the state of
protecting points and marker boards. To prevent other trains from entering the route from the
branching ends (flank protection) of the points or from approaching from the opposite direction
(front protection), points from outside the path of the route and marker boards can be used.
The state of these additional protecting elements guarantees that no other train can accidentally
enter the route while a train is traversing this route. Additionally, each route in the interlocking
table is associated with a list of conflicting routes. The list of conflicting routes lists all routes
that must not be used simultaneously because of path elements that are common to these routes
or because of conflicting states for protecting elements.

Example 2. Table 2.1 is an example of a possible interlocking table for the network shown
in Figure 2.1. Consider for example route 1. The route starts from marker board mb10 and
covers the path from t10 over t11 to t12. The point t11 has to be switched to its plus position.
Additionally, t13 is switched to its minus position offering front protection of route 1. Flank
protection of point t11 is provided by the marker board mb20. Marker boards mb11 and mb12
offer additional front protection for the sections along the path of route 1.
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Table 2.1: Interlocking Table for the Network Layout in Fig. 2.1 (Taken from [VHP17]; p means
PLUS, m means MINUS.)

id | src dst path points signals conflicts
1 mb10 mb13 t10;t11;t12 t11l:p;t13:m mb11;mb12;mb20 2;3;4;5;6;7
2 mb10 mb21 t10;t11;t20 t11:m;t13:p mb11l;mb12;mb20 1;3;6;7;8
3 mb12 mbi1l t11;t10 til:p mb10;mb20 1;2;5;6;7
4 mb13 mb14 t13;t14 t13:p mb15;mb21 1;5;6;8
5 mb15 mb12 t14;t13;t12 t11:m;t13:p mb13;mb14;mb21 1;3;4;6;8
6 mb15 mb20 t14;t13;t20 t13:m mb10;mb12;mb13;mb14;mb21 1;2;3;4;5;8
7 mb20 mb1l1 t11;t10 til:m mb10;mb12 1;2;3
8 mb21 mb14 t13;t14 t13:m mb13;mb15 2;4;5;6

2.1.2.2 Interlocking Principles

CFREE D~ MARKED >——C_ALLOCATING >
@UPIED LOCKED

Figure 2.2: State-based Visualisation of the Interlocking Principles

Safety in interlocking systems is ensured by the following rule: A train is only allowed to travel
on locked routes and every route is locked exclusively for at most one train at a time.

The locking of a route is performed as visualised in Figure 2.2. Before a route can be locked, it
has to be requested or marked by the train driver, signalman or traffic management system. The
interlocking system starts allocating the route, if no conflicting route is currently in allocating or
locked state and all path elements of the route are vacant. Allocation means that all points listed
in the interlocking table for the respective route are set to their requested position and all marker
boards listed for the route are set to HALT. Once all these track elements have come to their
requested position, the route is said to be locked. The points are physically locked preventing
undesired switches of the points. Thereon the source marker board is switched to PASS allowing
the allocating train to enter the route. Once the route is occupied, this marker board is switched
back to HALT to prevent other trains from entering the route. When the train finally leaves the
route the route is set back from occupied to free.

Additionally to these principles, modern interlocking systems provide the sequential release fea-
ture. Sequential release is the concept of releasing, i.e., unlocking, parts of the route that are
completely traversed by a train. Subsequently, the sequentially released path elements of the
route can be reused by other routes. This allows for higher concurrency of routes.

Example 3. Consider the network from Figure 2.1 and the route table shown in Table 2.1. When
a train approaches mb10, it might request route 1 to stay on the main track. In this case, route 1
transits to state MARKED. Given that none of the conflicting routes is in state ALLOCATING
or LOCKED and that all path elements (t10, t11, t12) are vacant, the route will transit to
state ALLOCATING. Point t11 is commanded to position PLUS and point t13 is commanded
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to position MINUS. Signals mb11, mb12 and mb20 are commanded to state HALT. As soon as
all of these elements have taken their required state, route 1 transits to state LOCKED. The
source marker board mb10 is commanded to state PASS. As soon as the train receives the pass
signal from mb10, it is allowed to enter route 1. As soon as the detection status of t10 changes to
occupied, route 1 transits to state OCCUPIED and commands mb10 to state HALT. Consider
a second train approaching mb10. This train has to stop in front of mb10 because this marker
board is in state HALT. The second train might request route 2 from mbl0 to mb21. Route
2 transits from FREE to MARKED. Because route 2 conflicts with route 1, the controller of
route 2 stays in the MARKED state. As soon as train 1 completely passed t11, route 2 can
transit to state ALLOCATING because t10 and t11 were sequentially released by route 1. t11 is
commanded to switch to state MINUS. Finally, train 2 is allowed to enter its requested route 2,
while route 1 is still in use. When train 1 approaches mb13, it has to request route 4 to continue.
Finally, it will be able to enter this route and completely leave t12. This causes route 1 to transit
to state FREE again.

2.1.3 On-Board Train Protection

A train-protection system has the task to supervise train movements and—in case of human errors—
trigger an automatic intervention. This includes the supervision and enforcement of HALT signals
and the supervision of the train speed in accordance with the speed limits. In ETCS systems,
this task is performed by an on-board system: the European Vital Computer (EVC). The EVC
implements speed- and distance-monitoring functionality, among other things, as described in
[UNI12]. The speed and distance monitoring function enforces agreement with speed limits.
Therefore, the on-board unit of the train reads information from FEurobalises: i.e., trackside
beacons with a fixed location. Based on the information communicated by Eurobalises, the train
knows its position and the maximum allowed speed. Additionally, the train knows the reference
location at which it has to stop: the so-called end of authority (EOA). Based on this information,
the speed and distance monitoring function operates and supervises the observance of speed and
distance limits. The monitoring function operates in three exclusive modes.

Ceiling-speed Monitoring, Target-speed Monitoring and Release-speed Monitoring. The Ceiling
Speed Monitor (CSM) is active when a train is travelling on its route and is still far away from
its target location (EOA). In this mode, adherence to the track-dependent speed limit has to be
supervised. As soon as the train approaches its EOA, the distance to the target location has to
be taken into account. In these situations, the Target Speed Monitor (TSM) is active. Braking
curves of the train are calculated to ensure that the train decelerates early enough to allow it to
come to a standstill before the EOA. The speed limit at the location of the EOA is zero. Because
of inaccuracies of the measured location, this can sometimes lead to situations in which the train
is not able to reach the exact target location. Therefore, it is desired to allow the train driver to
drive up to a very low speed limit (the release speed limit) when the train is very close to the
EOA. This mode is supervised by the Release Speed Monitor (RSM).

2.2 System Modelling

This section presents different state-of-the-art approaches to the modelling of systems. We
briefly introduce SysML: a very popular modelling language that is favourable because of its
wide application in the academic and industrial community and its increasing tool support.
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Second, we introduce SystemC. SystemC provides a mode of description for embedded systems
and aims at system modelling. We use SystemC as an implementation language in this work.
Because of its nature, SystemC is a good candidate for an implementation language which can
be used for our mutation experiments aiming at the test-strength evaluation of HSI testing.

2.2.1 Systems Modeling Language

SysML [Obj15b] is a standardised modelling language for the abstract description of systems.
SysML is standardised by the Object Management Group (OMG) and is closely related to the
UML [Objl15a].

Compared to UML, SysML extends UML by some types of diagrams that are specifically needed
for the modelling of systems. SysML makes it possible to define the system composition and the
interconnection of subsystems (called blocks) by block definition diagrams (BDDs) and internal
block definition diagrams (IBDs). Furthermore, SysML allows for the definition of requirements
in requirement diagrams and supports the tracing from requirements to other model elements.
Another system-modelling feature is the modelling of constraints through constraint blocks that
can be visualised in parametric diagrams. For behavioural modelling, SysML provides activity
diagrams and state machines. Both are adapted from UML and are only extended in some
minor details. Therefore, readers who are familiar with activities and state machines in UML
can consider the SysML counterparts to be equivalent.

This work uses state machines as a description means for system behaviour. Since state machines
are almost equal in UML and SysML, we will call these behavioural diagrams SysML state
machines—although the term UML state machines would be correct as well. If no confusion
arises, we sometimes use the term state machines.

SysML State Machines The remainder of this work uses a subset of the SysML state-machine
concept for the behavioural description of systems. We present only the features of state machines
that are needed for this work to be self-contained. For a thorough and complete definition of
SysML/UML state machines, please refer to the standards [Obj15b, Objl15a].

SysML state machines can be considered a variant of the statecharts originally invented by Harel
[Har87]. State machines, based on Harel’s statecharts, are visual, graph-based description means
which combine control flow and data flow. A statechart is comprised of states (visualised by
nodes with rounded-corners) and transitions (visualised by directed edges between nodes) that
connect in direction of the arrow, respectively, a source and a target state. Transitions, i.e.,

arrows eﬂa can be labelled with an event e, a guard-condition g and an action a. A transition
is taken if the state machine currently resides in the source state, event e occurs and the guard-
condition g is fulfilled. The state machine transits to the target state and performs action a.
Data flow in state machines is mainly modelled by actions. An action can be an abstract event
or, as in our case, a sequence of assignments to variables. Actions are generally performed in
zero-time, which means that a sequence of assignments is performed instantaneously. For the
modelling of non-instantaneous reactions, state machines allow for the activation of activities,
which are by definition executed in non-zero-time. An action may be associated with a transition.
For convenience, state machines allow for entry- and ezit-actions and for do-activities in states.
Entry- and exit-actions actions are triggered when the associated state is entered, or when the
state is left. Do-activities are activities that are started when a state is entered; finally, these
activities are stopped when the state is left (or as soon as the activity terminates).
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Besides this basic functionality, state machines allow for hierarchy: States are allowed to contain
substates (Harel uses the term XOR-states to indicate that the state machine resides in one of
these states at a time). In the context of UML and SysML, states containing substates are called
composite states or submachine states. These states themselves are state machines which define
parts of the system’s behaviour. Additionally, states are allowed to contain orthogonal regions
(Harel uses the term AND-states to indicate that the state machine resides in one state in all
of its orthogonal regions at a time). A region is a subgraph of a state machine (again possibly
hierarchical) which defines behaviour that is executed concurrently with its orthogonal regions.
Thus, orthogonal regions allow for the modelling of parallelism. Both orthogonal regions and
hierarchy allow for comprehensible models even for very complex systems. On the other hand,
orthogonal regions and hierarchy impose challenges in the definition of a formal semantics. SysML
and UML encounter this challenge by providing only a semi-formal semantics of state machines.
Many implementation details are not defined by the standards and are thereby implementation
dependant. A formal semantics for Harel’s statecharts has been presented in [HN96] together
with a thorough discussion of other semantics. This work uses the formal semantics used by the
RT-Tester MBT component. The concrete semantics of this tool is laid out in [PVL11]. This
tool is based on the semi-formal semantics of the UML standard, though it may violate UML
semantics in some details.

The remainder presents some state machine models for real-world systems in the scope of this
work. All of these models have in common the fact that they can be expressed (in a com-
prehensible way) without the use of hierarchy and orthogonal regions. Nonetheless, the reader
will find that these models are of considerable complexity. Consider, for example, a route con-
troller that is responsible for the safe operation of trains in routes through large, real-world
railway networks. We therefore neglect further explanation of the formal semantics of hierarchic
state-machine states and parallelism in state machines. Instead, we intuitively introduce “flat”
SysML state machines without hierarchy and parallelism. Note that this is no restriction on the
implementation of our approach: Since our approach relies on the RT-Tester MBT component
and the semantics [PVL11] implemented therein, the implementation of our approach can be
applied to more complex models than are presented in this work. The formal semantics that is
based on Reactive Input-Output State-Transition Systems (RIOSTSs) is introduced below, in
Section 2.5.1.

Definition 1 (Flat SysML State Machines). A flat SysML state machine is described by a tuple
SM = (S,s0,T,e,z). S denotes the set of states of the state machine that are visualised by
rectangular nodes with rounded corners in the graphical representation. T'C S x G x A x S
denotes the set of transitions in the state machine. A transition (s, g,a,s’) € T is visualised as
an arrow from state s to state s’ and is labelled [g]/a. ¢ is called the guard-condition. In this
work, guard-conditions are considered first-order-logic predicates over system variables. A guard
condition g € G is a member of the universe of predicates over system variables, denoted by G.
a € A is the action associated with the transition. An action a is a finite sequence of assignments
to system variables. An assignment a has the form [ = r where the left-hand side [ is a variable
name and r is an expression over system variables. The effect of the assignment is that, in the
target state of the transition, the variable referenced by [ is set to the value the expression r
evaluates to in the current system state. The universe of possible actions is denoted by A. A
transition (s, g,a,s’) € T is taken as soon as guard-condition g becomes true, given that the
state machine resides in state s. The state machine resides in exactly one state at any moment
in time. Taking the transition causes the state machine to switch the state it resides in to the
target state s’ and perform the exit action z(s) of s, the action a associated with the transition
and the entry action e(s’) of the target state s’. e and x are partial functions which map a
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state to its entry and exit actions, which are again a sequence of assignments. Initially, the state
machine resides in the pseudo-initial state s, which is visualised by a black-filled circle. Entry-
and exit-actions will be visualised inside of the nodes of a state with the prefixes “entry/” and
“exit/”. The action of a transition can be empty. In this case, /a is dropped from the graphical
representation.

entry /z=0;

Figure 2.3: Example State Machine

Example 4. Figure 2.3 is an example for a flat SysML state machine. Consider the system
variable x to be an input variable to the system. Let z be an output variable of the system.
Initially, the system resides in the state-machine state “L0”. As soon as x becomes greater than
10, the system transitions to state “L1” and the entry action causes z to be set to one. If z
becomes greater than 20 the system transitions from “L1” to “L2” and z becomes two. As soon
as x becomes zero, the system transitions back to state-machine state L0 and z is set to zero. If
the system resides in state “L0” and x changes its value to a value greater than 20, the system
will transition to state “L1”, and because the guard condition of the outgoing transition of “L1”
is fulfilled, the state machine will immediately make this transition as well. The two successive
transitions from “L0” over “L.1” to “L.2” are called a compound transition in the context of UML.
The run-to-completion semantics causes the two transitions to be made at once: i.e., in zero-time.
The run-to-completion semantics prescribes that transitions are made until a stable system state
is reached. In this case, L2 is stable, because no guard condition of an outgoing transition is
fulfilled. The system input has to change before the next transition can be made.

Readers who are familiar with the UML/SysML standard will notice that the flat state machines
introduced above do not include many of the features that UML/SysML defines. For example,
we completely neglect events that are used as triggers in state-machine transitions. It might seem
unnatural to use an originally event-based approach like SysML state machines in this case, but
the models we present as case studies in Chapter 3 all model control systems that somehow
rely on input variables from large domains (analogue inputs or train constellations in a railway
network) and make concrete control decision based on these inputs. We believe that systems
of this kind are well described by a state-based approach using the state-machine subset as
introduced above. However, it has to be emphasised that the testing approach introduced below
does not rely on this subset of state machines; it does not even rely on a concrete description
means. We will show that every concrete description means that can be translated to a state-
transition system with dedicated input and output variables can be equipped with our testing
methodology. Note that every event-based model can be translated to an equivalent state-based
formal model. Thus, SysML state machines or the variation of state machines as introduced
above should be considered an interchangeable front-end to the testing approach implemented
in this work.
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2.2.2 SystemC

SystemC is a high-level system modelling and design language. It is integrated into C++ by
means of class libraries. SystemC is technically not a language of its own but rather a set of
class libraries in C++ that allow for the modelling of systems. The main goal of SystemC is
to bridge the gap between different levels of system abstraction and to allow the co-design of
SW- and HW-architecture. A key feature of SystemC therefore is the simulation kernel. This
simulation kernel makes it possible to simulate a SystemC model: i.e., to execute the model. The
main task of this kernel is the concurrent simulation of functional units, called modules. 1t is the
nature of integrated embedded systems that many modules run in parallel. SystemC therefore
mostly focuses on the definition of modules, the functionality of modules, communication between
modules, and the concurrent execution of the complete model composed of concurrent modules.
For a thorough introduction to SystemC, refer to [BABJ10].

The most important elements of the SystemC language that we use throughout this work are
modules, signals and ports. These are introduced in subsequent paragraphs. We conclude with
a small example of a SystemC model.

Modules SystemC makes it possible to design a system by defining modules. A module is a unit
that implements some functionality. The behaviour of a module is implemented by an arbitrary
number of methods. These methods can either be called directly or called in reaction to a value
change of a signal.

Modules make it possible to define a hierarchy: modules can contain other modules, which in
turn might contain other modules. This induces a hierarchy that is typical for complex systems
that are modelled compositionally.

Technically, modules are implemented by custom classes that extend the common base class
sc_module.

SystemC Threads and Methods Since modules are instances of custom user classes that extend
sc_module, the functionality of modules is to be implemented in member functions of the mod-
ule’s class. Besides traditional C++ member functions that can be called by the user, SystemC
provides two ways to define simulation processes. A simulation process is an executing instance.
This may be a SW-thread or a SW-process running on an operating system. In case of hardware,
this may be an independently timed hardware module. Simulation processes are executed by
the SystemC simulation kernel. They must not be called by the user through function calls, but
may only be called by the SystemC simulation kernel. The invocation by the simulation kernel
in turn is indirectly caused by sensitivity, events and notification. Because simulation processes
are to be called by the simulation kernel, these processes need a common signature. Processes
are therefore required to return void and have no parameters. Functionality in these processes
therefore needs to use the module’s variables as means for input and output.

SystemC distinguishes two types of simulation processes: methods and threads. While methods
are expected to always terminate, a thread may be non-terminating and can be suspended and
resumed. Methods are called multiple times by the simulation kernel and the timing model
for methods dictate that no (simulated) time passes between the invocation and return of the
method. Contrary, threads are called exactly once by the simulation kernel—usually at the
beginning of the simulation. These threads usually do not terminate but suspend, allowing
simulated time to pass and other simulation processes to be executed. Methods can be registered
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to the simulation kernel by using the SC_METHOD macro, and threads are registered using the
SC_THREAD macro. The registration has to be performed in the constructor of a module. The
phase in which the constructors of all modules are called is named elaboration phase.

Channels, Interfaces and Ports An important aspect of system modelling is communication.
In SystemC, communication between modules is modelled by channels. Channels interconnect
modules and allow the interconnected modules to communicate with each other. A channel is
an abstract way to model a communication channel. Channels may be used to model every
kind of communication means including high-level communication means like sockets, buses,
FIFO-queues; and low-level communication means like physical wires transferring logical val-
ues. SystemC distinguishes between two types of channels: primitive and hierarchical channels.
Primitive channels (base class sc_prim_channel) represent low-level (i.e., fast and simple) com-
munications. Primitive channels are not hierarchical: i.e., they must neither contain modules nor
simulation processes. sc_signal is an example of a primitive channel. In contrast, hierarchical
channels (base class sc_channel) usually model higher-level communications. A hierarchical
channel itself is a module that implements the functionality of the communication. This implies
that a channel may contain modules and simulation processes.

Channels provide functionality through interfaces. An interface (base class sc_interface) de-
clares a set of methods that the channel has to provide. Usually, a channel implements several
interfaces, such as one writer/producer interface and one reader/consumer interface. The concept
of interfaces makes it possible to separate the interface of a communication channel from its
functionality. Technically, the channel implements interfaces by extending them and overriding
virtual member functions defined in the interfaces. Usually, the virtual member functions in the
interface are pure virtual functions.?

As stated earlier, modules are interconnected via channels. Therefore, ports (class sc_port) are
used to connect (bind) a module to the channel. A module may have multiple ports and every
port is bound to a channel (it is also possible to bind one port to multiple channels). Ports are
parametrised sc_port<I> to an interface I. This interface determines the functions that may be
called on this port (namely the functions the interface I declares) and the channels that the port
may bind to (namely, all channels that implement I). The ports act as proxies that forward an
interface function call to the channel the port is bound to.

The connection of modules (i.e., the binding of ports to channels) has to be done in the elaboration
phase: i.e., before the simulation has been started. A port that is not bound to a channel is
considered a modelling error and will result in an error when the model simulation is started.

Signals As mentioned, sc_signal<T> is a special form of a primitive channel. sc_signal<T>
represents signals of type T in the common meaning originating from HW description languages
such as VHDL. Thus, a signal can be considered a type of data storage, and the type of data
a signal can hold is customizable. A signal in SystemC can hold values of any of the follow-
ing C/C++ fundamental types: boolean type, character types (char, signed char, wchar_t,
...), integer types (int, long int, unsigned int, ...) or floating-point types (float, double,
long double).

2In C++ pure virtual functions are abstract functions that are declared but not implemented. Pure virtual
functions correspond to abstract methods in Java for example.
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Signals follow the evaluate-update paradigm: The SystemC simulation kernel executes all sim-
ulation processes in cycles, so called delta cycles. The order of simulation processes in a delta
cycle is not prescribed by the simulation kernel. Processes might be executed in arbitrary order.
This may cause problems when multiple modules want to read and potentially update a signal’s
value. In this case, the order of execution might influence the final result. The evaluate-update
paradigm overcomes this problem by the separation of a signal’s value to the current and new
value. Within a delta cycle, all modules that read the signal value will read the current value. An
update of a signal value results in a write to the new value and a notification to the simulation
kernel of the changed value. After all processes in a delta cycle have been executed, the change
of the value becomes apparent. The current value will be set to the new value, and, in the next
delta-cycle, other modules will be able to read this new value.

A special type of signal exists: sc_clock models a boolean signal that switches its values with
a configurable frequency. This type can be used to model cyclic timing in SystemC models.

For the connection of modules to signals, two special ports can be used: sc_in<T> and sc_out<T>.
sc_in<T> models an input port that allows to read a signal of type signal<T> and sc_out<T>
models an output port that allows to write a signal of type signal<T>. The special port
sc_inout<T> allows to read and write the signal the port is bound to.

Events Besides channels, SystemC provides events as a low-level communication and synchron-
isation scheme. Events are instances of a class sc_event. An event can be “fired” or notified by
a call to the member function notify (). The firing/notification of an event causes all simulation
processes (methods and threads) that are sensitive to this event to be simulated: Methods are
called and threads, which are suspended, are resumed by the simulation kernel. Again, the order
of execution of the processes is not prescribed.

Sensitivity As mentioned before, a module’s processes are simulated whenever an event the
module is sensitive to is notified. SystemC distinguishes between static and dynamic sensitivity.
Static sensitivity to an event e is declared in the elaboration phase (i.e., in a module’s constructor)
by a statement: sensitive<<e;. Whenever this event is notified, the simulation process of the
module is called. Besides, dynamic sensitivity can be changed during simulation. A call to
wait(e) will cause a thread to suspend until event e is notified. The thread is only dynamically
sensitive to this event, meaning that after the call of wait(e) returned, the thread will not be
sensitive until wait is called again.

A module can be sensitive to channels as well. In this case, events are used as the low-level
means for the activation of processes by channels. The special primitive channel, sc_signal, for
example, implements member function value_changed_event (), which returns an event object
that will be notified by the simulation kernel whenever the signal’s value changes.

Example 5. Listing 1 displays a SystemC model that models a hardware shift register of four
bits. The shift register (SystemC module shift_register) has a boolean input, data (input
port data), and is synchronised on a clock (clock input port sync). Every clock cycle, all register
values are shifted to the next register and the value of data is written into the first register. The
output of the shift register is a four-bit variable (type sc_uint<4>); see output port out.

The shift register is composed of four single-bit registers implemented by module bool_register.
This module has two input ports: sync is a clock input and in is the input line of the re-
gister. The value on this line is read and written to the output of the register on every positive
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Figure 2.4: Waveform View of HW Shift Register Signals

clock edge. This is realised by the simulation process update. The module bool_register
uses static sensitivity, which is declared in the constructor of bool_register. The statement
sensitive<<sync.pos(); makes the register sensitive to positive clock edges.

Module shift_register contains the four single-bit registers in a special vector (using the
SystemC type sc_vector<bool_register>). This vector contains exactly four instances of type
bool_register. During the elaboration phase, in the constructor of shift_register, the four
bool_register modules are interconnected. Their input and output ports are bound to different
signals (member variable signals). The shift_register module uses static sensitivity for its
simulation process (member function update). update reads the signal values and composes the
boolean values to a four-bit integer value that is written to the output port.

Note that the SystemC model works correctly because of the evaluate-update paradigm used for
signals. If we used traditional member variables instead of signals and ports for the registers, the
order of execution of the simulation processes of the bool_register instances would influence
the result. The result would only be correct if registers[3] was scheduled before registers[2]
which was scheduled before registers[1] and so on. Thus, additional synchronisation to en-
sure a specific ordering of simulation processes would be needed. Instead, the evaluate-update
paradigm ensures that all registers see the signal values that were valid at the beginning of the
clock cycle. No additional synchronisation is needed in this case.

Function sc_main(), shown in Listing 2, is the entry point for the execution of SystemC pro-
grams. In this function, an instance of type shift_register is created and the input ports are
bound to an instance of type sc_clock named clock and an instance of type sc_signal<bool>
named data. The output port is bound to a four-bit integer signal, named result.

Afterwards, a trace file is created to log the values of the signals clock, data and result
during simulation. Afterwards, the inputs are set and the simulation is performed by sc_start(
100,8C_NS), which causes the simulation of 100 nanoseconds, which is exactly one clock cycle.

Figure 2.4 shows the waveform view that is created from the traces of the SystemC signals
clock, data and result. The waveform view visualises the time-dependent evolution of the
signal values.?

3The waveform view has been created using the open source tool GTKWave http://gtkwave.sourceforge.net/
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2.2 System Modelling

Listing 1 SystemC HW Shift Register Example

#include

SC_MODULE (bool_register) {
//input ports
sc_in_clk sync;
sc_in<bool> in;

//output ports
sc_out<bool> val;

SC_CTOR(bool_register) {
SC_METHOD (update) ;
sensitive<<sync.pos();

void update () {
val.write(in.read ());
}
};

SC_MODULE (shift_register) {
//input ports
sc_in_clk sync;
sc_in<bool> data;
//out port
sc_out<sc_uint<4> > out;

//signals to be used for registers
sc_signal<bool> signals [4];

//vector of 4 single registers
sc_vector<bool_register> registers{ ,4};

SC_CTOR(shift_register) {

//interconnect registers: bind ports in and val to signals

registers [0].sync(sync);

registers [0].in(data);

registers [0].val(signals [0]);

signals [0] .write(false);

for (unsigned int i=1;i<4;i++) {
registers[i].sync (sync);
registers[i].in(signals[i-1]);
registers[i].val(signals[i]);
signals[i].write(false);

}

//make shift register sensitive on sync
SC_METHOD (update) ;
sensitive<<sync.pos();

}

void update () {
int sum=0;
for(int i=3; i>=0; i--) {
sum=sum<<1;
sum=sum| signals[i].read ();
}

out.write(sum) ;
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Listing 2 SystemC Example for Main Method

int sc_main(int argc, charx* argv[]) {

sc_clock clock( , 100, SC_NS);
sc_signal<bool> data;
sc_signal<sc_uint<4>> result;

shift_register sr( );
sr.sync (clock);
sr.data(data);
sr.out (result) ;

//open VCD file

sc_trace_file *trace_file = sc_create_vcd_trace_file(
//dump the desired signals

sc_trace(trace_file, clock, )
sc_trace(trace_file, data, )
sc_trace(trace_file, result, )

data.write(true);
//simulate one clock cycle
sc_start (100, SC_NS);
//simulate one clock cycle
sc_start (100, SC_NS);

data.write(false);
//simulate one clock cycle
sc_start (100, SC_NS);

data.write(true);

//simulate omne clock cycle
sc_start (100, SC_NS);
//simulate another clock cycle
sc_start (100, SC_NS);
//simulate another clock cycle
sc_start (100, SC_NS);
//simulate another clock cycle
sc_start (100, SC_NS);
sc_close_vcd_trace_file(trace_file);
return O;
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2.3 Testing

What follows introduces definitions and nomenclature related to testing.

2.3.1 Definitions and Nomenclature

Testing is an approach that checks whether an SUT fulfils a set of requirements, i.e., its specific-
ation. In general, this is done by running test cases against the SUT. A test case, according to
[RTC92], is comprised of a sequence of input data, preconditions and a set of expected outputs.
Each test case aims to verify that a subset of requirements has been correctly implemented. In
the remainder we will distinguish between abstract test cases and concrete test cases. Abstract
test cases, sometimes referred to as symbolic test cases, are abstract descriptions of a test case
in the sense that input or output data might not be specified in a concrete but rather in an
abstract way. In our approach, an abstract test case is a test case on the DFSM abstraction
level. Therefore, an abstract test case is specified by a sequence of IECs and a sequence of
expected outputs which are concrete, because we consider systems with a finite output domain
in our work. In contrast, a concrete test case is a test case in which inputs and outputs are
assigned concrete values or tuples of concrete values for systems with multiple input and output
variables. In our work, we derive the concrete test cases from abstract test cases by selecting
concrete members from IECs. These concrete test cases are directly applicable to the SUT using
the concrete input values or value tuple as stimuli and observing the expected concrete output
values. To make a concrete test case executable by a machine, a test procedure is derived from
the test case. A test procedure is the representation of a test case in a specific (interpreted or
compilable) programming language to make the test case executable on a machine. The term
test suite will be used interchangeably to denote a set of test cases or test procedures.

For system and software development, different development processes exist. A widely known
development process is the V-Model. Following this process model, a system is developed in
stages, as shown in Figure 2.5. The phases are arranged in two branches: the development
branch and the V&V branch. Both branches form the letter V, which grounds the name “V-
Model”. The system is designed and implemented following the left branch, following a waterfall
approach in which later phases of the design become more detailed in refinement steps. First
the requirements are detailed in an architectural design, and this first design is subsequently
elaborated in more detailed steps, finally resulting in an executable system. This system is then
assessed for correctness in the verification and validation (V&V) branch. Verification subsumes
all techniques that aim to demonstrate that a developed artefact fulfils its specified purpose. In
contrast, validation activities aim to demonstrate that the specified purpose is identical to the
intended purpose. As such, verification activities ensure that “the system is built right” while
validation activities ensure that we “build the right system”. Testing is a typical verification
method, and in this work, we focus on testing and thus on verification. By analogy to the phases
of the development branch, the system is verified at different levels. Thus, different testing
approaches exist. During unit testing, single modules (software units, classes, functions, and
hardware subsystems) are tested in isolation. In later phases, integrated modules are tested
by integration testing. A special case of integration testing is HSI testing, which comprises
integration tests that examine integrated (sub-) systems which contain software and hardware
components. Usually, integration tests are followed by system testing in which the final integrated
system is tested.
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Figure 2.5: Phases of the V-Model
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Figure 2.6: Illustration of the Requirement-based Testing Paradigm

Testing approaches can further be categorised as white-box and black-box approaches. Black-box
testing is based on the interfaces and behavioural specifications of a system. Based on this, test
cases are used to verify that the system behaves as specified on its external interfaces. For white-
boz testing, additional implementation-specific information is considered as well. In most cases,
source code and source code coverage is considered in white-box approaches. While white-box
tests allow for more detailed observations of the SUT, these approaches require the observability
and sometimes controllability of the internal state of a system. This can be achieved by code
instrumentation techniques, for example. In many cases, this is neither possible nor desirable.
Therefore, black-box approaches are desired mainly on higher levels of the V&V life cycle, because
the high abstraction and complexity level precludes a reasonable use of low-level information.
Note that, for final system tests, safety-related standards [RTC92, Eur01, ECS09] mandate that
tests are run on the original system, precluding instrumentation.

The approach presented in this work is a black-box approach. This approach is applicable to
different test levels. It is in general applicable to unit, integration and system testing. However,
because the approach is specific to reactive systems, we believe that the main scope of our
approach is not at the unit testing level but at the integration and system level. The evaluation
approach that is presented in Chapter 5 aims to demonstrate that our approach is applicable as
an HSI test approach with reasonable fault-detection capabilities. There is, however, no reason
why it could not be applied to lower levels of V&V activities.

2.3.2 Requirement-Based Testing

All safety-related standards [RTC92, Eur01, ECS09] require full requirements coverage of verific-
ation activities. Therefore, the state-of-the-art approach for verification of safety-related systems
is to show that a set of usually manually specified test cases associated with manually imple-
mented test procedures covers all requirements. This is done by requirements tracing. Each test
case defines a set of requirements that is tested by the test case. This results in a traceability
matrix from test cases to requirements and vice versa. One test case may be designed for each
single requirement. But in general, the traceability matrix may be an n-to-m mapping. Require-
ments that are not verifiable by tests must be covered by other verification means, but this is
an exception that has to be justified. Figure 2.6 illustrates the concept of requirement-based
testing.
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Figure 2.7: Illustration of the MBT Paradigm

Although further criteria for verification activities exist (e.g., code-coverage criteria are prescribed
depending on the safety criticality of the SUT), the testing activities at the system level satisfy
the requirements of safety standards as soon as every requirement is covered by at least one test.
Given the informal nature of requirements and the fact that the interaction of requirements and
evolving system properties are not considered in these requirements, it is easy to recognise that
such an approach in isolation is far from complete. It has to be noted that safety standards
recommend the use of complementary methods like MBT and model checking in addition to
requirement-based testing activities.

2.3.3 Model-Based Testing

No unique definition of MBT exists. MBT can be understood to do one of the following:

1. use models to describe tests, or

2. derive tests from a model.

MBT as defined by the first definition often uses scenario-oriented notations to model sequences
of inputs and outputs: e.g., UML sequence diagrams. From these diagrams, executable test
cases can automatically be generated. In this case, the test case itself, the sequence of inputs
and outputs is manually defined. In contrast to this, we understand MBT, following the second
definition, as follows:

“Model-based testing usually means functional testing for which the test specification is given
as a test model. [...] In model-based testing, test suites are derived (semi-) automatically from
the test model” [Wei09, p. 31].

This definition, which defines MBT as the formal process of deriving tests from a formal model
of the SUT, is illustrated in Figure 2.7.

First a test model is defined. Usually, this test model is designed by a tester or a test team. This
model can be derived from the requirements or, in case of model-based development, this model
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can be deduced from the development model. In any case, the model itself is an abstract formal
description of the intended behaviour of the SUT. Depending on the MBT approach, this may
be a complete model of the SUT I/0 behaviour or a partial model that describes only some of
the behavioural aspects of the SUT or a subsystem.

The test model itself does not contain the test cases to be run against the SUT, since a test
case itself is one execution (i.e., a trace) of the model. Thus, the test model defines a generally
infinite universe of possible test cases. An MBT approach identifies relevant abstract test cases
usually based on some test criteria. For each test case, concrete test data (concrete input and
output values) can be calculated from the model. Finally, for a given target language and test
framework, an executable test procedure can be generated automatically from the identified set
of relevant test cases.

Most MBT approaches differ in the modelling formalism that is supported, ranging from FSMs,
through Labelled Transition Systems (LTSs) to state-oriented notations like the UML/SysML
state machines, and in the test selection/test case generation algorithms. For an overview of
different approaches, refer to Section 7.1. The approach that we present in this work uses state-
oriented formalisms (e.g., SysML state machines), but other formalisms that can be expressed
by a special variant of State-Transition Systems (STSs) can be used as well.

MBT should be used for the same reasons as model-based development. It allows a higher level
of abstraction than hand-written tests. It shifts the focus from specifying test cases and writing
test procedures to the design of a test model. The manual process of test-case identification
and implementation of test procedures can be automated. This process is less error-prone and
cumbersome than the manual approach. Furthermore, it makes it possible to identify more
relevant tests than a single tester, even with high experience, could identify. Completeness
with respect to some formal criteria can be guaranteed using MBT. The automation ensures a
high test quality by preventing inconsistencies between test specifications and test procedures,
missing assertions or wrong input stimuli. Given that test execution can be automated in an
efficient way, the execution of a large sets of test cases can be enabled. Given that the MBT
approach identifies relevant test cases, a larger set of test cases usually should result in higher
fault-detection capabilities (test strength) and thus in a more reliable final system. Finally,
given that the modelling formalism supports tracing of model elements to requirements, the
traceability matrix that is needed to show completeness of tests with respect to requirements
can automatically be generated.

It has to be noted that testing is in general an incomplete verification method. Most likely,
not all possible inputs or sequences of inputs for reactive systems can be tested. Therefore, the
selection of a finite subset of all possible test cases always results in the incompleteness of the
test results. A system that passes a test suite is not necessarily correct. This fact is stated in
the following quotation of Dijskstra [Dij72]:

Program testing can be a very effective way to show the presence of bugs, but is
hopelessly inadequate for showing their absence.

Given the incompleteness of testing, the question is how to make tests, if not complete, at least
as close as possible to complete. Therefore, special care must be taken in the process of test-case
selection. Given a formal model of possible faults that are expected in an SUT, one can generate
test suites that are complete with respect to a given fault model.

For FSMs, complete testing theories exist: i.e., test generation algorithms that result in finite
test suites that are complete with respect to a fault model.
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2.4 Testing Theory of Finite-State Machines

Finite-state machines offer a means for modelling finite systems. The semantics of FSMs have
been established since the early days of computer science. For an introduction, please refer
to [Gil62, Gin62, Boo67, HMUOG]. FSMs lend themselves well to the modelling of commu-
nication protocols. Plenty of work exists that focuses on test-case creation from FSM models
[Cho78, FvBK ™91, NT81, Gon70, SD85, ADLU91, SLD92]. These test approaches guarantee the
completeness of the resulting test suite. This property is excellent for the testing of safety-critical
systems, as it assures that certain types of errors will be revealed by the test approach. The
background of complete testing theories for FSMs is presented in this section. The next section
generalizes these testing theories to cope with systems that are not finite in their input domains.

2.4.1 Finite-State Machine Definitions and Notations

Definition 2 (Finite-State Machine). An FSM is a tuple M = (Q,q,X7,X0,h). Q is a finite
set of states, which contains the initial state q. Xy is the input alphabet: i.e., a finite set of inputs
r. Yo is the output alphabet, again a finite set of outputs .

h is a transition relation @ X X1 X Yo X @Q that relates a pre-state ¢ and an input ¢ to an output
y and a post-state ¢’.

The fact that two states g and ¢’ are related by h via an input ¢ and an output v: i.e., (¢,z,1,¢’) €

h, is denoted by ¢ ﬁ) q'. State ¢’ is said to be a post-state of q. This state can be reached when

input ¢ is applied to M, while M resides in state ¢g. In this case, the output y is produced.

An FSM is completely specified if, for every pair of states and inputs (g,r), there exists at least
one pair of output and post-state (1,q’) such that (q,r,9,q’) € h.

Definition 3 (Deterministic Finite-State Machine). A DFSM is an FSM M with the following
properties: M is completely specified, and for every pair of states and inputs (g, r) there exists
exactly one pair of output and post-state (y,¢’) such that (¢,r,9,4¢') € h.

The property of h makes it possible to define two functions, § and w.
0 is the transition function Q X X; — Q mapping a state g and an input r to a target state ¢’.
w is the output function @ x Xy — Yo mapping a state ¢ and an input r to an output 1.

Since § and w contain the same information as h, both can be used instead of h. Therefore, a
DFSM M is defined as M = (Q,q, X1, X0,0,w).

There are two common ways to represent a DFSM. State chart notation is used as a visual
representation of a DFSM M. It represents M by a graph. The vertices of the graph represent
the states @. The edges in the graph represent § and w. Every edge is labelled with r/y and is
unidirectional. An edge from state g to state ¢’ that is labelled by g/t represents the fact that
8(q,r) = ¢’ and w(q,r) = v. Instead of the state-chart notation, a DFSM can be represented by
a transition table. The transition table is a tabular form that defines § and w.

Example 6. Figure 2.8a is an example of the state-chart notation. The state chart defines a
DFSM M; = (Q,q, X7, X0, 0, w) with state set Q = {A, B,C, D, E}, input alphabet X7 = {a,b, ¢}
and output alphabet Yo = {0,1,2}. Figure 2.8b is the transition table of the same DFSM M;.
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0 w
a\b\c a\b\c
AJJA|B|C|1]|]2]2
BI|C|D|CJ|1]2]2
C|B|D|C]|1]2]2
DIB|E|C|1]|]2]|2
E|B|E|JA|1]|]0]0

(b) Transition Table

(a) State Chart Notation

Figure 2.8: Example DFSM M;

For DFSMs, we further use the following notions and notations for convenience. A finite sequence
of states ¢* = qo-q1 ... q where all states are connected by a transition in M ¢y — ¢ — ... —
q—1 — q is called a trace. Likewise, a finite sequence of inputs * =y - 12 - 1; is called an input
trace.

Operator - is used as a binary operator to concatenate two sequences of arbitrary elements of

type T' (e.g., states, inputs, ...): - : T* x T* — T*. We also reuse this operator to concatenate

sequences of type T with elements of T: - : T* x T — T™, or to combine two elements of type

T into a sequence: - : T'xX T — T*. We also use - as a binary operator for sets of sequences:
:P(T*) x P(T*) — P(T*). In this case, - is defined as A- B = {a-bla € A,b € B}.

Applying the input trace t* =1 -2 ... 1 to a DFSM state qg yields a trace ¢* =qo-q1-... - q

determined by the state transitions ¢q Iﬂf T Fi>n2 “/—Uf q- The sequence of outputs p* =

91 - Y2 - ... n; that is generated by this transition sequence is called output trace. The sequence

* = (r1,91) - (£2,92) - ... - (r;, ;) is called I/O trace. A transition sequence that is performed

when applying an input trace ¢* is abbreviated by gg —* ¢;. If the output trace is not relevant,
-

this transition sequence will be abbreviated as ¢g —* ¢;.

The extensions of the DFSM transition § and output function w to input traces are defined by

w':Q x X7 = X5 (2.1)
w (g, <>) <>
w (g, 1") w(g,r) - w(d(q,x),x")

39



2 Background

0" Q@ xX —QF (2.4)
6" (q,<>) =q (2.5)
0" (q,r ") =q - 6" (0(q,x),2").

Furthermore, let 6 : Q x 37 — @ be the function mapping a state ¢ and an input trace ¢* to the
target state that is reached when applying r*.

Definition 4 (Language of States and DFSMs). The language L£(q) of a DFSM state ¢ is the

i~
set of all I/O traces that originate from this state: £(q) = {I*|g —* ¢’}. The language of a
DFSM M is the language of the initial state of M L(M) = L(q).

Definition 5 (FSM State Equivalence). Two DFSM states ¢; and g2 are I/O-equivalent, or
simply equivalent, q1 ~ g2, if both states share the same language: g1 ~ q¢2 <= L(q1) = L(¢2)-
Intuitively, this means that two I/O-equivalent states produce the same output traces for every
possible input trace.

Definition 6 (FSM Equivalence). Two DFSMs M; and Mj are I/O-equivalent My ~ My if their
initial states g; and g, are I/O-equivalent: M; ~ My <= gy ~ Q.

Definition 7 (Minimal Deterministic Finite-State Machine). A DFSM M = (Q,q, %1, Y0, 6,w)
is minimal if no two states from @ are I/O-equivalent:

M is minimal <= Vq¢;,q; € Q 1 ¢ ~ ¢ = ¢ = q;. (2.10)

Every non-minimal DFSM M can be minimised to an equivalent minimal DFSM M’. [Gil62]
proposes an algorithm that is based on Pj-tables. We shortly recall the functionality of this
algorithm.

Definition 8 (k-Equivalence). The k-language L<i(q) of a DFSM state ¢ is the set of all I/O
r
traces of length up to k that originate from this state: £(q) = {I*|¢ —* ¢/,length(I*) < k}.

Two DFSM states ¢; and g9 are k-equivalent, q1 ~ go, if both states share the same k-language:
G~k @2 = L<p(q1) = L<k(g2). Intuitively, this means that two k-equivalent states produce
the same output traces for every possible input trace of length up to k. Two states that are not
k-equivalent are said to be k-distinguishable.

k-equivalence is an equivalence relation and therefore induces a state equivalence partitioning
Q/~,- A Py-table is a special form of the transition table. This table has an additional column
mapping a state to its k-equivalence class. Let this column be denoted by function Cy, : Q@ — Q/~,
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mapping a state ¢ € Q to its k-equivalence class ¢ € Q/~,. Because the P table is completely
defined by the original transition table and Cy, we use the terms Pj-table and Cj, interchangeably.

Note that the P;-table can be calculated from the w-column of the transition table. Two states g;
and g; are in the same l-equivalence class iff they produce the same outputs for all inputs r € X;
from the input alphabet: i.e., if they share the same entries in the w-column of the transition
table.

Given the Py-table, the Py table can be calculated as follows: Two states ¢; and g; that are
k-distinguishable are also k + 1-distinguishable. Therefore, Ci41(g;) # Cr+1(q;) must hold. This
means that only pairs of states from the same k-equivalence class have to be investigated. Two
states ¢; and ¢; that are k-equivalent (Cr(g;) = Ci(g;)), will be k + 1-distinguishable (Cyy1(¢;) #
Cr+1(g;)), iff at least one input symbol ¢ € X exists that leads from ¢; and g; to target states
that are themselves k-distinguishable.

Vai,q; € Q :Ci(qi) = Cr(qj) = (2.11)

((Fr € X1 : Cu(0(qi, 7)) # Cr(0(q5,1))) <= Crt1(d) # Crsa1(g;))
Note that Equation 2.11 implies that the state partitioning @/, becomes more fine-grained with
increasing ¢.

The minimisation of a DFSM M = (Q,q, %1, X0, d,w) is performed by successively calculating
Py y1-tables from the predecessor Py-table until a fixed point is reached, meaning Py11 = Pg.
Such a fixed point implies that all subsequent P;-tables for i > k will be the same as well. In
particular, this proves, for all pairs of k-equivalent states g; ~ ¢;, that these states are I/O-
equivalent as well ¢; ~ ¢;. The existence of such a fixed point is ensured by the fact that (1) Q
is finite and (2) the state partitionings ()/~, become more fine-grained with increasing i. At the
latest, a fixed point is reached when the partitioning is composed of singletons only.

The last Py-table defines the state equivalence partitioning @/~.. The minimised DFSM M,, =
(Qums Dy 215 20, Om, Wi ) is obtained by setting Q,, = Q/~, q,,, = Cx(q),

om = {(Cr(q),x) = Ck(q)lq,q" € Q,x € X1,0(q,x) = ¢'} and
wm = {(Cr(q),r) = v|g € Q,x € X1,w(q,r) = v}. Algorithm 1 summarises the algorithm for the
DFSM minimisation, as described above.

Algorithm 1 DFSM Minimisation
Input: M = (Q,q,X1,X0,0,w) as DFSM to be minimised
Output: (M,, = (Qm, %, 215 20, m, wm), {C1,...,Cx}) a minimal DFSM and the Pg-tables
function DFSMMINIMISATION
C1 := CALCULATEP1TABLE(M)

k:=0
repeat
ki=k+1
Ci+1 := CALCULATENEXTPKTABLE(M ,Cy) > using Equation 2.11

until C,, = Cry1
return ((Qm, 4., 21, 20, 0m, Wm), {C1, .. .,Ck}) > Qm, Ays Oms Wm as described above
end function

Example 7. Consider M; defined in Figure 2.8. We will see that B and C' are I/O-equivalent
B ~ C. Thus, M; is not minimal. This claim can be proven by applying the minimisation
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Al 5 | A | Bs | Co
B 6 || Cs| Dy | Cg
C 6 Bs | Dy | Cs
D 4 Bg | Es | Cg
E 2 Bs | Ey | As

(d) Ps-table

Table 2.2: Pi-tables for DFSM M,

algorithm (Algorithm 1) to M;. Table 2.2 shows the Pj-tables for M;. The column labelled
Ci in the P; table maps all states A, ..., F to their l-equivalence class from @/~,. There are
two l-equivalence classes ¢; = {A, B,C, D} and ¢o = {E}. The states A, B, C and D are all
l-equivalent, while E is 1-distinguishable from A for example. The two 1l-equivalence classes
result from the fact that the outputs (see the column labelled w in the P;-table) are identical for
{A, B,C, D} and only F differs in the outputs. In the P;-table, we subscripted all target states
in the d-column with the value of C;.

To calculate the P»-table, we use the rule described in Equation 2.11. All pairs of states in
c1 remain in the same equivalence class, if for all inputs the target states are in the same
l-equivalence class. Otherwise, the two states are 2-distinguishable and therefore have to be
spread to different 2-equivalence classes. Intuitively, this step can be performed by taking a close
look at the subscripts used in the §-column of the Pj-table. The subscripts for A, B and C' are
(1,1,1) in the Pj-table. These three states are 2-equivalent. However, the subscripts for D are
(1,2,1). Thus, D is 2-distinguishable from A, B and C. This yields two new 2-equivalence classes
cs = {A,B,C} and ¢4 = {D}. The l-equivalence class ¢z is already singleton and therefore
cannot be further partitioned.

Note that we dropped the w-columns for the P, and all subsequent Pg-tables because these
columns are no longer needed for the calculation of the successive tables. A close look at the
subscripts in the §-columns of the P»-table reveals that A is 3-distinguishable from B and C,
which in turn are 3-equivalent. Hence, the 2-equivalence class c3 is split to the 3-equivalence
classes ¢ = {A} and ¢ = {B,C}.

The P,-table equals the Ps-table because B and C' are 4-equivalent. This causes Algorithm 1 to
terminate. The fact that a fixed point is reached (C3 = C4) proves that B and C' are not only
1, 2, 3, and 4-equivalent but also i-equivalent for arbitrary ¢ € N;. Therefore, both states are
I/O-equivalent B ~ C.

The minimal DFSM M3, that is equivalent to M; is shown in Figure 2.9. M, is obtained by
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Cs Cs Ce Cg
Cg Cg Cq Cg
Cy Cg Co Cg
C2 Cg C2 Cs

c/0

= =] = =]
[=INIECINN ol ES
ol || o

(b) Transition Table

(a) State Chart

Figure 2.9: Minimal DFSM M, that is Equivalent to M;

replacing all states in M7 by their state equivalence class, as determined by C3. This results in a
new transition table in which the redundant line for state-equivalence class cg has been dropped.
The transition table and the state chart for Mj,, are shown in Figure 2.9.

2.4.2 Complete Testing Theories

Definition 9 (Correctness, Conformance, Equivalence). Given a specification or test model
defined as a DFSM M = (Q,q,%;,¥0,d,w) and an implementation defined as a DFSM J =
(Q3,45,%1,%0,05,w3). The implementation is considered correct, if it is conforming to the
specification J < M according to a conformance relation <. Typically, two types of conformance
relations exist: refinement and equivalence. Refinement means that the language defined by J
is a subset of the language of the specification £(J) C L(M). In the remainder we use I/0-
equivalence ~ as a conformance relation. Thus, the languages of the implementation and the
specification must be identical £(J) = L(M).

The following paragraphs introduce some complete testing theories. Complete testing theories,
in contrast to test heuristics, are guaranteed to reveal certain kinds of faults. To achieve this, a
formal model of faults is needed. We first introduce the fault model for DFSMs and then present
two complete testing theories: namely, the W-method and the Wp-method.

Definition 10 (Test Cases, Oracles, Pass and Fail). For a specification/test model given as a
DFSM M = (Q,q,%5,X0,0,w), let TS denote a test suite: i.e., a finite set of test cases. A test
case t € TS is an input trace. The application of a test case to the specification M in the initial
state g will produce an observable output trace h* = w*(q,t). This output trace describes the
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expected behaviour of the specification when ¢ is applied. It will be called a test oracle in the
remainder, and for convenience the test oracle will be denoted by O(t) = w*(q,t).

Given an implementation defined as a DFSM J = (Q3,45, X1, X0, 03,w5), the implementation
may pass or fail a test case t. The implementation passes the test case (denoted by J pass t), if
w3(gy,t) = O(t) and the implementation fails the test case otherwise (denoted by J fail ¢). The
implementation passes the test suite (J pass TS) if it passes all test cases and it fails the test
suite (J fail TS) if it fails at least one test case.

Definition 11 (Fault Model for DFSMs). The common fault model for DFSMs assumes that
the test model is given as a DFSM M. An implementation is assumed to show the I/O behaviour
of another DFSM J. Thus, the fault model requires that the implementation shows deterministic
behaviour. Furthermore, it is assumed that specification M and J use the same input and output
alphabets and that the implementation provides a correctly implemented reset operation. This
reset operation allows for the application of input traces to the initial state of the implementation.

Faults of the implementation can be categorised as two types: transfer and output faults. A
transfer fault can be introduced by changing the target of a transition, and an output fault is
introduced by changing the output of a transition.

The fault model F(M,<,D(m)) for DFSMs is comprised of the specification M, a conformance
relation < (we will use I/O-equivalence ~ in this work) and a fault domain, which is denoted by
D(m). The fault domain is the set of all possible DFSMs M’ that use the same input and output
alphabet as M, have a reset function and have at most m states after DFSM minimisation.
The members of D(m) include the automaton M itself and all variations of M that result from
multiple applications of the two fault operators (transfer and output fault) and have at most m
states in the minimised DFSM.

Definition 12 (Completeness of Test Suites and Testing Theories for FSMs). A test suite TS
is said to be complete with respect to a fault model, if it is sound and exhaustive.

Soundness means that every correct implementation J passes the test suite.

J~M = Jpass TS (2.12)

A test suite TS is exhaustive with respect to fault domain D(m) if every member of the fault
domain that is not I/O-equivalent to the specification M fails the test suite.

VI E€D(m): T 4 M =7 fail TS (2.13)

A complete testing theory is a mapping from a fault model F(M,~,D(m)) to a test suite TS
that is complete with respect to this fault model.

For DFSMs, many complete testing theories exist. We present the W-method and the Wp-method
below. Both methods require the calculation of the transition cover and the characterisation set.
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Definition 13 (Transition Cover). Given a minimal DFSM M, the transition cover TC is a

set of input traces that contains an input trace r* =y ...r, for every transition t = g; MQ q;

of M such that this transition is taken when the input trace is applied to the initial state:
Fefno1 /Y

a —" G NG = q;.

Note that, for technical reasons regarding the W-method, the empty trace <> is considered to

be an element of TC.

Definition 14 (Characterisation Set). Given a minimal DFSM M, the characterisation set CS is
a set of input traces with the property that every pair of states ¢;, g; : ¢; # ¢; can be distinguished
by a member of CS (i.e., the output of M is different when an input trace from CS is applied):

Vgi,q; @i #q; = F* € CS:w*(q;,1") # w*(gy,1").

The characterisation set of a DFSM can be calculated by using an approach presented in [Gil62,
Section 4.10]. The algorithm presented there needs a DFSM M and the Pj-tables of this DFSM,
which might have been generated using the minimisation algorithm shown in Algorithm 1. The
algorithm for the calculation of the characterisation set is shown in Algorithm 2.

Algorithm 2 Algorithm for the Calculation of the Characterisation Set CS

Input: M =(Q,q,%1,¥0,d,w) a DFSM
Input: {Ci,...,Cy} the Py tables of M
Output: CS the characterisation set of M
function CHARACTERISATIONSET
CS:=0
G = {{elen(C; '[c])|c € @/~ }} > G is a set of sets of states, every set of states
represents states that are not yet distinguishable by the characterisation set calculated so far
while G # () do

g := elen(G) > selects a pair of states that are not yet distinguishable
G:=G\{g}

(q1,42) == elem({(q, q;)lqi, 45 € 9,4 # ¢;})

0 := DISTINGUISHINGSEQUENCE(M, {C1,...,Ck}, q1,q2) > o distinguishes (¢1, g2)
CS:=CSu{c}

{g1,..., g1} := PARTITION(g,0) > partition set g by the output traces triggered by o
for each g; € {¢1,...,9:} do
if |g;|>1 then > partitions with more than one element
G:=GU{g} > ...still have to be distinguished
end if
end for
end while
return CS
end function

Note that M may or may not be minimal already. The Pg-tables of M are again defined by
functions {Ci,...,Cr} mapping states to their i-equivalence class. The minimal DFSM M, =
(Qms Qpn» 21, X0, Om, Wiy ) that is equivalent to M is implicitly determined by M and {Cy,...,Ck}.
Therefore, this minimal DFSM is not needed as input for Algorithm 2.

The characterisation set is calculated by iterative partitioning of the set of distinguishable states.
The set of sets of states G contains sets of states that are not yet distinguishable by input traces

45



2 Background

in CS. Initially, G is a singleton containing the set of all distinguishable states in M. The set of
distinguishable states is defined by {elem(C; '[c])|c € Q/~,}. elem() denotes an operator that
returns an arbitrary element of a non-empty set. For every state-equivalence class ¢ € @/, one
representative is chosen by using elem() on the inverse image C;, '[c] of function Cj.

Then, successively, an element g € G is taken from G, and from the states in g two states are
selected. By construction of G, these states are distinguishable. A distinguishing sequence o
for these two states is calculated using Algorithm 3. This input trace distinguishes at least ¢
and g2 from each other. o is added to the characterisation set CS. Then, operation partition
partitions the states in g by their response to o. The response of a state ¢ to some input trace o
is the output trace that is produced when the input trace is applied to the state w*(q,0). The
response induces an equivalence relation ~,. Two states are ~,-equivalent iff they produce the
same output when o is applied. partition calculates the partitioning g/~ . Every partition
gi € g/~, which is not singleton represents a set of states that are not yet distinguishable.
Therefore, g; is added to G. The algorithm must finally terminate. This is reasoned by the fact
that G is a partitioning of @) (with singletons dropped). Because the partitioning is refined in
every iteration of the loop, G will finally be empty when all partitions have become singleton.

Algorithm 3 Algorithm for the Calculation of a Distinguishing Sequence for Two States

Input: M =(Q,q,%X1,%0,0,w) a DFSM

Input: {Cy,...,Cx} the Py tables of M

Input: ¢; a state from @Q

Input: ¢ a state from @Q

Output: o an input traces that distinguishes ¢; from ¢
1: function DISTINGUISHINGSEQUENCE

2: o =<>

3: I =min({i|C;(q1) # Ci(g2)}) > ¢ and g9 are l-distinguishable and [ — 1-equivalent
4: ¢ = q > ¢; and ¢; start from ¢; and ¢
5: qj = G2

6: r:=1

7 fork=1tol—-1do > ¢; and g; are [ — k-equivalent
8: (454, ¥) := elem({(q;, 4, ¥)|0(¢i,¥) = 4 A 0(qj,x) = ¢; AN Ci—r(q7) # Ci—r(g)})

9: oc=0-1 > select an ¢ to go from ¢; and g; to | — k-distinguishable states
10: end for

11: v = elem({rw(g,r) # w(g;,r)}) > select an r that distinguishes ¢; and g;
12: c:=0-¢

13: return o

14: end function

Algorithm 3 calculates a distinguishing sequence for two distinguishable DFSM states ¢; and
g2 of minimal length. First [ is calculated. [ is the minimal index, such that ¢; and ¢ are
I-distinguishable (C;(¢q1) # Ci(gz2)). Because [ is chosen minimally, ¢; and g2 are [ — 1-equivalent.
Thus, the shortest distinguishing sequence o for ¢; and g2 has exactly length length(c) = I. This
sequence is calculated by iteratively taking transitions in the loop (line 7). Variables ¢; and g;
are used to keep track of the current states, starting at g; and ¢, respectively.

Note that the distinguishing sequence o of length [ must begin with an input symbol r; that
causes the transition from ¢; and ¢» to [ — 1-distinguishable states ¢} and ¢5.* The construction

4Proof: Assume that q; and ¢} are not [ — 1-distinguishable, i.e., [ — 1-equivalent. Then, a sequence 7 of length
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of the Pj-tables ensures that such an input exists. Likewise, the next input symbol ro must
cause transitions from ¢} and ¢} to I — 2-distinguishable states ¢} and ¢4. This argument can
be repeatedly applied until states ¢; and g; are reached, which are 1-distinguishable. In this
case, an input symbol r; is selected that produces different outputs for ¢; and ¢;. See line 11.
0 =17p1"L2... X is a minimal distinguishing sequence for ¢; and g¢.

Example 8. Consider DFSM M, as shown in Figure 2.8. The Pg-tables are shown in Table 2.2.
We show the functionality of Algorithm 2 on Mj.

Initially, G is set to G := {{A, B, D, E}}. Note that C is missing in G because it is equivalent
to B and the algorithm of characterisationSet comnsiders only one representative for each
equivalence class ¢ € @/, .

Suppose that B and D are selected to be distinguished in the first loop iteration. distinguishing-
Sequence will be called for this pair of states to obtain a distinguishing sequence oy. In this
case, | = 2 because 2 is the minimal index that fulfills C5(B) # C3(D). The first input
symbol for o; can be determined by a close look at the P,_i-table: i.e., the Pj-table. The
first input symbol is b, because this is the only sub-column in the d-column of the P;-table,
where the subscripts differ for B and D. This means that b is the only input symbol fulfilling
0(B,b) =D A§(D,b) = EANCi(D) # C1(F). The loop in distinguishingSequence terminates
after the first iteration. The second input symbol can be obtained by comparing the outputs
for the target states of the last iteration D and E. We choose ¢ as the last element in o. Note
that b is possible as well, because D and F differ for both input symbols in the w-column of the
transition table. Thus, o1 = b ¢ is a distinguishing sequence for B and D and becomes part of
the characterisation set CS.

Now the set of states g = {A, B, D, E'} is partitioned by ~,,. The partitioning is g/, =
{{4, B},{D},{E}}. The response of the states A, B,D and FE to o1 is2-2,2-2,2-0and 0-0,
respectively. Both singletons from g/ ~, are dropped. {A, B} is added to G and becomes the
only remaining element in G. Thus, A and B are the pair of states in the second loop iteration
of characterisationSet.

distinguishingSequence for A and B yields [ = 3. To obtain the first input symbol for o3, have
a look at the P,_j—_o-table. The first input symbol for o3 is b (because of the different subscripts
for A and B in the Py-table). ¢; and g; are updated to B and D for the second loop iteration.
The second input symbol is b (because of the different subscripts for B and D in the Pj-table).
¢; and g; are updated to D and E. Finally, b might be selected as last element of o2 because D
and F produce different outputs for b (though ¢ would be possible as well). o9 = b-b-b is added
to the characterisation set.

Afterwards, characterisationSet will terminate because g = {A, B} will be partitioned to
9/~,, = {{A},{B}}. Therefore, no more states need to be distinguished and the characterisation
set is CS = {01, 02}.

Note that the characterisation set calculated by characterisationSet is not necessarily a
minimal characterisation set. For example, CS’ = {02} is a characterisation set for M; as
well. CS’ would have been obtained if we had chosen A and B in the first loop iteration of
characterisationSet. If, instead, we first calculated a distinguishing sequence for B and D
but chose b as the second element in oy, the characterisation set would be CS” = {b-b,b-b- b}.
Because the first sequence in CS” is a prefix of the second one, this sequence can be dropped,

k > 1 would be necessary to distinguish q/1 and ‘1/2- o, which is r1 concatenated with 7, thus has a length
length(o) > I. This contradicts length(co) = I.
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as every pair of states distinguished by a prefix r; will also be distinguished by any trace rj, - r7.
Therefore, a minimal characterisation set CS’ could be obtained by dropping prefixes in CS”.

The example above demonstrates that Algorithm 2 does not necessarily generate a minimal
characterisation set. Sometimes the generated characterisation set can be minimised by dropping
prefixes, although this is not always possible. Section 4.3.5.3 describes an algorithm to calculate
a minimal characterisation set.

W-method

The W-method is a complete testing theory that generates a test suite W for a given fault model
F(M,~,D(m)). The set of test cases for the W-method is calculated by the following formula:

W=TC- | J X" CS. (2.14)
1=0

m is an upper bound for the number of states implementation J is assumed to have. Equation 2.14
can be interpreted as follows: Each input trace from the transition cover is appended by every

input trace of length up to m — n. This assures that every state in J is reached at least once by
m—n

the elements of TC- |J X*. Finally, the target states that are reached after application of these
i=0

inputs must be identified. Therefore, the sequences from CS are used.

A formal proof of the completeness of the W-method can be found in [Cho78].

Wp-method

An improvement of the W-method is the Wp-method proposed in [FvBK™91] and generalised in
[LvBP94] to non-deterministic FSMs. The Wp-method has the advantage that the number of
test cases is reduced. This is done by using a modified version of the W-Method in a first step to
show that every state in the implementation is correct before applying a second step that tries
to verify the correctness of all transitions in the implementation.

For the application of the Wp method, the state cover SC C X7 is needed. The state cover is
a set of input traces that contains an input trace r* for every state ¢; € @ of M such that this

state is reached when the input trace is applied to the initial state: g = q;- The transition
cover can be calculated from the state cover by setting:®

TC = SC - (<> US)). (2.15)

The set of input traces R C X7

5As mentioned above, the empty trace <> is considered part of TC. For the Wp-method this empty trace is
not needed (see definition of R) and can be dropped. In this case, TC = SC - ¥ holds.
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R=TC\SC (2.16)
contains all traces that are contained in TC but not in SC.

For the reduction of test cases, the Wp-method uses the fact that every single state ¢; can
be distinguished from all other states ¢; € @) by a subset of input traces W; C CS from the
characterisation set. W; is called a state-identification set for g;. For every other state g;, there
is at least one input trace r* € W; that distinguishes ¢; and ¢;: Vg;,q; € Q : ¢; #¢; = It* €
Wi s w*(gi, %) # w*(g;,r*). Intuitively, these sets {W1,..., W, } can be calculated by dropping
sequences from CS that are not needed to distinguish ¢; from other states. Section 4.3.5.3
describes an algorithm for the calculation of minimal state-identification sets.

When applying arbitrary input sequences V' C X7 the target state of the application of such an
input sequence v € V' can be verified by applying the state-identification set W; of the expected
target state ¢; = 6(q,v). Thus, we define the operator @ as follows:

Ve {W,...,W,}={v-wlveV,q== q¢,we W;}. (2.17)

Finally, the test cases of the Wp-method are calculated by the following formula:

W, =W1 U W, (2.18)

Wy =SC- [ J X"-CS (2.19)
=0

Wy =R-X""") @ {Wy,...,W,}. (2.20)

The intuition of the Wp-method is as follows: If an implementation J successfully passes the
tests of Wy, it is guaranteed, that every state in J is CS equivalent to exactly one state of S.

m—n .
SC- |J X" is the state cover of implementation J, which is assumed to have no more than m
i=0
states in the minimal FSM. By complementing the traces in W; with CS, the target states can be
uniquely determined. Thus, W; tests the correctness of states. Additionally, the transitions have

to be checked (to uncover transfer faults). Therefore, the transition cover of the implementation

m—n
is needed. TC - |J X' is the transition cover of the implementation. Since we have already
checked many inpzut0 sequences with W;, we need only to consider the sequences that have not
already been checked. These are R - X™~". Because the states have already been verified by
Wy, we only need to verify that the target state of a transition is correct for Ws; therefore, we
do not apply the complete characterisation set CS, but only the state-identification set of the
expected target state.

A formal proof of the completeness property of the Wp-method can be found in [FvBK™91].
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2.5 Complete Model-Based Tests by Equivalence Class
Partition Testing

This section shows how the completeness of the W/Wp-method can be generalised to systems
with infinite input domains but internal and output variables from finite domains. Examples of
such systems include controllers that observe analogue inputs and make discrete control decisions,
including speed-monitoring systems, airbag controllers, smoke detectors and thrust-reversal sys-
tems.

2.5.1 Reactive Input-Output State-Transition Systems

RIOSTSs are description means for state-based systems. RIOSTSs are a specialization of STSs.

Definition 15 (State-Transition System). An STS S is a tuple S = (5, s9, R). S is a set of
states. sg € S is the initial state and R C S x S is a transition relation that relates pre and post
states.

Definition 16 (Reactive Input-Output State-Transition System). A RIOSTS S is a tuple § =
(S,s0,R,V, D). S, sp and R are defined as above. For RIOSTSs, the states s € S are valuation
functions s : V' — D that map variable symbols V' to the domain D, which is the union of all
variable domains. Every variable € V' has a domain D, it is mapped to: Yz € V : s(x) € D,.

RIOSTSs extend STSs in the following way:

1. The variables can be partitioned to input variables I, model variables M and output vari-
ables O with V =TUMUOQand INM =MNO=1IN0 =0.

2. The state space can be partitioned to quiescent states Sg and transient states St with
SZSQUST and SQQSTZ(Z).

In the remainder, s|y U C V denotes the restriction of a state s to variables in U only: i.e.,
dom(sly) = UAVYu € U : s|y(u) = s(u). The valuation of a concrete state s is denoted by
{v1 ¥ ¢1,v9 > Ca,..., vy — ¢y} and describes that s maps variable v; to concrete value ¢; with
¢; € D,,. The fact that two states are connected via R, i.e., (s1,2) € R is denoted by R(s1, s2).
Additionally, R*(sos1 ... sx) denotes the fact that all states s; with ¢ € {0, ..., k} are connected
via R:

R*(5081 . ..Sk) Lvic {O,. B 1} : R(Si78i+1).

Usually, we use = to refer to an input variable, m to refer to a model variable and y to refer to

an output variable. Let & = (x1,...,2 ;) be the vector of input variables. Similarly, 7 and ¥
denote the vectors of model and output variables, respectively. D; denotes the domain of the
input variables ' (i.e., Dr = Dy, X ... x Dy, where x1,..., 27 € I). A concrete input vector

(i.e., a tuple with |I| elements) is denoted by ¢ € D;. The concrete value for the i-th input
variable x; € I can be obtained from a concrete input vector ¢ by selecting the i-th component
of the vector. This will be denoted by ¢(z;). Analogously, the domains of model and output
variables are denoted by Dj; and Do, respectively. Concrete value vectors for variables from M
and O will be written as d € Dy and € € Do.
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Note that the state space S of a RIOSTS may be infinite. Therefore, the state space and transition
relation R are not explicitly enumerated. If not otherwise stated, we assume in the remainder
that state space S is the set of all possible valuations s : V' — D. The transition relation R
is described by a first-order logic predicate R over variables from V U V’. Because R relates
pre-states s and post-states s’, we need to use a set of primed variables V' to denote variable
values in the post state. Unprimed variables from V' denote variable values in the pre state. R
implicitly describes the potentially infinite transition relation as follows: Pre- and post-state s
and s’ are related by R iff R yields true when all occurrences of unprimed variables v € V are
replaced by their valuation s(v) in the pre-state and all primed variables v' € V' are replaced by
their valuation s’(v’) in the post-state. We denote the replacement of variables v € V' by their
valuation s(v) in an expression £ by E[s(v)/v € V].

R(s,8") <= R[s(v)/v eV, s{)/v €V (2.21)

Definition 17 (Semantics of RIOSTSs). The transition relation R of a RIOSTS has to fulfil the
following conditions:

Vs, € Sg,s €5 : (sq,8') € R= sqlnmuo = ' |muo (2.22)

In a quiescent state s, € Sg, only inputs may be changed by the transition relation R while
model and output variables’ values must stay unchanged. This means that quiescent states are
“stable” in the sense that the systems remains in this state as long as the inputs do not change,
and as long as the inputs do not change, model variables and the observable output variables
retain their values. A change of the system inputs might result in a quiescent state or a transient
state.

Vsy € Sp,s' € S (s4,8") € R= 5|1 = 5|1 (2.23)

In a transient state s; € Sp, only the internal model variables and output variables are allowed
to change while the input variables have to retain their values.

The intuition behind quiescent and transient states is as follows. The system starts in an initial
(quiescent state). Whenever the input values of the system change, these value changes might
or might not trigger a recalculation of the internal-state variables. Whether a recalculation is
needed depends on the post state of the input change. If the post state is a quiescent state, no
internal-state update is performed. If, however, the post state is a transient state, the values
for internal variables and output variables are recalculated and updated. In summary, quiescent
states wait for a change of input variables and the possible transient states that are reached
through such a change perform the recalculation of internal variable values.

In the context of testing, the distinction between quiescent and transient states is important,
as only quiescent states are observable. It is assumed that transitions from transient states
happen in zero-time such that system outputs are observable only in stable quiescent states.
Furthermore, input stimuli are only applicable to the SUT when residing in a quiescent state, as
prescribed by Equation 2.23.
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Recall that we used the term state in the context of SysML/UML state machines (cf. Sec-
tion 2.2.1) to denote statechart nodes. To avoid confusion, from now on, we will use the term
state to refer to a system state of a RIOSTS. To refer to a statechart node of a SysML state
machine, we will use the term location. We choose the term location because a state-machine
state can be understood as a location the RIOSTS, which is described by the state machine,
resides in.

Example 9. Consider the state machine from Figure 2.3.

The transition relation of the RIOSTS that is described by this UML state machine can be
defined by a first-order logic predicate R. In this predicate, we introduce the auxiliary variable
[ as an internal model variable to indicate the location that the state machine resides in.

R =p1 V paV

©3 VgV

w5 V 6
=(I=L0Ax<=10)A(I'=1N2" =2)
(l=L0Az>10)A{I'=L1AZ =1A2 =2)
(I=TL1Az<=200AI'=1NZ =2)
(
(
(

I=T1Ax>200A(I'=12A2 =2A2" =1)
I=12Az£0)AI'=1NZ =2)
I=12Az=0)A('=L0AZ =0A2" =2z)

P1
P2
¥3
P4
¥s
Y6

In this predicate, the subclauses ¢1 and @y define possible transitions from location LO. The
precondition of subclause ;1 (I = LOAx <= 10) describes all quiescent states of the system that
are residing in location L0 and that fulfil Equation 2.22. One concrete example of a quiescent
state is s1 = {& — 7,1 — L0,z — 0}. As long as input variable x fulfils z <= 10 in state s with
s(1) = 0, the resulting post states s’ are not allowed to change the values of internal variable [
or output variable z: (I' =1 Az’ = z) means s'(I) = s(I) and s'(z) = s(z). The system state is
stable in this case. The value of the input variable z, however, is allowed to change arbitrarily
(no statement about 2’ in subclause ;). Thus, the post state of a transition described by ¢
might be a transient state.

The precondition of subclause 2 (I = LO A z > 10) describes all transient states of the system
that are residing in location L0 and that fulfil Equation 2.23. If the value of input variable z
fulfils > 10, the resulting post state must keep the value of input variable z; according to
the semantics of entry actions in state machines, the output variable z is assigned to 1 and the
resulting location is L1 (I' = L1 A2 = 1A 2" = x).

Analogously, ¢3 and ¢4 describe the quiescent and transient states residing in location L1, while
5 and g describe the quiescent and transient states residing in state machine location L2.

In the context of RIOSTSs, the term trace is used for finite or infinite sequences of states, usually
denoted by 7 = s1...s,. The terms input trace and output trace are used for finite or infinite
sequences of inputs and outputs, respectively. S* denotes the (infinite) set of all finite sequences
of states while S denotes the set of all infinite sequences of states.
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Given a RIOSTS S with initial state sg, a state s is said to be reachable iff s can be reached
from the initial state by a finite sequence of intermediate states 7 that are related according to
the transition relation: R*(so7s). The set of quiescent system states that are reachable from the
initial state are called reachable quiescent states and are denoted by Sg. The set of reachable
transient states is denoted by St. o

Definition 18 (Livelock-free RIOSTSs). A RIOSTS is called livelock-free if there is no trace
8¢5¢15¢2 - . . of infinite length starting in a reachable quiescent state s, followed by infinitely many
transient states s¢18¢9... = vt

Vsq € Sq 1 Av € S1% 1 R*(squ). (2.24)

Definition 19 (Elimination of transient intermediate states). Definition 17 can be further re-
stricted without loss of generality if livelock-free RIOSTSs are considered:

Vs, € Sr,s' € S: (s,8') € R= s € Sg. (2.25)
Every post state of a reachable transient state has to be a quiescent state.

Note that every livelock-free RIOSTS S = (.5, sg, R, V, D) that does not fulfil Equation 2.25 can
be transformed to a RIOSTS &' = (57,50, R', V', D’) with the same observable I/O-behaviour
as S while fulfilling Equation 2.25. To this end, let S’ = S, s¢’ = s9, V' = V and D’ = D.
R’ is constructed using the following rule: All possible reachability traces (i.e., traces T that are
allowed according to the transition relation R: R*(7), of the form 7 = s4,5:1 ... 515154, With

540> Sq; € SQ, St1,---,Stg—1 € Sr) are abstracted by two tuples (sq,,5:1) € R and (s¢1,54,,) €
R
Although the intermediate transient states s;q,...,S;;_1 are dropped from R’, the observable

behaviour of the resulting RIOSTS S’ will be the same, because only quiescent states are ob-
servable. The construction ensures that, for every reachability trace sq;s¢i...S¢,_15¢, in R:
R*(8q05t1 -+ - 5tk—15qy,), there will be an analogous trace sq,5:15¢, in R': R (54,5154},

Example 10. Consider the RIOSTS from Example 9. The transition relation is described by
R. As described, the possible post states from a quiescent state s, that resides in state-machine
location LO: s,4,(l) = LO A s4y(z) <= 10 are described by subclauses o1 and ¢. Consider a
possible transient post state sy; with s;; = {& +— 25,1+ L0, 2z — 0}. s4; fulfils the precondition
of subclause o (I = LOAz > 10) and the only possible post state sy is { +— 25,1+ L1,z +— 1}.
This state is again a transient state, as it fulfils the precondition of subclause ¢4 (I = L1Az > 20).
The only admissible post state of s; is 545 = {2 = 25,1+ L2,z + 1}. This state is a quiescent
state, because it fulfils the precondition of subclause ¢5 (I = L2 Az # 0).

To eliminate transient intermediate states, the transition relation R’ of an I/O-equivalent RI-
OSTS &’ will contain the two tuples (sq,s¢1) and (s¢1, S¢5). A close look at R reveals that only
2 allows for a post state that is transient. Hence, we can define a predicate R’ that describes
RIOSTS &’ which fulfils Definition 19.
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R =1V p2q V o2V

3V paV

¥s5 V v
02, =(I=L0AZz>10Nz<=20)A(I'=L1AZ =1A2' =2)
o =1=L0Az>20)A (' =12 A2 =2 2" =1z)

V1, P3, P4, P5, P as described in Example 9.

Note that the transient states are redundant as well and can be dropped without loss of inform-
ation. Any two tuples (sq, st1) € R’ and (s¢1,54,) € R’ of the RIOSTS &’ can be abstracted to
one tuple (sq, Sq;,) € R in the transition relation R of an I/O-equivalent RIOSTS S. S shows
the same I/O-behaviour as the original RIOSTS &’ with transition relation R’, and the original
information of R’ can always be restored, because the transient state s;; is identical to the state

coinciding with s, in M U O and coinciding with sy, in the inputs /.

Definition 20 (Deterministic RIOSTS). A RIOSTS S is called deterministic (and livelock-free)
if, for every reachable transient state s; € S, there exists exactly one quiescent post state that
is reachable from this state via transition relation R—assuming that all intermediate transient
states have been eliminated before.

Vsy € St i Alsg € Sq : R(s¢,8q) (2.26)

Example 11. The RIOSTS from Example 10 is deterministic, because each quiescent post state
of a transient state is uniquely determined.

In the remainder of this work, we consider only deterministic RIOSTSs. The basics introduced
below can, however, be generalised to non-deterministic RIOSTSs. In [HP16b], the authors have
shown how the testing approach that we implemented in this work can be generalised and that
this generalised approach is complete for non-deterministic systems as well.

2.5.2 Input Equivalence Class Partitioning

In the remainder of this work, the uniquely determined quiescent post state that results from
applying input vector ¢ to a quiescent state s of a deterministic RIOSTS is denoted by s/c.
The input variables ¥ in the resulting quiescent post state evaluate to the input vector applied:
(s/&)(#) = ¢ Restricting this state to output variables O yields the system’s visible output
behaviour. Thus, (s/¢)|o is the visible output after applying concrete input ¢ to a quiescent
system state s.

When applying a sequence of input vectors (called input trace) ¢ = ¢ - C2 - ... - &, to a quiescent
state sg, the resulting sequence of quiescent post states (called state trace) 7 = s1 - ... s, is
denoted by so/t. The restriction of this state trace 7 to output variables only (s/i)|o is the
output trace that results from applying input trace ¢ to state sq.
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2.5 Complete Model-Based Tests by Equivalence Class Partition Testing

2.5.2.1 1/0-Equivalence of States
Two quiescent states s1 and sg are I/O-equivalent s; ~g s if both states produce the same
output traces for every possible input trace ¢:

81 ~g 2 Ve € D : (s1/t)|lo = (s2/1)|o- (2.27)
~g is an equivalence relation (i.e., a reflexive, symmetric and transitive relation), and therefore

the quiescent state space can be partitioned to Sg/~g. In the remainder, we will always be
interested in the partitioning of the reachable quiescent states Sg/~.

L0 L3

Figure 2.10: Example State Machine 2

Example 12. Consider the state machine from Figure 2.10. This state machine defines a
RIOSTS &3 with a transition relation that can be described by predicate Ro:
Ra =p1V p2a V @2V
P3 VgV
5 V eV
@7V P-a V P8
p1=(1=L0Az<=10)A'=1NZ2 =2)

(
02a =(=L0ANz>10N2<=20)A(I'=L1AZ =1A2" =2x)
o =(1=L0Az>20)AN(I'=12A2 =2A12' =12)
p3=(=L1Az<=20)A('=1NZ=2)
a=1=L1Az>200A(I'=12A2 =2 2" =x)
s =(I=L2ANz#0)A'=1NZ =2)
oo =(1=12ANz=0)A('=L3AZ =0A2" =2x)
er=(1=L3Az<=10)A('=1NZ =2)
0sa =(1=L3ANz>10"N2<=200A(I'=L1AZ =1A2' =2x)
wsp =(1=1L3Ax>200A(I'=1L2A2 =2A2' =2x).

Consider the quiescent states s; = {z — 0,1 — L0,z — 0} and sy = {z — 0,] — L3,z — 0}.
These two states are I/O-equivalent (s1 ~g s2), because Equation 2.27 holds: For every input
trace, the same output trace is produced when applying the input trace to s; and ss.
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Consider, for example, the input trace ¢ = (5) - (15) - (4). The application of this input trace to
sy results in a state trace of quiescent post states:

si/t={x—51—L0,z— 0} -{x— 15— Ll,z— 1} - {z—4,l— Ll z— 1}.
Applying the same input trace ¢ to state so results in the following:

soft={x—51l—L3,z—0}-{r—15l—Ll,z— 1} - {z —4,l— L1, z— 1}.
The output trace is identical for both states: (s1/t)|o = (s2/t)]lo = (0) - (1) - (1).

It is clear that all other input traces produce the same output when applied to s; and s, because
the only outgoing edges from location L0 and L3 have the same guard condition and the same
target location. That is why s; ~g so.

On the contrary, state s3 = {& +— 15,1 — L1,z + 1} is not equivalent to s;. Applying concrete
input ¢; = (7), for example, produces output (s1/¢1)|lo = (0) when applied to s; and output
(s3/¢1)|lo = (1) when applied to s3.

Every equivalence relation can be refined. ~' is a finer equivalence relation than (a refined
equivalence relation of) ~ if it fulfills © ~' y = x ~ y. Conversely, ~ is said to be coarser than
~'. In the remainder of this work, we use the short-hand notation ~'<~ to indicate that ~’ is
a refined equivalence relation of ~.

Note that every state equivalence relation ~,.C S x S that fulfills

81~y 82 =Ve € D} 1 (s1/1)]o = (s2/t)|o (2.28)

is a refined equivalence relation of the I/O-equivalence relation ~g defined in Equation 2.27.
This implies that two states s; and sy that are equivalent according to any refined equivalence
relation ~,.<~g will always produce the same output traces for every possible input trace ¢.

The partitioning of the reachable quiescent-state space by any refined equivalence relation ~,.<~g
is called State Equivalence Class Partitioning (SECP) and is denoted by A = Sg/~.,.

Note that, for every State Equivalence Class (SEC) a € A, two states from a, which are equivalent
according to the refined relation ~.,., will always produce the same output traces for every possible
input trace ¢, because ~,. is a refinement of ~g.

Every refinement A’ of an SECP A is again an SECP. This is denoted by A’ C A. The SECP
A, resulting from ~g is called coarsest SECP because all other SECPs are refinements of the
coarsest SECP.

2.5.2.2 MO-Partitioning

Note that two quiescent states s; and ss that differ only in the values of the input variables
s1|muo = s2|muo are always I/O-equivalent. This can be seen from the fact that applying any
input vector ¢ to these states will result in the same post state: s; ® {& — ¢} = so ® {T — ¢}.
s ® {Z — ¢} denotes the application of concrete input vector € to state s, which means that
all input variables are set according to the input vector while the model and output variables
remain unchanged. According to this, two quiescent states s; and so with the same valuation for
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2.5 Complete Model-Based Tests by Equivalence Class Partition Testing

model and output variables s1|pru0 = S2|pmuo, which will be denoted by s; ~yo $2, are always
I/O-equivalent; therefore, ~\o fulfills Equation 2.28.

Vs1,52 € Sg 1 81 ~MO S2 = 51 ~g 82 (2.29)

~no is an equivalence relation. Thus, the state space of reachable quiescent states can be
partitioned by ~no resulting in an equivalence class partitioning Sq/~yo- This partitioning is
an SECP, because ~yjo is a finer relation than (a refinement of) ~g. Consequently, the SECP
Amo = SfQ/NMO is a refinement of the coarsest SECP A, = SiQ/NS: Ano C A..

Example 13. Recall the RIOSTS Ss as defined in Example 12. The MO-Partitioning Ayo of
the reachable quiescent states in S, is as follows:

Amo ={ag, a1, az,a3} (2.30)
ap ={s € Sg|s(l) = L0, s(z) = 0} (2.31)
a; ={s € Sgls(l) = L1,s(z) = 1} (2.32)

={s € Sq|s(l) = L2,s(z) = 2} (2.33)
={s € Sq|s(l) = L3,s(z) = 0}. (2.34)

As seen in Example 12, the two states, s; = {& — 0,{ — L0,z — 0} and so = {z — 0,] —
L3,z — 0}, are I/O-equivalent, although s; ~po $2 does not hold. From the fact (1) that
s1 ~g s and the fact (2) that all ~yp-equivalent states are ~g-equivalent, the MO-classes of
s1 and so can be united, yielding a new equivalence class ag U a3 of states. The resulting SECP
is guaranteed to be an SECP. Indeed, the resulting SECP is the coarsest SECP for Ss.

Ac :{ao U ag,ap, a2} (235)

No coarser partitioning exists, as can be demonstrated by application of input &= (3). ag U as,
a; and ay produce the outputs (0), (1) and (2) respectively. Hence, all states from these classes
cannot be I/O-equivalent to any state from any other SEC.

2.5.2.3 RIOSTSs Equivalence

Two RIOSTSs S = (S, 50, R,V,D) and 8’ = (5, s/, R, V', D) are I/O-equivalent iff the initial
states are I/O-equivalent:

S~S8 59 ~s s (2.36)

Example 14. Recall the RIOSTS S defined in Example 9 and the RIOSTS S5 defined in
Example 12. Assuming that the initial state of S is so = {x +— 0,1 — L0, z — 0} and the initial
state of Sz is s1 = {x — 0,1 — L0,z — 0}. A close look at the transition relation of both
RIOSTSs reveals that both initial states are I/O-equivalent sy ~g s1; therefore, both RIOSTSs
are I/O-equivalent S ~ Ss.
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2.5.2.4 Input Equivalence

Two inputs, ¢; and ¢, are I/O-equivalent ¢;~;c if the same output is produced for every
reachable quiescent state when each of the two inputs is applied:

61N]€2 Vs € SfQI (5/51)|O = (3/82)|o (237)

Again, ~; is an equivalence relation and therefore the input domain can be partitioned to Dy/~,.

Note that every input equivalence relation ~;, C Dy x Dy that fulfills

51N]7.52 =Vs e SiQ: (5/51)|O = (8/52)|O (238)

is a refined equivalence relation of the I/O-equivalence relation ~; defined in Equation 2.37.
This implies that two inputs, ¢ and ¢, that are equivalent according to any refined equivalence
relation ~j, < ~; will always produce the same output when applied to any quiescent state s.

The partitioning of the input domain by any refined equivalence relation ~j, < ~j is called
Input Equivalence Class Partitioning (IECP) and will be be denoted by Z = Dy/~, .

Note that, for every IEC X € Z, two concrete inputs from this class, which are equivalent
according to the refined relation ~y,, will always produce the same output for every quiescent
state when each of the two inputs is applied, because ~j, is a refinement of ~j.

Every refinement Z’ of an IECP Z is again an IECP. This is denoted by Z' C Z. The IECP Z,
resulting from ~; is called the coarsest IECP, because all other IECPs are refinements of the
coarsest IECP.

Example 15. A precise look at the transition relation of Sy from Example 12 reveals that all
concrete inputs with z > 20 are equivalent. For example, & = (21) is I/O-equivalent to concrete
input 52 = (27) 51N]52.

The same applies to all concrete inputs with x > 10 A x < 20. Equally, all inputs with = <
10 A z # 0 are I/O-equivalent.

This observation leads to an IECP Z, of Ss.

T. ={Xo, X1, X2, X3} (2.39)
Xo ={(0)} (2.40)
X, ={¢e D;|¢=(z),z <10 Az #0} (2.41)
X, ={¢e D;l¢= (x),z > 10 Az <20} (2.42)
Xs ={¢€ D;|¢= (x),z > 20} (2.43)

This IECP is the coarsest IECP. Inputs from X cannot be I/O-equivalent to any input from X7,
since, for a state s from SEC as, concrete inputs from both classes produce different outputs:

(s2/(0)[o) = 0 # 2 = (s2/(7)]o)-
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The same argument applies for inputs from IECs X, and X5 and for inputs from Xy and Xjs:
(s2/(0)[o) =0 # 2 = (s2/(14)|0)

(s2/(0)[o) = 0 # 2 = (s2/(25)o).

Inputs from X; and X5 produce different outputs when applied to a state sg from SEC ag:
(s0/(T)]o) =0# 1= (s0/(14)|0).

The same argument applies for inputs from X; and Xj:

(s0/(T)lo) =0 # 2= (s0/(25)0).

Inputs from X5 and X3 produce different outputs when applied to a state s; from SEC ay:
(s1/(14)[7) =1 # 2 = (s1/(25)o).

A refined IECP 7’ C Z. could be the following:

T ={Xo, X1, X2, X3} (2.44)
Xo ={(0)} (2.45)
X, ={¢e Di|é=(z),z <10 Az £ 0} (2.46)

Xoo ={¢€ Dy|¢= (x),x > 10Nz < 15} (2.47)
Xop ={C€ Dy|¢= (z),z > 15 Az < 20} (2.48)
Xs ={¢€ D;|¢ = (x),z > 20}. (2.49)

2.5.2.5 FSM Abstraction of RIOSTSs

Given a RIOSTS S and two equivalence relations ~,.<~g and ~j, < ~j, where ~,. is a refinement
of the state I/O-equivalence relation ~g of S and ~,. is a refinement of the input I/O-equivalence
relation ~ of S, the SECP of this RIOSTS is A = Sg/~, and the IECP is T = Dy/., .

r

Let 6 : A xZ — A be a transition function. This function maps an SEC a and an IEC X to
a unique SEC that contains exactly the target quiescent states that result from applying the
concrete inputs from X to concrete states from a:

Vae A, Xe€ZI:Vseca,ceX:(s/c)ed(aX).

Furthermore, let w : A X Z — Do be an output function. This function maps SEC a and IEC
X to the output that is produced when applying any input from X to any state from a:

Vae A, Xe€TI:Vsca,ceX:(s/0)Y) =wa,X).

The authors in [HP16a] have proven that, for every RIOSTS S with finite domains for model and
output variables, there exists a finite SECP A, a finite IECP Z and well-defined functions 6 and
w. With these prerequisites at hand, S can be abstracted to a DFSM M = (A, ay,Z, Do, 0,w).
The SECs from A serve as the finite set of states of M; Z is the finite input alphabet and Do
is the output alphabet, which is finite by definition. 0 and w as defined above already provide
themselves as the transition and output function of M. The initial state of M is ag, which is the
SEC of the initial state sg of S: s¢ € ag.
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Example 16. Given the RIOSTS S, from Example 12 with SECP Ayo from Example 13 and
IECP I’ from Example 15, the transition function ¢ is defined by the following:

(a X) —{ ao,Xo

(
(
(
(

—ap, aOaXS

az, Xo

w(a, X) = {(ag, Xo) — (0), (ag, X1) — (0), (ag, X24) — (1), (ag, X2p) — (1), (ag, X3) — (2),
(a1, Xo) — (1), (a1, X1) — (1), (a1, X2q) — (1), (a1, Xap) — (1), (a1, X3) — (2),
(ag, Xo) — (0), (az, X1) — (2), (a2, X24) — (2), (a2, X2p) — (2), (a2, X3) — (2),
(as, Xo) — (0), (a3, X1) — (0), (a3, X2q) — (1), (a3, Xop) — (1), (a3, X3) — (2)}.

The FSM M for Ss is M = (Amo,a0,Z’, Do, 6, w). The state chart of M is shown in Figure 2.11.

Xo, X1, Xoq, Xop/1 X1, Xoa, Xop, X3/2

Oun®

Xoa, Xop/1

Xoa, Xop/1 X3/2

Xo0,X1/0 Xo0,X1/0

Figure 2.11: FSM of State Machine from Figure 2.10

2.5.2.6 Calculation of an Initial SECP

To obtain the FSM abstraction of a RIOSTS S, an initial SECP of the reachable quiescent
states is needed. This is calculated by reachability analysis using the predicate R describing the
transition relation of S.

All pairs of quiescent states (s, s2) that are reachable through a finite (possibly empty) sequence
of transient states v € St™ are collected R*(s1 - v - s2). These pairs will be called reachability
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pairs. To avoid infinitely many reachability pairs, the MO-equivalence relation is used. States
and state pairs (s1, s2) are abstracted to MO-equivalence classes a € Ayo. This yields pairs of
MO-equivalence classes (a;,a;) that represent concrete reachability pairs. These pairs will be
called reachability MO-pairs. Symbolic evaluation of R makes it possible to define predicates
o j over input variables that describe the condition for a concrete input to cause a transition
from a state in a; to a state in a;. For a pair of MO-classes a; and a; that is not a reachability
pair, let o, ; £ false.

For a RIOSTS S with finite domains for internal and output variables, the reachability analysis
will terminate, because Ano = S¢Q/~yo 18 finite.

Note that the reachability MO-pairs include pairs of the form (a;, a;) for every MO-class a; €
Awmo. In this case, ; ; describes the quiescence condition for MO-class a;.

The reachability MO-pairs (a;,a;) and the predicates «; ; can be used to define a transition-
relation predicate R of S in the so-called Index-Normal-Form (INF). To this end, let IDX =
{1,...,n} denote the indices of the state MO-classes Amo = Sg/~uo = {a1,...,an}. Each

state class a; is associated with concrete model variable values CZ; and concrete output variable
values €;. Thus, for all states in a;, all model variables m are set to d; and all output variables
i are set to €;. The INF is a predicate of the following form:

i€IDX
\/ Q5 5 A (mv?j) = ( :vgl) A (T?l/,:lj/) = (d_;>€J) (251)
i,j€IDX i#j

[HP16a] presents an approach to transforming a transition-relation predicate in arbitrary form
to a predicate in INF. Instead of this approach, we present our optimised reachability analysis in
Section 4.3.5.1. We will show that this reachability analysis can be used to efficiently calculate
an initial SECP and a transition-relation predicate in INF.

Example 17. Consider the RIOSTS S5 from Example 12 with SECP Ay depicted in Ex-
ample 13. Apo can be calculated by reachability analysis starting from initial state so = {x —
0, — L0,z — 0}. The first state MO-class is ag, as defined in Example 13. From this state, a;
and ay can be reached by inputs fulfilling predicates g 1 £ >10Az <20 and 0,2 £z > 20,
respectively. All inputs fulfilling o o £ 7 <10 lead from a state in ag to post states in the same
state MO-class.

From aj, a transition to states in as is possible by inputs fulfilling oy » £ 2 > 20, and transitions
to states from a; itself are performed by inputs described by a1 ; £ 1 < 20.

From as, transitions to a; and as are possible by inputs described by s 2 £ 2 #0and o3 =
x = 0, respectively.

From as, transitions to as, a; and ay are possible by inputs described by o 3 £z < 10,
az1 = x>10A 2 <20 and az s = x > 20, respectively.

The transition relation of Ss can be described by a predicate in INF:
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R, = oo A (1,2) = (0,0) A (I',2") = (0,0) (2.52)
v g A(Lz) = (L) AW, 2) =(1,1) (2.53)
v asa A(l,2)=(2,2)A(I',2") = (2,2) (2.54)
Y ass A (L z) = (3,00 A (I',2) = (3,0) (2.55)
v apa A (L z) = (0,0) A (I, 2') = (1,1) (2.56)
v apa A (L z) = (0,0) A (', 7)) = (2,2) (2.57)
Y ara A (Lz) = (L) AW, 2) = (2,2) (2.58)
% assA(l,2)=(2,2)A(l',2") = (3,0) (2.59)
v asq A(Lz) = (3,00 A (I, 2) = (1,1) (2.60)
v asa A (1, 2) = (3,00 A (I, 2) = (2,2). (2.61)

2.5.2.7 Calculation of IECPs

Given an initial SECP and a transition relation in INF, an initial IECP Z can be calculated. To
this end, consider all possible functions: f :IDX — IDX. If the predicate ®

oy £ /\ 7R10) (2.62)
1€IDX

has a solution, then the solution set of this predicate forms an IEC X; = {¢ € D;|®([c/Z]}.

[HP16a] gives a proof that the IECP Z = {Xy,,..., Xy, } composed of the solution sets of all
solvable predicates ®¢, is an IECP, as defined in Section 2.5.2.4.

In Section 4.3.5.2, we describe our algorithm to efficiently calculate the IECP, as defined above.

Note that the transition function § of the DFSM abstraction of a RIOSTS can be directly obtained
from the functions f : IDX — IDX. Given an IEC X, the target states can be obtained from f:
5(31, Xf) = af(i).

Example 18. Consider the RIOSTS S, from Example 12 and the transition-relation predicate
R, in INF, as defined in Example 17.

There are 256 possibilities for functions f : IDX — IDX.

From these possibilities, four functions result in predicates ®; with at least one solution:
fo={0—~0,1~1,2—33—3} &, 22<10Az2<20Az=0Az<10
fi={0~0,1~1,2—23—3} &, 22<10Az2<20Az#0Az <10
fo={0—1,1=1,2—23—1} &, 22>10A2<20A2<20Ax#0Ax>10Ax <20
f3={0—2,122—23—2} &, =22>20Az>20Az#0Az > 20.

For every other f : IDX — IDX, no solution exists. For example, for fy = {0 — 0,1 — 1,2 —
2,3 — 0} no solution for ®;, exists because az o = false.

For fs = {0+ 0,1+ 2,2+ 2,3 — 3} and the associated predicate @, L£2<10Az>20A2 #
Az < 10, no solution exists because x > 20 contradicts x < 10.
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Note that the IECP {X},, X¢,, Xy,, X7, } matches the IECP {X, X, X2, X3} presented in Ex-
ample 15.

2.5.2.8 Calculation of the Coarsest SECPs and IECPs

Given the initial SECP Ay and the initial IECP Z, a DFSM abstraction M = (A, ag,Z, Do, 0, w)
of the RIOSTS & can be obtained. Because of the use of MO-equivalence ~\o for the initial
SECP, this abstraction depends on the concrete syntactical model representation of S, since
internal model variables are considered for ~\;o equivalence. The internal model variables may
introduce redundant (i.e., I/O-equivalent) states in the DFSM.

However, any DFSM M can be minimised using Algorithm 1. The resulting minimal DFSM is
M = (A.,a},Z, Do, ,w"). The state set of this minimal DFSM is the coarsest SECP A, for S,
because in a minimal DFSM no two states with the same language exist. Therefore, no coarser
SECP can exist.

The IECP Z, which has been calculated initially, is dependent on MO-classes a € Ay (cf.
Section 2.5.2.7) and therefore is not guaranteed to be the coarsest IECP. There might exist two
IECs X1, X5 € T that produce the same output and target state for all states in M’. In this
case, inputs from both IECs are I/O-equivalent, according to Equation 2.37. We will denote this
fact as X1~ Xs:

Xi~iXy <= Vae A : 0 (a, X1) =6 (a, X2) A (a, X1) = w'(a, Xa). (2.63)

If X1~ X5, all members of X; and X5 are pairwise I/O-equivalent; therefore, the union X; U X5
is an IEC. The coarsest IECP Z,. can be obtained by successively uniting pairs of IECs that are
I/O-equivalent until no pairs of I/O-equivalent IECs remain.

The construction of 7. ensures maximal coarseness. Every pair of non-united IECs X; and
X cannot be I/O-equivalent, because X; and X5 produce either different outputs w’(a, X1) #
w'(a, X3) or lead to different target states §’(a, X1) # ¢'(a, X2) that must be non-I/O-equivalent
because of the minimality of M’.

Example 19. Consider the RIOSTS S3, whose behaviour is described by the state machine
shown in Figure 2.12. The MO-partitioning for Ss is as follows:

Amo ={ag, a1, as,as,as,a5} (2.64)
ag ={s € Sg|s(l) = L0, s(z) = 0} (2.65)
={s € Sq|s(l) =L1,s(z) = 1} (2.66)

={s € Sq[s(l) = L2,s(2) = 2} (2.67)

az ={s € Sqls(l) = L3, s(z) = 2} (2.68)
ay :{s € Sqls(l) = L4, s(z) = 0} (2.69)
={s € Sqls(l) = L5, s(z) = 1}. (2.70)
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)
[z > 20] L2

entry/z=1;

entry/z=0;

Figure 2.12: Example State Machine Describing the Behaviour of S3

The initial IECP that results from the application of the approach explained in Section 2.5.2.4
is as follows:

T ={Xo, X1, X, X3, X4, X5} (2.71)
Xo ={(0)} (2.72)
X1 ={(5)} (2.73)
Xy ={ce Djlc=(z),z <10Az #0Ax #5} (2.74)
X3 ={¢e€ Dj|¢=(x),z > 10 Az < 15} (2.75)
Xy ={¢e D;l¢= (z),z > 15 ANz <20} (2.76)
X5 ={¢ € D;|¢= (z),z > 20}. (2.77)

Most likely, it is not trivial to see whether Ao and Z are the coarsest partitionings. Figure 2.13
shows the DFSM abstraction M of S3. The minimal DFSM M’ that results from minimisation
of M is shown in Figure 2.13b. As can be seen from M’, the coarsest SECP for S3 is

Anio = {aoUay,a; Uag,as Uag}.
A precise look at M’ also reveals that, X;~;Xs and X3~;X,. Therefore, the coarsest IECP is
Z. = {X0, X1 U Xz, X3U Xy, X5}

2.5.3 Fault Domain and the Completeness Property

Recall the fault model F(M,~,D(m)) for DFSMs. The application of the W/Wp-method to
DFSMs guarantees completeness with respect to the fault domain D(m): All possible transfer
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Xo, X1, X2, X3, X4/1 X4, X5/2

. X1, Xo, X3, X4, X5/2
X5/2

XOlea X2/0

Xo,X2/0

(a) DFSM M
X07X17X27X37X4/1 X17X27X3;X47X5/2

Xo, X1,X52/0

(b) Minimal DFSM M’

Figure 2.13: DFSM Abstraction of S3
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and output faults are revealed by the application of test suites generated by W/Wp-method,
assuming that the SUT has at most m states in its minimal DFSM representation.

Definition 21 (Fault Model for RIOSTSs). Let F(S,<,D(S,m,Z)) be the fault model for a
RIOSTS S and a conformance relation <. In this work, we will use ~ as a conformance relation.

The fault domain for RIOSTS depends on parameters m and Z. 7 is any (refined) IECP of the
specification S that has been used as an input alphabet for the DFSM abstraction of S.

The fault domain contains all RIOSTSs J that fulfil the following conditions:

1. J uses the same input and output variables I U O with the same domains Dy and Dy as S

2. the initial states sy of S and so’ of J agree on the same input and output valuation:
solruo = so’|ruo

3. J is a deterministic RIOSTS with finite domain for internal and output variables
4. T has a correctly implemented reset operation

5. Let Z. be the coarsest IECP of S. Then, the coarsest IECP Z5 of J has to fulfil Equa-
tion 2.78.

6. the number of states in the minimal DFSM abstraction of J is at most m

VXs €T, X765 : XsN X34 0=3X' €T: X C XsN X5 (2.78)

The intuition of Equation 2.78 is as follows: a correct implementation will have a coarsest IECP
75 that matches the coarsest IECP Z. of S. However, an erroneous implementation might show
deviating behaviour from S only for a subset of some IEC. In this case, the coarsest IECPs
of § and J do not match. There will exist at least one non-empty intersection Xgs N X5 for
which the implementation shows erroneous behaviour in at least one system state. That is why
the condition states that, for every non-empty intersection of IECPs in the specification S and
in the implementation J, at least one member X’ of the IECP Z is needed that is completely
inside the intersection. In this case, the deviation of observable behavior in J can be revealed
by any concrete member of X’. In summary, the IECP Z used for test-case generation has to
be fine-grained enough to uncover faults in the implementation that result from mismatching
IECPs.

In [HP16a], the authors have shown that the W/Wp-method applied to the DFSM abstraction
of a RIOSTS with finite domain for internal and output variables is complete with respect to the
fault model F(S, <,D(S,m,Z)). This result builds the foundation for the testing methodology
implemented in this work. In Chapter 4, we use this result to implement a testing methodology
for RIOSTS.

First, let us conclude from the definitions and results presented in the previous paragraphs. An
important fact to note is that the fault domain (and therefore the test strength that is guaranteed
by our testing methodology) can be increased by refining the IECP used for DFSM abstraction
of §. This increases the size of the input alphabet and will therefore result in a polynomial
increase of the number of test cases that are generated using the W/Wp-method. This approach
will be presented in Section 4.3.1. Another way to enhance the fault domain is via increase of
the value for m. In this case, the testing effort increases exponentially, but the fault domain
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contains implementations with higher numbers of states. Both approaches greatly increase the
test effort of our approach. Therefore, we present heuristics that substitute the IECP refinement
(see Section 4.3.2) and the increase of m (see Section 4.3.4). While these heuristics represent best-
effort approaches and do not guarantee better test strength (the fault domain is not increased),
the number of tests that are generated is not increased; still, the evaluation (Chapter 6) will
confirm a higher test strength resulting from these heuristics when mutation analysis is used as
an evaluation means.

2.5.4 Independence on Syntactic Model Representations

Another property of our approach has been elaborated in [PH16]. Note that the coarsest SECP
and coarsest IECP that are calculated as described above are independent of the concrete syn-
tactic representation of a RIOSTS S. All semantically equivalent concrete descriptions of 8’ ~ S
will result in the same minimised DFSM abstraction, and determination of the coarsest IECP
will result in unique model representation that is based only on I/O-equivalence: i.e., on the
I/O-language of the system. The resulting test suite that is generated using the W/Wp-method
on the minimal DFSM abstraction is completely independent of the concrete behavioural descrip-
tion of S. This result has been presented and proven by the authors of [PH16]. Besides the main
advantage of the completeness with respect to a fault domain, our testing methodology offers
the advantage that the generated test suites are independent of a concrete system description.
According to this, it is guaranteed that the resulting test strength is not dependent on concrete
models. This is a main threat to validity that applies to all testing methodologies that rely solely
on a concrete syntactic representation of a system model. Our approach instead guarantees test
suites of equal test strength for all possible concrete descriptions of an SUT.
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3 Case Studies

In this chapter, we introduce the case studies that our approach is applied on. First we introduce
the Ceiling Speed Monitor which is part of the speed and distance monitoring function of ETCS
trains. Next, we introduce two case studies that model the behaviour of route controllers from
modern interlocking systems featuring sequential release. Finally, this sections concludes with a
last case study modelling an airbag controller.

3.1 Speed and Distance Monitoring of the European Train
Control System

WARNING

entry/
DMICmd=WARNING;
DMIdisplaySBI=true;

[Vest > Varsp + dVapi(Vairsp)]

SERVICE_ BRAKE

[Vest < Vmrsp)

[Vest > VMmrsp + dVwarning(VMrsp))

[Vest > Vmrsp]

——

|

[Vest < Vmrsp]

entry/

DMICmd=INTERVENTION;
DMIdisplaySBI=true;
TICmd=SERVICE BRAKE CMD;

l

NORMAL

entry/
DMICmd=NORMAL;
DMIdisplaySBI=false;
TICmd=NO_ CMD;

[Vest < Vmrsp]

OVERSPEED

entry/
DMICmd=0OVERSPEED;
DMIdisplaySBI=true;

[Vest = O]

_®

[Vest > Vamrsp + dVebi(Varsp)]

EMER_BRAKE |

entry/
DMICmd=INTERVENTION;
DMIdisplaySBI=true;
TICmd=EMER_BRAKE_CMD;

Figure 3.1: State Machine of the Ceiling Speed Monitor

Rationale Speed and distance monitoring is a main function of the EVC. This functionality
operates in different modes, as described in Section 2.1.3. One mode of the speed and distance
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monitoring function is the so-called ceiling speed mode. This mode is active when a train is
travelling on a route and not yet reaching its destination. In this mode, the velocity of the train
has to be supervised by the EVC. This functionality lends itself to our testing approach, as it is
easy to model: The input domain is conceptually of infinite size (the train’s current velocity and
the maximum allowed speed are analogue values) and yet are complex enough to demonstrate
the effectiveness of our approach.

While the train is in ceiling speed mode, the sub-component of the speed and distance monitoring
called CSM is active. The CSM constantly supervises the current train speed (indicated by
the system input variable Vig). If the speed exceeds the velocity that is prescribed by the
most restrictive speed profile (mrsp) that applies to the current train position (the allowed
velocity is indicated by system input variable Vijrsp), an intervention by the EVC is triggered.
The intervention level reaches from an optical indication to the train-driver to the automatic
activation of the train’s emergency brakes and depends on the limit violation.

SysMLState Machine The state machine shown in Figure 3.1 describes the behaviour of the
CSM. This state machine was first published in [HHP15]. The system initially resides in the
NORMAL location. As soon as the train exceeds the maximum allowed speed Vest > VMrsp,
the state machine transitions to location OVERSPEED. A graphical sign in the driver-machine
interface (DMI) indicates overspeeding to the train driver (output variable DMIdisplaySBI).
Furthermore, the DMI operates in different modes that depend on the intervention level of the
CSM. The DMI mode is determined by the CSM output variable DMICmd. If the train speed
exceeds the speed limit by the threshold dVyarning, the state machine enters location WARNING,
which results in a different DMI mode. As soon as the higher threshold dVg, is exceeded as
well, the location SERVICE_BRAKE is entered. Besides a change of the DMI mode, the train’s
service brakes are activated, which is indicated by output variable TICmd. A final threshold
dVepi exists. If this threshold is exceeded as well, the activation of the train’s emergency brakes
is triggered in state-machine location EMER_BRAKE. The intervention by CSM can only be
released when the train velocity is back in the allowed range Vest < Vamrsp. However, location
EMERGENCY_BRAKE can only be left when the train has completely stopped (Vest = 0).

The thresholds dVyarning, dVspi and dVepi depend on the speed limit.

dVuwarming is defined by the following step-function:

4 if Vimrsp < 110
dViarning = { 22 1 if 110 < Viyrsp < 140 (3.1)
5 if Vimrsp > 140.

dVgpi and dVeyp,; are defined by the following:

5.5 if Varrgp < 110
dVepi = < 0.045 - Virsp + 0.55  if 110 < Viyrsp < 210 (3.2)
10 if Vmrsp > 210
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7.5 if Vmrsp < 110
dVepi = < 0.075 - Virgp — 0.75  if 110 < Vyrsp < 210 (3.3)
15 if Vmrsp > 210.
Xo, X1/
Xo,X1/€p

Xo/én Xo, X3/

Xy/e3
Xo/

X5/é, - Xo,X1/é0

X1, X2, X3, X3, X5 /€4 e’ X2, X3, X4/63

Figure 3.2: DFSM Abstraction of the Ceiling Speed Monitor

DFSM Abstraction The DFSM abstraction of the CSM is shown in Figure 3.2. The output
vectors of the system—containing values for output variables DMIdisplaySBI, DMICmd and TICmd
in that order—are defined as follows:

éo =(false, NORMAL,NO_CMD) (3.4)
& =(true, OVERSPEED,NO_ CMD) (3.5)
€s =(true, WARNING,NO_ CMD) (3.6)
€3 =(true,INTERVENTION,SERVICE_BRAKE_ CMD) (3.7)
€y =(true,INTERVENTION,EMER_ BRAKE CMD). (3.8)
The coarsest SECP of the CSM is given as follows:
A. 2{ag,a;,a;,a3} (3.9)
ag ={s € Sg|(s(l) = NORMAL A s(¥) = &) V (s(l) = OVERSPEED A s(y) = €1)}  (3.10)
a; ={s € Sg|s(l) = WARNING A s(y) = é2} (3.11)
as ={s € Sg|s(l) = SERVICE_BRAKE A s(7)) = &} (3.12)
a3 ={s € Sg|s(l) = EMER_BRAKE A s(y) = €4} (3.13)

The coarsest IECP Z. is illustrated in Figure 3.3.

71



3 Case Studies

T ={Xo, X1, X2, X3, X4, X5} (3.14)
Xo ={¢ € Dr|¢= (Vest; Vmrsp), Vest = 0} (3.15)
X1 ={¢€ Dr|¢ = (Vest, VMRsP); Vest # 0 A Vest < Vmrsp} (3.16)
Xy ={¢€ D;|¢= (Vest, Vmrsp)s Vest # 0 A Vst > VMrsp (3.17)

A Vest < Vamrsp + dVwarning(Varsp) } (3.18)
X3 ={c € Dr|¢= (Vest, VMRSP), Vest # 0 A Vest > Virsp + dVuwarning(VMRsP) (3.19)

A Vest < Vumrsp + dVebi(Varsp) (3.20)
X4 ={C€ D;|€= (Vest, VMRsP); Vest # 0 A Vest > Vamrsp + dVspi(Varsp) (3.21)

A Vest < Varsp + dVepi(Vamrse) } (3.22)
X5 ={c € Dr|c = (Vest, VMRSP), Vest # 0 A Vest > Varsp + dVewi(Varsp) (3.23)

200 +

Vest

150 +

100 +

Xo

100 120 140 160 180 200 220 240
VrMrsp

Figure 3.3: Coarsest IECP of the Ceiling Speed Monitor

3.2 A Route-Based Interlocking System Featuring Sequential
Release

Rationale Section 4.2 presents an approach for MBT of route controllers. A route controller is
a sub-system in an interlocking system which is responsible for the allocation, setting and release
of exactly one route in a route-based interlocking system. The route controller has to adhere to
the interlocking principles described in Section 2.1.2.2.

The behaviour of the route controller can be described by a SysML state machine. Section 4.2.4
presents a state-machine template that describes the behaviour of a route controller of an arbit-
rary route in a modern interlocking system including the feature of sequential release. Figure 4.4
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shows this state-machine template. All route controllers of a specific route differ only in the
operations that are used in the state-machine template. This allows for the generic behavioural
description of the interlocking principles. For a specific route, the concrete behaviour can be
instantiated. This will then be used for the test-case generation.

This work uses two concrete route controllers of two specific routes. The first route is a route from
the railway network shown in Figure 2.1. From this network, we choose Route 7 as defined in
the interlocking table in Table 2.1. This case study is denoted by Route 2011 (example network)
in the remainder. This is the route from marker board mb20 to mb11. As a second case study,
we choose a more complex real-world example: namely, Route 12a from the Danish train station
in Lyngby. The network of this train station shown in Figure 3.4 is taken from [Vul5]. The
interlocking table excerpt shown in Table 3.1 has been generated using the route-table generator
from [Vul5]. We use Route 12a as our second interlocking system case study and call this route
Route 12a (Lyngby) in the following.

mb31 mb32 mb35
| 1L 11 IL 11 11 ..
b3o|_d t30 " t31 t32 . t33 t34 " b34
mb30 mb33 mb34
mb20
I i} i |
20 ' t21 |—ﬂ 22
mb21
mb11 /‘ mb12 mb15
i} il if i | i i
b10 |—ﬂ t10 t11 t12 |—ﬂ t13 t14 b14
mb10 mb1l3 mbl4

Figure 3.4: Railway Network of Lyngby Train Station in Denmark Taken from [Vul5]

id src dst path points signals conflicts
12a mb30 mb21 t30;t31;t20;t21 mb20;mb31 ;mb32 1;2a;2b;5;
tll:p;t13:p; 6a;6b;7a;7b;
t20:p;t31:m; 8a;8b;9a;9b;
t33:p 10a;10b;11;
12b;13;16a;
16b

Table 3.1: Excerpt from the Interlocking Table of Lyngby Train Station

Both case studies have been used in previous mutation experiments published in [PHH16a]. Note
that the state machine used in this work differs slightly from the models used in [PHH16a]. First,
the state-machine template presented in Section 4.2.4 uses a more comprehensive approach that
uses one state machine location OCCUPIED instead of several locations as used in [PHH16a].
Second, the check for safety violations has been improved to avoid spurious safety violations that
might arise from the interaction of multiple route controllers.

DFSM Abstraction Although both cases studies, Route 2011 (example network) and Route
12a (Lyngby), use similar state machines, cf. Section 4.2.4, the state space of both models differs
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because of different variable spaces and the different complexities of the respective routes.

The DFSM abstraction of Route 2011 (example network) consists of an input alphabet containing
31 IECs and of 8 SECs in minimised form. Compared to this, the coarsest IECP of Route 12a
(Lyngby) is composed of 72 IECs and the coarsest SECP contains 17 SECs.

The difference in the size of the DFSM is mainly reasoned by the size of the routes: i.e., the
number of path elements of the route. The higher the number of path elements, the more
internal-state combinations in location OCCUPIED are possible.

3.3 Airbag Controller

Rationale A model from the automotive domain concludes our list of case studies. This model
is clock-driven, as is the case for a variety of embedded systems. The airbag-controller model
that is described by the state machine from Figure 3.5 models an embedded controller for a
passenger airbag in a car. The airbag system is a crucial means to ensure passenger safety. This
system needs to fulfil high availability constraints. It has to guarantee (up to a certain degree of
confidence) that the airbag is activated when a crash situation is recognised by the controller. For
the detection of a crash situation, acceleration sensors are used. However, accidental activation
of the airbag (which might be caused by erroneous sensor data) has to be prevented, as erroneous
activation of the airbag is in most cases very hazardous. Therefore, the system uses redundant
sensor information to reduce the probability of unintended airbag activation by faulty sensor
data. Additionally, the redundant sensor information allows for the detection of defective sensors,
which is crucial to meeting the high-availability constraints of an airbag system.

Thus, the airbag controller uses two redundant acceleration sensors, indicated by the system
inputs s1 and s2, to detect crash situations. Based on these inputs, the controller has to decide
whether the airbag shall be fired or not (indicated by output fire), and it has to detect defect
sensors. A defect of a sensor has to be indicated (by output defect); in this case, airbag firing
shall be deactivated.

SysML State Machine The state machine describing the behaviour of the airbag controller
is depicted in Figure 3.5. This state machine was first published in [HHP15]. The following
description of the state machine has been taken with slight modifications from [HHP15]. The
system reads the sensor values sl and s2 cyclically on every rising and falling edge (input t).
Both sensor values are checked for plausibility. The sensor values are considered plausible if the
value of Sensor 1 (s1) does not exceed or drop below the value of Sensor 2 (s2) by more than
five percent: i.e., sl € [0.95-s2,1.05 -s2]. If the sensor values are plausible and an acceleration
greater than 3 - go' is measured in three consecutive cycles, the airbag is fired. This is done by
setting output variable fire to one. If instead the sensor values are implausible, internal variable
error__ctr is incremented. This variable holds the number of implausible measurements, and if
it reaches a value equal to three, the output variable defect is set to one, causing a shutdown
of the complete airbag system and activating the service lamp to indicate a sensor defect of the
airbag. After at least three consecutive cycles with plausible sensor values, the internal variable
error ctr is reset.

1The acceleration is measured as a factor of gg, where gg denotes the standard acceleration due to gravity.
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DFSM Abstraction The minimal DFSM abstraction of the airbag controller contains 44 states.

Figure 3.6 gives a rough idea of the DFSM.

The coarsest IECP of the airbag controller is as follows:

T, ={Xo, X1, X2, X3, X4, X5}
Xo ={(s1,52,t) € Dy|s1 > 3As2>3Asl >0.95-52Asl < 1.05-s2At = 0}
X7 ={(s1,s2,t) € Dy|sl >3As2>3Asl >095-52As1 <1.05-s2At=1}
Xo ={(s1,s2,t) € Dy|(s1 <3Vs2<3)As81>0.95-52As81 <1.05-s2At=0}
X5 ={(s1,s2,t) € Dy|(s1 <3Vs2<3)As81>0.95-52A81<1.05-s2At=1}
Xy ={(s1,52,t) € Dy|(s1 < 0.95-52 Vsl > 1.05-52) A t = 0}

={( ) (

X5 ={(s1,s2,t) € Dy|(s1 <0.95-s2V sl >1.05-s2) At =1}

(0]
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Figure 3.5: State Machine of the Airbag Controller.



3.3 Airbag Controller

Figure 3.6: Sketch of the DFSM Abstraction of the Airbag Controller
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Figure 4.1: Nlustration of the Testing Methodology

Figure 4.1 illustrates the context of our proposed testing methodology. For the verification of
railway systems, we propose the use of MBT—especially the ECPT approach introduced in Sec-
tion 2.5. The test model needed for our ECPT will usually be derived from requirements by
a test engineer. However, for the special case of formal modelling of interlocking systems, we
propose an approach that is based on a formal generic model of modern route-based interlock-
ing systems. This generic model, which can be used to derive a concrete formal model of an
interlocking system of a concrete railway network, is based on the work of [VHP17]. This formal
model, originally used for the proof of safety properties, can be used to automatically derive a
test model for HSI tests of route-controller components of the interlocking system. This will be
described in detail in the next section. The result of this step is a concrete test model describ-
ing the behaviour of a concrete route controller as in the case studies of Route 2011 (example
network) and Route 12a (Lyngby) previously presented in Chapter 3.

Regardless of how a test model is derived, whether from requirements or in case of interlocking
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systems from a generic formal model, test-case generation is performed using our implementation
of the ECPT approach. Section 4.3 details our implementation and extensions of the approach
based on the fundamentals first laid out in [HP13]. The extensions are used to ensure that the
approach is applicable to SUTs in the context of black-box tests where membership in a formal
fault domain can neither be proven nor expected. To prove that our approach is able to detect
faults with a high probability—especially in the context of HSI and system tests—we present
a novel mutation-analysis approach in Chapter 5. The experimental results obtained by this
approach are given in Chapter 6.

4.2 Formal Modelling of Interlocking Systems

[VHP17] presents an approach to the modelling and verification of modern route-based interlock-
ing systems (including the feature of sequential release). In this work, interlocking systems are
described by their generic behaviour (expressed in an DSL), which is independent of the concrete
railway network under consideration. This generic behaviour formally describes the interlocking
principles (cf. Section 2.1.2.2) that are used by concrete interlocking systems. The concrete
railway network and interlocking tables are considered configuration data, which is described in
another DSL. Combining generic behaviour and configuration data, the behaviour of a concrete
interlocking system is instantiated, resulting in a formal description of concrete interlocking sys-
tem behaviour. The resulting system can be verified using formal methods. The authors in
[VHP17] perform an approach called k-induction that is based on bounded model checking. This
approach allows for the verification of safety properties. The absence of safety hazards in the
concrete formal model can be proven automatically.

The advantage of the approach proposed in [VHP17] is that, once a generic behavioural model
is specified, it can be instantiated with arbitrary configuration data. This clearly reduces the
modelling effort for the specification of interlocking systems. In our approach, we want to use
this approach with a generic behavioural model of interlocking systems to automatically extract
a formal model of route-controller behaviours from configuration data. This generated model of
a route-controller behaviour can, in turn, be used for MBT.

4.2.1 Compositional Reasoning Applied to Interlocking Systems

As described in Section 2.1.2. an interlocking system is responsible for ensuring the safe operation
of trains traversing the railway network over pre-defined routes. In Section 2.1.2.2, we described
the operational principles for a single route in the interlocking system. Because every route in
a route-based interlocking system performs the same generic behaviour, it seems natural that
the implementation of an interlocking system is, among other things, comprised of separate
components for each single route. Such a controlling component, which is responsible for a single
route in an interlocking system, will be called route-controller component (or route controller in
abbreviated form) in the remainder of this manuscript.

For the MBT of interlocking systems, it seems promising to first verify the correctness of each
route controller in isolation. Given the correctness of the single route controllers, the correctness
of the overall system is verified afterwards. This imposes a natural integration test level for
interlocking systems.
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Figure 4.2: Interlocking System, Interfaces and Internal Structure

The technique of compositional reasoning is well known in model checking (see [BCCI7]). It
is one of the main techniques used to mitigate the state-explosion problem. In compositional
reasoning, the system’s components Ci, ..., (), are considered in isolation. From the properties
of the sub-components, properties of the composite system can be inferred (automatically). If
the specification of the composite system can be inferred completely from the specification of the
components and how these components interact, the system is compositional. In this case, the
correctness of the overall system can be verified by verifying all sub-components in isolation.

In this work, we assume that interlocking systems composed of route-controller components are
compositional. Note that several design principles and technical measures are used to enforce
compositionality. Nonetheless, compositionality is hard to prove. Therefore, standards for the
verification of safety-critical systems [Eur01, RTC92, ECS09] usually require tests at different
integration levels. In particular, the fully integrated system has to be verified by system tests. For
the application of MBT to route controllers, we assume that the interlocking system architecture
is similar to the architecture shown in Figure 4.2.

The interlocking system is composed of different route-controller components 1...n. Every
route-controller component is responsible for exactly one route, as specified in the interlocking
table. All route-controller components share the same data from the data pool. The route-
controller components together with the data pool form the route layer, which is responsible for
the allocation of a requested route, prevention of simultaneous allocation of conflicting routes,
sequential release and cancelling of routes. To do all of this, it requires several inputs from the
system environment: route request and cancellation commands, occupancy states, point positions
and marker-board states are inputs to the interlocking system. The system in turn outputs point-
position commands and marker-board commands. In case some safety condition is violated, this
fact is communicated through a special output indicating safety violations. Interlocking systems
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Figure 4.3: Route Controller Sub-component Interfaces

are highly distributed systems. Therefore, a special layer called hardware abstraction layer (HAL)
is used to process the network interfaces of the system. The HAL receives route requests and
cancellation commands, occupancy states and point and marker-board status updates. The
received input is written into the data pool to be processed by the route-controller components.
Every route-controller component processes route requests, cancellation commands and element
states from the data pool and updates its route state and track-side element commands in the
data pool. Following this, the HAL reads the data pool updates and sends point position and
marker-board commands to its output interface. Every route controller supervises some local
safety conditions; for example, it detects unintended switches of points on the route or illegal
train movements. In this case, a safety violation is output and the system transitions to a fail-safe
state (all marker boards are set to HALT).

Moreover, an additional safety monitor is needed, because some safety conditions cannot be
supervised locally by a route controller. For example, train movements in elements currently not
locked by any route have to be detected on a higher-level layer. Other safety conditions to be
supervised on a system level include the following: Elements must not be locked by more than
one route-controller component at a time, different route controllers must not give contradicting
commands to the same element, points that are not locked must not be commanded to switch
their positions, and marker boards must not be commanded to PASS unless the route controller
of a route starting at the marker board is in the LOCKED state.
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4.2.2 Route-Controller Component Interfaces

Figure 4.3 gives an overview of the input and output interfaces of route-controller components.
The inputs to the route controller are defined by the functions A, o, 7, @ and p. The outputs of
the route controller are described by the functions X, x and fi. These outputs are complemented
by an output variable for the state of the route-controller component 7 and output variable error
indicating that a local safety condition of this route controller is violated. Note that we do not
list all input I and output variables O in the remainder but instead use functions to describe
the mapping of variables from I and O to their values. Thus, the functions described in the
remainder of this section can be considered a set of input/output variables. The definitions of
guard conditions and effects, which are given below, describe how these variables are evaluated
or updated, respectively.

Let E denote the set of all path elements of the route under consideration. A path element e € FE
is by definition a detection section, which is a point or a linear section. Let P, C E denote the
path points: i.e., the subset of path elements of type point. Let Py denote the set of protecting
points of the route providing flank protection. Path points and protecting points are collectively
denoted P = P, U P;.

A: EUP; — B is a function mapping all path elements and protecting points to a boolean value
that is true iff the element is locked by any other route.

o : E — B is a function mapping the path elements to their occupancy status: a boolean value
that is true iff the detection section is occupied.

7 : C = {FREE,MARKED,ALLOCATING,LOCKED,OCCUPIED,ERROR} maps every con-
flicting route from the set of conflicting routes C to its current state.

a : P — {PLUS,MINUS} U {L} maps every point to its current position and 5 : P —
{PLUS,MINUS} maps every point to the position that is requested for the route according
to the route table column points.

) : E — B is a function mapping path elements to true iff the path element is currently locked
by this route.

k : P — {PLUS,MINUS} U { L} maps a point p to a value from {PLUS, MINUS} if this route
currently commands a concrete position for p. x(p) = L indicates that this route currently does
not command any position for point p.

M denotes the set of marker boards that are relevant to the route under consideration. This
includes the protecting marker boards S C M listed in column signals used for flank and front
protection and the source (mgy) and destination signal (mgest) of the route.

Input function p : S — {PASS,HALT} U { L} maps every protecting marker board m € S to
its current status. Output function g : M — {PASS,HALT} U { L} maps marker board m to a
value from {PASS, HALT} if this marker board is currently commanded a specific signal aspect
by this route. fi(m) = L indicates that this route currently does not command any signal aspect
for m.
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4.2.3 Generic Behaviour of Route Controllers
The generic behaviour of route controllers was informally introduced in Section 2.1.2.2. This
generic behaviour can be described by a state-machine template, as depicted in Figure 4.4. The

grey parts in Figure 4.4 are dependant on the concrete configuration data. The behaviour of
these parts is explained below.

4.2.4 Extraction of Local Behavior

The predicate no_conflict is defined as follows:

no_ conflict = /\ (A(e) = false A o(e) = false)A (4.1)
ecE
)\ (7(¢) ¢ {ALLOCATING, LOCKED})A (4.2)
ceC
A\ (Mpy) = false v a(ps) = B(py))- (4.3)
psEPy

No conflict for the route exists if all path elements are vacant and not locked by any other route,
if none of the conflicting routes is in state ALLOCATING or LOCKED and if all protecting
points are either not locked (and can therefore be switched to the requested position) or the
current position of these protecting points is already the requested position.

When entering the location ALLOCATING, the update functions lock_path_ elements, com-
mand__points and command__mbs are called.

The effect of lock path_elements (denoted by X(lock path elements)) is as follows:

Y (lock_path_elements) :\ := A @ {e + true|e € E}. (4.4)

f @ g denotes the update of function f by partial function g: f ® g(x) is g(z) if € dom(g) and
f(z) otherwise. The effect of lock path_elements is that all path elements are locked by this
route.

Y (command_ points) :x := k& {p — B(p)|p € P} (4.5)

The effect of command_ points is that every point from the interlocking table column points for
this route is commanded to its required position.

Y(command mbs) :fi := i & {m — HALT|m € S} (4.6)

The effect of command_mbs is that all protecting signals are commanded to the signal aspect
HALT.
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ALLOCATING
[lcancel() -&& entry/
‘ MARKED no_ conflicts() | lock_path_elements() ;
‘ command__points() ;
command_mbs() ;
[request ()] [cancel()] [lcancel()&&
all_elements_in_ correct_pos() ]
\ FREE [cancel()]
entry/
reset_ defaults() ; [cancel()] LOCKED
entry/

[rear >=IA next vacant() |/

seq_release() ;

[ next_occupied() ]/
front=front+1;

front=1;rear=1;

OCCUPIED

[rear < IA next vacant() ]/

seq_release() ;
rear=rear—+1;

front=0; rear=0;
command_ src(PASS) ;
exit/
command_src(HALT) ;

release_protection() ;

[ lcancel() && next occupied() | /

[ !cancel() && safety violation() |

\ ERROR \
entry/

fail safe();

f

[ safety_ violation() ]

Figure 4.4: State Machine Template for Route Controllers
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The predicate all__elements_in_ correct_ pos is defined as follows:

all_elements_in_ correct_pos = /\ (a(p) = B(p))A (4.7)
peEP
N\ (n(m) = HALT). (4.8)
mes

all_elements_in_correct_ pos is true if all points of table column points for the considered route
are in the correct position and all protecting marker boards show the aspect HALT.

Y (command_src(a)) :fp = @ B {mge — a} (4.9)

The effect of operation command_src for a given signal aspect a € {PASS,HALT} is that the
source signal of this route is commanded to show the signal aspect a.

Y(release protection) :k := k & {py — L|ps € Py}, (4.10)

p=p®{m— Lime S} (4.11)

Operation releaseprotection suspends all commands to protecting signals and protecting points.

Location OCCUPIED models all legal train movements and the sequential release of freed ele-
ments. Again, the grey parts of the template are dependant on configuration data from the
interlocking table. The following paragraphs describe these route-specific parts.

Let ey, es, ..., e; be the path elements of the route in the order these elements are traversed
on the route. In location OCCUPIED, the variable front shall contain the maximum 4 fulfilling
o(e;) = true. That is, front describes the index of the path element the front of the train
resides in. Note that an ¢ with o(e;) = true always exists as long as the route controller resides
in location OCCUPIED. Accordingly, the variable rear shall hold the minimal index 4 fulfilling
o(e;) = true. Hence, rear is the index of the path element containing the rear of the train or
the index of the first element of the route if the train has not yet entered the route completely.
If the front of train has not yet entered the route (location LOCKED), front = rear = 0. The
value of variable front is updated as soon as next_ occupied becomes true.

next_ occupied £ (front < I A o (egqont+1) = true) A —safety violation (4.12)
Operation next_ occupied can be defined as the check of whether the next path element (efront+1)

neighbouring the current path element addressed by front (egont) is occupied. This check is only
to be performed if no safety violation exists. The check for safety violations is described below.

next_ vacant = (0(epear) = false) A —safety violation A —mext_ occupied (4.13)
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Variable rear is updated as soon as the path element that has contained the trains rear so far
becomes vacant and if no safety violation is present. The term —mext_occupied is included to
make the state machine deterministic.

X = A® {erear — false}, k := £ ® {€rear — L} if €rear € P

by I . — 4.14
(seq_release) {)\ ‘= A @ {€rear — false} else ( )

Operation seq_release implements the sequential release of elements that have just become va-
cant. Note that the call of seq_release and the update of rear are performed in an action of one
transition. According to the UML semantics, actions are performed atomically. Thus, €y, in
the equation above is the path element which has just been freed. Operation seq release causes
the route controller to release the lock on éyeay; in addition, the position commands of released
points are suspended.

safety violation = \/ (o(e;) = true)V (4.15)
1€ [front+2,1]

\/ (o(e;) = false)Vv (4.16)

i€ [rear+1,front]

(front = rear A rear > 0 Arear < I A o(€rear) = false)V (4.17)
V (Ap) = true A alp) # 5(p)) (4.18)
PEPy

Safety violations due to unexpected train movements are noticed by operation safety_ violation.
This operation is based on assumptions of valid train movements. The assumptions are inspired
by the “rubber-band model”[AT12] for the implicit modelling of train movements. It is assumed
that no sudden jumps of the front or the rear of the train can happen, no holes in the train are
allowed, and the train is not allowed to change its direction on the route. Equation 4.15 checks
for sudden jumps of the front of the train, while Equation 4.16 checks for safety violations that
may result from holes in the train, sudden jumps of the rear or a train rolling back. Equation 4.17
evaluates to true if the train vanishes. If the front and rear of the train reside in one detection
section but not the last detection section, the vacancy status of this section is not allowed to
change to vacant before the front has entered the next detection section. Furthermore, a safety
violation can be triggered by unintended point switches (Equation 4.18). If a point of the route
switches its position while it is still locked, this is considered a safety violation.

Y(reset_defaults) :\ := A @ {e — falsele € E}, (4.19)
ki=rk®{p— Llpe P} (4.20)
p=p®&{mr— Lim € SVm € {Mmgc, Mdest | } (4.21)

The effect of reset_ defaults is that all path elements of the route are unlocked (released) and
all commands to points and marker boards are suspended. When entering location FREE from
location OCCUPIED the only change in X is the locking state of the last path element. All other
elements have been released before due to sequential release.
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Y (fail_safe) :error := true, i := g @ {m — HALT|m € SV m € {mgsrc, Mdest } } (4.22)

Operation fail_safe sets output variable error and commands every marker board to HALT.

Output variable 7 is implicitly updated to a value from {FREE,MARKED,ALLOCATING,
LOCKED,OCCUPIED,ERROR} whenever the state machine location changes.

4.3 Equivalence Class Partition Testing

The testing approach we present and evaluate in this work is based on the ECPT approach
introduced in Section 2.5. This approach, whose workflow is illustrated in Figure 4.5, starts
from a given formal model of an SUT. In our case, this model is specified as a SysML model.
The behavioural part of the model is defined by state machines. The semantics of these state
machines, as introduced in Section 2.2.1, can be expressed by RIOSTSs. For our approach, we
require the model and output variables to have a finite domain.

Starting from the intermediate model representation as a RIOSTS, we apply the DFSM ab-
straction. The final DFSM is used for the generation of abstract test cases on DFSM level.
Therefore, the W or Wp-method is applied. From the resulting abstract test cases, concrete
test cases are derived by selection of concrete input vectors from the IECs. Concrete inputs
of an IEC X are calculated by solving the predicate ®x that describes X with a Satisfiability
Modulo Theories (SMT) solver. Following the original approach, as proposed in [HP16a], one
fixed value for each IEC is selected. However, first experiments have shown that this approach
leads to relatively low fault-detection capabilities when applied to SUTs that are outside the fault
domain of our approach. A solution to this would be an increase of the fault domain, to finally
ensure that the SUT is in the fault domain. The fault domain can be increased by refining the
IECP used for test-case generation. This measure is described in Section 4.3.1. Unfortunately,
the refinement of an IECP results in additional test cases. Therefore, Section 4.3.2 presents an
alternative approach that is based on a randomisation of the concrete input selection from IECs.
By random selection of multiple values from an IEC instead of one fixed representative, the test
strength is increased, as is demonstrated by our experiments (see Chapter 6). Combined with
boundary-value selection (Section 4.3.3), the test strength can be further improved. This results
in a heuristic, which is denoted by STRAT-3 in our experiment and which we propose as a best
practice for the use of the ECPT approach. This heuristic allows for a significant increase of test
strength without increasing the number of test cases or test steps. Section 4.3.4 discusses how to
detect SUT errors that are not covered by our fault domain because of additional states in the
SUT. While these can naturally be covered by increasing parameter m in the Wp/W-method, the
exponential explosion of the number of test cases resulting from increasing m has to be avoided.
Therefore, we propose heuristics that aim at the exploration of additional states by longer test
sequences but without increasing the number of test cases.

The whole workflow, as illustrated in Figure 4.5, has been implemented by the author as part of
RTT-MBT: the MBT component of the test automation tool RT-Tester developed by Verified
Systems International GmbH!. The workflow is fully automated in our tool, and several com-
mand line options make it possible to configure test-case generation: e.g., use of W/Wp-method,

Thttps://www.verified.de
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Figure 4.5: Workflow of the ECPT Approach
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enable/disable use of boundary values, enable random test generation, specify target language
(i.e., JUnit or SystemC tests). Some implementation considerations are detailed in Section 4.3.5.
We think that these are necessary to guarantee that the test generation scales up for complex
systems.

4.3.1 Refinement of Input Equivalence Classes

As shown in Section 2.5.3, the fault domain of our testing approach depends on the IECP that
is used as an input alphabet for the DFSM. The coarsest IECP Z. surely results in a smaller
fault domain than any refined IECP Z C Z.. In the following, we present approaches to refine
the IECP Z, to obtain a greater fault domain and in turn a better test strength. Note that every
refinement of the IECP 7 used for test-case generation results in an increase in the number of
test cases. This is because the transition cover used by the W/Wp-method and the number of
subsequences used for the exploration of additional states is increased if the input alphabet X;
of a DFSM is increased.

4.3.1.1 Interval Bisection

An approach to refining the IECP is to use interval bisection. Every equivalence class partitioning
can always be refined by systematically dividing the input domain. The bisection operator
introduced in Section 4.3.2.3 can be used. This operator iteratively bisects Dj. Therefore, the
input domain is considered a box: i.e., an interval vector. The bisection splits a box to two child
boxes. Each resulting child box is bisected again in the next iteration. n iterations result in 2"
subboxes of D; of equal size. These 2" boxes partition D; to a partitioning denoted by Dy /an.
To obtain a refined IECP Z from the coarsest IECP Z, of the SUT using interval bisection, both
partitions Dj/o» and Z. have to be intersected. Every non-empty intersection of classes from
Dy/on and Z, becomes a member of the IECP Z we are looking for.

I:{XmeileED[/Qn,XiEIC,XbﬂXi#Q)} (423)

Interval bisection offers a means to systematically refine an IECP. This way, an IECP can be
refined without limit (in case of a finite D the bisection terminates as soon as all refined IECs
are singletons); thus, the fault domain can be increased without limit. This ensures that the
probability that the SUT IECP fulfills Equation 2.78 converges to 100 percent. Of course,
this drastically increases the testing effort. The number of subboxes increases exponentially
with every bisection, and the number of test cases generated by the W/Wp-method increases
exponentially by the number of IECs to the power of the number of additional states a. Thus,
the number of test cases in relation to the number of bisections n grows with O((2™)).

4.3.1.2 Requirement-Based Refinement

Interval bisection is an approach that can be fully automated and that makes it possible to get
arbitrarily close to a refined IECP that fulfills Equation 2.78. However, interval bisection is
somehow blind and usually is infeasible because of the exponential complexity.
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An alternative to IECP refinement is an approach that we call requirement-based refinement.
Usually, the requirements of an SUT are more restrictive than the coarsest IECP that is generated
from a test model. We therefore propose to refine the coarsest IECP 7. by using explicit case
distinctions from the requirements. To this end, we suppose that it is possible to define predicates
over input variables for these case distinctions C' = {¢1,...,¢n}.

A requirement-based refinement Z C Z. can then be calculated as follows:

I={{cexINcEon N\ éF¢HX e, cCC) (4.24)
pEec @’ eC\c

Intuitively, all inputs from an IEC of Z, fulfilling the same predicates from C are collected in the
same refined IEC.

Example 20. Consider, for example, the CSM case study (Section 3.1). The CSM requirements
specification [UNT12] contains different requirements describing the condition for a transition to
location WARNING. The current train speed Vis; has to exceed the allowed speed Vyrsp at
least by a Viyrsp dependent threshold dVyarming(Vmrsp). This threshold can be described by
three different requirements (cf. Equation 3.1):

1. if Viyrsp < 110, the threshold is 4;
2. if Vursp € [110,140], the threshold is “MBESE 4 1 and
3. if Vmrsp > 140, the threshold is 5.

These three case distinctions are not reflected by the IECP Z, shown in Equation 3.14. There,
all inputs causing a transition to location WARNING are condensed in the IEC Xj:

X3 :{56 -DI|E: (V;:sta VMRSP)7 V;:st 7& 0A ‘/;st > VMRSP + dearning(VMRSP) (425)
A Vest < Vrsp + dVepi(Varsp) }- (4.26)

Selection of one fixed representative from this class, e.g., @ = (Vest, Vmrsp) = (104.2,100) leads
to an input that will not be able to detect errors in the implementation in all but one of the
aforementioned requirements.

If we use C' = {Vmrsp < 110, Vyrsp < 140}, we get three refined IECs from X3:

X3, ={¢ € D;|¢= (Vest, VmrsP), Vest # 0 A Vegt > Vamrsp + dVwarning(Vmrsp) (4.27)
A Vest < Varsp + dVei(Varsp) A Vursp < 110} (4.28)
X3, ={¢ € D;|¢= (Vest; Vmrsp)s Vest # 0 A Vet > Varrsp + dViarning (Varsp) (4.29)
A Vest < Varsp + dVspi(Varse) A Vursp > 110 A Vyrsp < 140} (4.30)
X3, ={c€ D|¢= (Vest, VMrsP)s Vest # 0 A Vst > Vairsp + dViarning (Varsp) (4.31)
A Vest < VMrsp + dVebi(Vmrsp) A Vmrsp > 140}. (4.32)

The refined IECs are suitable to check all three case distinctions from the requirements related
to transitions to the WARNING location.
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Note that the requirement-based refinement most likely needs a kind of user interaction. The
predicates C' = {¢1,...,¢n} manually have to be extracted from the specification, as require-
ments are usually semi-formally described—most likely in verbatim text. Once the predicates are
given, the refinement can be fully automated. We implemented this refinement in our ECPT
approach and expect the predicates as a user-defined input.

4.3.2 Randomisation of Concrete Input Selection

The original ECPT as presented in [HP13] assumes a fixed representative from each IEC of the
IECP used for test-case generation. This is based on hypotheses about the SUT—especially the
hypothesis that the SUT is a member of the fault domain, as introduced in Section 2.5.3. This
implies that the IECP used for test-case generation is adequate for testing: i.e., that all inputs
of an TEC are equally suited to cause the test case to fail if applied to an SUT with an TECP
that deviates from the IECP of the test model but fulfills Equation 2.78.

If the SUT is outside the fault domain, the use of a fixed representative from each IEC may be
unfavorable. In the following paragraphs, we demonstrate that the use of multiple different input
values from each IEC yields a higher fault-detection probability whenever the SUT is outside the
fault domain because the SUT has an IECP that violates Equation 2.78.

Therefore, we combine our ECPT approach with random testing as follows: (1) We apply the
I/O-equivalence abstraction to the RIOSTS to obtain a DFSM abstraction of the SUT. On this
DFSM, we apply the W/Wp-method to obtain a finite set of symbolic test cases. These symbolic
test cases are described by sequences of IECs, which are the input symbols of the DFSM. (2)
Instead of using one fixed representative from each IEC to obtain concrete inputs (and in turn
a concrete test suite), we select multiple concrete inputs from each IEC. Whenever an TEC X
appears in the IEC sequence of a symbolic test case, a new random value that is a member of X
is selected. This strategy is denoted STRAT-2 in our experiments in Chapter 6. Because each
IEC is referenced in the symbolic test suite more than once, this results in a better coverage of
the whole input domain than can be obtained using fixed representatives. In the remainder of
this subsection, we demonstrate why the use of randomisation is justified and how the selection
of multiple values can be implemented.

4.3.2.1 Justification for Randomisation

The randomisation of input selection aims at higher fault coverage for SUTs that are outside the
fault domain. Assuming that a system violates Equation 2.78 (property 5 of Definition 21), the
IECP used for test-case generation is not adequate for the test of the SUT.

For simplicity, we assume that the SUT shares the same SECP as the test model. We further
assume that, for a single IEC X € Z. of the coarsest IECP of the test model, a subset Xy of
inputs exists. All inputs from this subset, and only inputs from this subset, provoke an error

in the SUT (i.e., a transfer or output fault) when applied to any of the states from exactly one
reachable SEC ay € A..

In this case, the probability Ppja,,x to detect this error in a test step-denoted by event D,
given that the test step starts in a state in ay and uses a concrete input from X, denoted by
event ay A X—is given by
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| Xl
Pplasax = |Xf| . (4.33)

By construction, the probability of detecting the error in a test step that does not start from a
concrete state in ay or does not use a concrete input from X, denoted by —(ay A X), is zero:

Ppj-(a;ax) = 0. (4.34)

For a strategy in which exactly one fixed representative is chosen for each IEC, the probability of

detecting an error as constructed above is Ppja,ax = % This is independent of the number

of test cases and test steps.

If a random input is selected from each IEC X whenever an input of X is needed, the overall
probability of detecting the error as constructed above is given by the following term:

1= (1= Ppja;ax)", (4.35)

where n is the number of test steps starting from a state in a; and using a concrete input from
X. Obviously, the fault-detection probability is greatly increased for large values of n. Note
that n differs for all pairwise combinations of SECs and IECs. To guarantee a minimal n for all
combinations, one could add extra test cases to ensure that, for each SEC/IEC combination, at
least n test steps exist in the test suite. Given that an assumption of the minimal size of Xy is
possible, it is possible, using Equation 4.35, to calculate the “confidence level” of the concrete
input selection: i.e., the probability of detecting errors that result from mismatches in SUT and
test model IECPs. Alternatively, a value for n can be calculated to fulfil a prescribed confidence
level, which might depend on the system criticality. This n can in turn be used to extend the
test suite as described above.

Note that the calculations above are based on some assumptions. First of all, the SUT is assumed
to have the same SECP as the reference model. When relaxing this assumption, two cases have
to be considered. In case the SECP of the implementation has more SECs than the number of
maximal SECs m assumed for test-case generation, it must be expected that the error will not
be detected. In case the number of SECs of the implementation is less or equal to m, an error
might be expected to be detectable with a probability that is higher than the term shown in
Equation 4.35-because additional inconsistencies mean additional errors and more errors are in
general easier to detect. But this assumption is not always true, as we discuss in Chapter 7 in
the context of high-order mutation testing. The combination of errors can result in situations in
which multiple errors in combination are harder to detect than single errors in isolation would
be. However, we expect that, in most cases, the randomisation of concrete input selection will
result in a higher test strength.
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4.3.2.2 Completeness Properties for Randomised Concrete Input Selection

Section 2.5.3 introduced the fault model F(S,<,D(S,m,I)) for our approach. Recall that
[HP16a] proves that the application of the W/Wp-method to the DFSM abstraction of the
SUT—with expected behaviour captured by a RIOSTS S-results in a test suite that is complete
with respect to the fault model. However, the results in [HP16a] rely on the fact that the concrete
test suite for S is obtained by selecting one representative for each IEC from Z. Unfortunately,
the completeness property of the testing approach is not preserved if different random elements
of an TEC are selected each time a candidate from this IEC is needed. This is based on the fact
that the IECP Z used for test-case generation and fulfilling the properties stated in Definition 21
is not necessarily an IECP of the SUT. However, the W/Wp-method relies on the application
of input sequences from the characterisation set to identify the target states of input sequences
applied to the system’s initial state. However, different randomised concrete input sequences
obtained from the same sequence of IECs may put the SUT into different target states if Z is not
an IECP of the SUT. Under specific conditions, this may lead to situations in which erroneous
SUTs from the fault domain are not rejected by the generated test suite.

The completeness property of the testing approach can be preserved if the test suite is created as
proposed in [PHH18]. Therefore, the set of Wp-method test cases is first applied with the choice
of fixed representatives from each IEC; afterwards, the same set of test cases is applied by using
randomised inputs from the IECs. Thus, in effect, two test suites are applied: one test suite
with fixed representatives ensuring completeness and one test suite with randomised values to
increase test strength for SUTs outside the fault domain. Obviously, this approach needs twice
as many test cases.

For our experiments, we do intentionally not use this approach but simply apply the randomised
Wp-method tests to keep the number of test cases constant.? However, this randomised test
suite, while not preserving the completeness for F(S, <, D(S,m,Z)) as defined in Section 2.5.3,
still guarantees completeness for a generalised fault model F(S, <, D(S,m,Z)) obtained when
Definition 21 is reformulated as follows:

Let Z be the IECP used for test-case generation which needs to be an IECP of the test model S.
A RIOSTS &’ is part of the fault domain if it fulfills properties 1-4 and 6 of Definition 21 and Z
is an IECP of &’ as well.

The completeness of the randomised approach with respect to this generalised fault model has
been proven in [HP16D].

4.3.2.3 Implementation of Randomisation

The randomisation of concrete input selection imposes a challenge on the test data generation.
The main challenge is caused by the complexity of the SMT solver used to calculate concrete
inputs from the IECs described by first-order logic predicates. Since SMT solvers rely on Boolean
Satisfiability Problem (SAT) solvers which are proven to be NP-complete, these solvers in most
cases belong to NP or even higher-complexity classes [Monl6]. Hence, the number of SMT
instances to be solved during test data generation should be reduced. The randomisation coun-
teracts the objective of reducing the number of SMT instances. Every concrete value has to be
calculated by solving an SMT instance. Thus, the runtime of the test data generation largely

2In preparation of the experimental results published in [[IH1P17] we observed that the mutation score is hardly
ever affected if the test cases are doubled using one fixed test suite and one randomised test suite.
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depends on the number of concrete inputs that are calculated. In the following paragraphs, we
discuss two different implementations for concrete input-data selection and afterwards present
an alternative means to calculate concrete input data by interval analysis. This alternative ap-
proach offers the advantage that no SMT solver is needed; but we will show that this approach is
not applicable to all input equivalence classes. All different selection approaches have been im-
plemented in our implementation of the ECPT approach and are competitively used to calculate
multiple concrete inputs of IECs as quickly as possible.

4.3.2.3.1 Negation of Existing Solutions A natural approach to generate different solutions
for the same SMT instance—in our case for the same predicate ® x describing an IECis to re-run
the SMT solver multiple times. On each execution, all assignments o1, ...,0;,_1 that have been
returned by the SMT solver so far have to be excluded from the search space. Thus, the i-th
concrete input from IEC X can be calculated by solving the following SMT instance:

i—1
ox A\ o (4.36)
j=1

Using this approach, it is possible to generate all possible solutions of ®x. Note that this
approach is analogous to the All-SAT problem. The obvious drawback of this method is that the
size of the SMT instance grows linearly in the number of inputs that are generated. Because SMT
is known to be NP-complete, the worst-case runtime of existing SMT solvers grows exponentially
in the size of the SMT instance. Another flaw of this approach can arise the SMT solver returns
“adjacent” solutions every time it is called. Randomisation aims at a good distribution of values.
Hence, solutions that differ as much as possible are favoured over concrete input vectors that
are adjacent. The experiments indicate that this problem is not apparent. Our SMT solver uses
a conflict-driven SAT solver (see the next paragraphs). The nature of this SAT solver induces
an acceptable distribution of values, because conflict clauses and propagation ensure that more
than one bit is changed when excluding one total assignment.

4.3.2.3.2 Randomisation of the SAT solver As can be seen in the previous paragraph, the
negation of existing solutions might evoke an exponential explosion of the runtime if many
concrete inputs are needed.

We therefore implemented an alternative approach which is based on a randomisation of the SAT
solver that is used. Our SMT solver SONOLAR uses the SAT solver MINISAT [ES03].

MINISAT is a conflict-driven SAT solver based on the famous DPLL algorithm from [DLL62]. A
general explanation of the algorithm used by MINISAT is given in Algorithm 4. The algorithm is
taken from [ES03], with slight adaptions regarding the notation. For more details on MINISAT,
refer to [ES03].

MINISAT has been randomized by manipulating the behavior of Line 8 in Algorithm 4. The call
to DECIDE() selects the next variable to be assigned and the value to be used for the assignment.
This is the part of the SAT solver algorithm that performs the search of the state space. MINISAT
and SAT solvers use heuristics to decide which variables and values to choose. These heuristics
are important instruments which make SAT solving efficient. To generate different solutions,
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Algorithm 4 Conflict-driven SAT solver

Input: F(z1,...,x,) as boolean function
Output: Assignment o for x1,...,x,, or UNSAT if not satisfiable
1: function SOLVESAT

2 while true do

3 PROPAGATE( ) > performs unit propagation, completing the assignment o
4 if not conflict then

5 if all variables assigned in o then

6: return o > F' is satisfiable, return assignment
7 else

8 DECIDE( ) > extends assignment o by selecting next variable and value
9: end if

10: else

11: ANALYZE( ) > analyzes conflict and adds conflict clause
12: if top-level conflict then

13: return UNSAT > F' is unsatisfiable
14: else

15: BACKTRACK( ) > undo assignments until conflict clause is unit
16: end if

17: end if

18: end while

19: end function

we replaced the heuristics by a Pseudo Random Number Generator (PRNG). The rest of the
algorithm is unchanged.

This approach does not increase the size of the SAT instance for successive runs and thus does
not suffer from the exponential growth of runtime due to larger problem instances. Otherwise,
the circumvention of the heuristics can cause significant disadvantages for the overall runtime
of many SAT instances. SAT solver branching heuristics are able to significantly reduce the
runtime for a wide range of SAT instances, as has been shown in [Sil99, MMZT01, LGPC16].

Replacing these heuristics by an PRNG might thus reduce the overall performance and make the
advantages of a constant-sized SAT instance obsolete. We expect this strategy to be superior
to the strategy proposed before, which is based on the negation of existing solutions, if a large
number of concrete solutions is to be generated.

4.3.2.3.3 Interval Analysis To overcome issues resulting from the complexity of SMT solving,
we implemented an alternative approach based on interval analysis. This approach uses the
Set-Inverter-Via-Interval-Analysis (SIVIA) algorithm originally presented in [JW93a, JW93b].
This algorithm can be used to calculate inner-approximations of IECs. The approximations
are represented as regular subpavings: a compact data structure to represent sets as a union
of interval vectors. Given a regular subpaving, an PRNG can be used to efficiently calculate
concrete values from these inner-approximations.

We will shortly introduce the notions and notations needed to understand the SIVIA algorithm.
We use the notations from [JKDWO01]. For a thorough introduction to interval analysis, we refer
to [JKDWO1].
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[x] is called interval real or merely interval if [z] is a connected subset of R. In this work, we
consider only closed intervals notated as [x] = [z,Z]. Closed intervals include their endpoints x
and Z. z is called lower bound of [z] and Z is called upper bound of [x]. The width w([z]) of an
interval [z] = [z, 7] is defined as w([z]) =7 — z.

An interval real vector [x] is a subset of R™ and can be defined as the Cartesian product of n
interval components:

[x] = [x1] X [®2] X ... X [2p]. (4.37)

In the remainder of this work, an interval real vector will be called box. The width of a box is
defined as the sum of each component’s width.

The definitions above can be applied to the boolean domain as well. An interval boolean is a
subset of B. There are exactly four possible interval booleans IB = {0, 0, 1, [0, 1]}.

Note that the intervals and boxes we introduced are a special case of a set of wrappers: IX is
called a set of wrappers for X if IX is a set of subsets of X, IX contains at least each singleton of
X and IX is closed by intersection.

The smallest wrapper [X'] of X’ C X is the smallest element of the set of wrappers IX that
contains [X']. Applied to intervals, the smallest wrapper of a subset X’ is the smallest closed
interval that contains all elements of X'. For example, consider the set X' = {4.2,5.6,7.8} as a
subset of R. The smallest wrapper for X' is [4.2, 7.8].

Every binary operator ¢ : X x Y — Z with sets of wrappers IX, IY and IZ can be extended to
sets of wrappers:

Xl[O]Yl = [{fEl <>£E2|£L'1 S X17y1 € Yl}], (438)

with X; € IX and Y; € IV.

The same applies to arbitrary functions f : X — Y:

[F1X1) = {f (@)z € X4}, (4.39)

Note that the wrapped versions of binary operators and functions always introduce pessimism:

X1 [O]Yl D Xj0oYy (440)
[F1(X1) D f(Xy). (4.41)

The wrapped image of a binary operator or a function is a superset of the direct image of the op-
erator (X;0Y; = {x1 0 zo|z1 € X1,y1 € Y1}) or function (f(X;) = {f(z)|z € X1}), respectively.
The pessimism is caused by the wrapping and dependency effects.
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Equation 4.38 gives rise to an extension of the four arithmetic operators +, —, -, / for intervals.
This allows for interval computation. For example, [1.2,3.0][+][0.5,4.2] yields [1.7,7.2]. As a
consequence, every arithmetical expression can be computed at intervals, although the pessimism
introduced by the wrapping and dependency effects over-approximates the set of solutions.

A test is a function t : R™ — B. An inclusion test [t] for t has to fulfil the following properties:

[t](x]) =1=Vx € [x]:t(x)
[t]([x]) =0=V¥x € [x] : t(x)

1
0. (4.43)

Inclusion tests can be used to characterize sets. For a set X, the test t is defined as t(z) < (z €
X). If X is a subset of R, the inclusion test [t] can be obtained by the use of the wrapped versions
of binary operators.

A subpaving of a box [x] C R™ is a union of non-overlapping subboxes of [x]. A subpaving is
called finite if it contains finitely many subboxes. Subpavings offer a means for the description of
arbitrary compact sets of R™. Finite subpavings can be used to over-approximate any compact
set X in R”: ie., X € X. Furthermore, the approximation X can be chosen to be as close to X
as desired. Close, in this case, is defined using the distance function mi,s for compact sets, as
proposed in [JW93b]. For every full compact set (i.e., a compact set that equals the closure of
its interior), an inner-approximation X C X can be defined as well-again as close to X as desired.

Regular subpavings are a special kind of subpavings. A regular subpaving can be obtained by
bisection and selection. Bisection is the process of dividing a box [x] into its left child (denoted
L[x]) and right child (denoted R[x]). The left and right child of a box [x] = [z1] x ... X [z;] X

. X [x,] are obtained by bisecting the first interval component [z;] = [z;,7;] with maximum
width. The left child of [x] is L{x] = [z1] x ... x [z, (z; +75)/2] x ... x [z,] and the right child
is R[x] = [z1] x ... x [(z; +75)/2,75] X ... X [2a]

Algorithm 5 shows the SIVIA algorithm as presented in [JKDWO01]. This algorithm calculates
an inner and outer-approximation of a set X, which is characterized by a test function t, such
that X € X ¢ X. This algorithm gets as input the test function t, a box [x] and an € that
determines the precision of the SIVIA algorithm. [x] is initially set to a value that is guaranteed
to contain the set X to be characterised. This parameter can be considered the search space of the
SIVIA algorithm. Recursively, this box [x] is refined by bisection. The bisection is performed
until one of the following conditions hold: (1) [x] is completely outside X. In this case, the
recursion terminates with no further action. (2) [x] is completely inside X. In this case, the
recursion terminates and [x] is added to the subpavings X and X. (3) The size of [x] is less than
e. In this case, the recursion terminates and [x] is added to the outer-approximation since some
members of [x] are members of X. € is a parameter that determines how close the inner and
outer approximations are to X and on the other hand how many recursions are needed before
SIVIA terminates.

For concrete input selection, we choose a test function tx : Dy — B for every IEC X defined as
a mapping from concrete inputs ¢ € Dy to a boolean value indicating whether ¢ is member of
the IEC X:

1 ifceX
0 else.

tx(0) :{
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Algorithm 5 SIVIA with inclusion test, cf. [JKDWO0I]
Input: t,[x], €

Inout: X, X
1: function SIVIA
2: if [t]([x]) = 0 then > [x] is completely outside X: [x]NX =0
3: return
4: end if
5: if [t]([x]) =1 then > [x] is completely inside X: [x] C X
6: X:=XU [X]
7: X :=XU[x]
8: return
9: end if > [x] is undetermined: [x]NX £ DA [x] ¢ X
10: if w([x]) < € then
11: X:=XU[x]
12: return
13: end if

14: SIVIA(t, L[x], ¢, X,X)
15: SIVIA(t, R[x], €, X, X)
16: end function

tx can be calculated for a given concrete input ¢ given that IEC X is described by a first-order
logic predicate ®x over input variables I. First, every occurrence of an input variable in ® x is
replaced by the value, as given by & Then the resulting predicate ® x[¢(v)/v € I] is an expression
of constant values that can be evaluated. If the expression evaluates to true, ¢ is a member of
X.

The wrapped inclusion test [t] of t can be calculated by use of interval computation. Every
occurrence of an arithmetical operator ¢ in the predicate ®x is replaced by the wrapped version
[¢] using interval computation. Every occurrence of a boolean operator is replaced by the interval
counterpart, as shown below:

[B1][A][B2] =[{b1 A b2|b1 € [B1],bs € [Ba]}] (4.44)
[B1][V][B2] =[{b1 V b2|b1 € [B1],bs € [Ba]}] (4.45)
[FI[B1] ={1 = b1|b1 € [B1]}. (4.46)

Note that all definitions used above for intervals and boxes are based on real numbers from R.
The properties of intervals are preserved when natural numbers or integral data types like int,
char, ...are used. The input domain of the SUTs considered in this work can be considered a
“mixed” box: Each component of the interval vector is from the domain D, of the respective
input variable z. For integer variables, the interval computation can be performed using integer
arithmetics.

The SIVIA algorithm shown above with the wrapped test function for an IEC X that is ob-
tained by the use of interval computation for the predicate ® x can be used to calculate regular
subpavings that describe the inner and outer approximation of X. The initial box used for the
SIVIA algorithm is the complete input domain Dj of the SUT.
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The authors in [JKDWO01] give an upper-bound for the number of bisections that are performed
by SIVIA:

(w(LXD + 1)n . (4.47)

Hence, the complexity of the SIVIA approach depends exponentially on the number of variables
n. For concrete input-data selection, this means the number of input variables of the system.
Furthermore, the worst-case complexity is dependent on @ Assuming a fixed number of
input variables n, there remains a high polynomial complexity class. While w([x]) cannot be
changed, the choice of € can reduce the computational costs of the SIVIA approach. On the
other hand, increasing € might result in a loss of precision leading to an inner-approximation
which misses parts that are necessary for higher fault coverage.

Note, however, that the upper-bound shown in Equation 4.47 is just a worst-case estimate. In
many cases, the exponential complexity might not become apparent. Additionally, once the
subpavings are generated using the SIVIA algorithm, concrete inputs can be selected using
PRNGs. To this end, boxes from the subpaving are randomly chosen. For a chosen box, a
concrete input can be calculated by choosing random values from the interval of each component
of the box. The runtime of this input selection is linear in the number of input variables. Thus,
the computational overhead of calculating a large number of concrete inputs is relaxed if the
calculation of an inner-approximation is possible within time constraints. The overall runtime
Tcis(m) needed for selecting m different input values using SIVIA is the sum of the runtime for
SIVIA plus the runtime of each input selection using a PRNG:

Teis(m) = Tsrvia +m - TprNG- (4.48)

In contrast, the overall runtime T{;q(m) needed by the SMT solver for selecting m different
concrete values can be estimated by the following:

TEis(m) = m - Tsnr. (4.49)

This estimate assumes a constant time Tgyr for every SMT solver call. In practice, this will
not be the case; as discussed in the paragraphs above, the runtime will most likely be worse.
Assuming that input selection from a sub-paving using a PRNG is much faster than an SMT
solver call for all but the most trivial cases (Tprng < TsmT), there will always be a value m for
which the SIVIA approach is faster than an SMT approach: Tcig(m) < T¢g(m).

Example 21. Consider an IEC X defined by predicate ®x:
Py=y<a’—2-22—-25-24+55A Ay>x—2Ay<—3-z+10.

Figure 4.6 visualises the SIVIA algorithm on X. Figure 4.6a shows the set that is described by
® . Figure 4.6b displays the subpaving that is generated using the SIVIA algorithm with an e of
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0.05. The resulting inner-approximation consists of 1059 boxes. The outer-approximation shown
in Figure 4.6¢c contains 2666 boxes. Note that the inner-approximation that is generated using
e = 0.5 and shown in Figure 4.6d contains merely 56 boxes. While the runtime of the SIVIA
algorithm is much lower in this case, the lack of precision results in an approximation that does
not cover the area around the local minimum of the polynomial of degree three. All members of
X with a value for x that is greater than 1.25 are not covered by the subpaving.
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Figure 4.6: Visualisation of the SIVIA Algorithm

4.3.3 Boundary-Value Selection
4.3.3.1 Integrating Boundary-value Selection to the ECPT Approach

Boundary-value tests are a well-known testing heuristic and also mandated by safety-related
standards [RTC92, Eur01, ECS09]. This is based on the fact that extreme values of equivalence
classes are known to reveal more errors (at least errors of a certain type) than interior values
of equivalence classes. It is trivial to see that errors resulting from the wrong use of relational
operators (e.g., confusion of < with <) will only be detected by a value that lies on the boundary
that is defined by such a wrongly implemented inequality. [Rei97] provides evidence for the
superiority of boundary-value analysis.
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Therefore, we propose to augment the equivalence class approach by boundary-value testing.
This can be achieved by two means: by IECP refinement, or by guiding the concrete input
selection. IECP refinement can be used to distinguish between an equivalence class’ interior and
a boundary. The idea is to refine each IEC X by two IECs 9(X) and J(X), 9(X) containing
the boundary or frontier of X and J(X) containing the interior of X. The frontier of X is
intuitively defined as the collection of all members that have at least one neighbouring value that
is outside X. The other possibility is to combine boundary-value selection with the randomisation
introduced above. We combine both approaches as follows: Whenever a value from an IEC X is
needed in a symbolic test case, select a value from the boundary of the IEC with a probability of
50 percent and from the interior of the IEC again with a probability of 50 percent. The selection
from the interior and frontier is randomised as presented above. This ensures a reasonable
distribution of random values from the IEC. Selecting values from the boundary would miss only
certain faults that are not detectable on the boundary of an IEC.? However, selecting arbitrary
values from an IEC will most likely result in many values from the interior of an IEC and only
a few values from the boundary, as the frontier of an IEC is in most cases smaller and thus less
likely to be covered. This strategy—i.e., the random selection of values from the boundary and
from the interior of an IEC with a probability of 50 percent each—is denoted STRAT-3 in our
experiments in Chapter 6.

We believe that this approach is, in most cases, favourable over the IECP refinement be-
cause [ECP refinement would result in a doubling of the number of IECs. Considering stricter
boundary-coverage criteria, as given in [KLPU04], the number of TECs would grow by an even
higher factor. Instead, the boundary selection in combination with the randomisation does not
affect either the number of IECs or the size of the resulting test suites.

Following [KLPUO04], boundary values can be formalised for continuous domains. Let X C R™.
A value A = (aq,...,a,) € X is a boundary value if for every ¢ > 0 the ball B.(A) of radius €
and center A contains at least one point of R™ \ X:

A(X)={A € X|Ve >0,3B € B(A): BeR"\ X}. (4.50)

In case of discrete domains (i.e., X C Z"), [KLPUO04] defines the discrete neighbourhood of a
value A = (a1,...,a,) € X as V(A) = {A, (a1 +1,...,apn),...,(a1,...,ap+1)}. Avalue A€ X
is a boundary value if at least one value of its discrete neighbourhood V' (A) is outside of X:

AX)={Ae X|3BeV(A):BeZ"\ X}. (4.51)

The interior J(X) of X is then defined as J(X) = X \ 9(X).

Note that the definition of the discrete neighbourhood is not only defined for integers but for
variables of the floating-point data types float and double, according to IEEE 754. In this
case, the discrete neighbour of a floating-point variable is the next higher or lower value that
can be represented by data type float or double. Thus, the definition for boundary values
given in Equation 4.51 can be generalised to float and double. Furthermore, this definition
can be extended to boolean variables, given that true and false can be interpreted as 1 and 0,
respectively (i.e., B ={0,1} C Z).

3Consider for example the confusion of relational operator < by >. This error will not be revealed by a boundary
value.
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4.3.3.2 Implementation of Boundary-value Selection

For the implementation of boundary-value selection from an IEC X, we are especially interested
in inequalities. Note that these inequalities are not necessarily linear inequalities, as the use of an
SMT solver allows for arbitrary complex predicates. We assume that our IEC X is defined by a
first-order logic predicate ® x that contains subformulae of the form ¢ £ f(z1,...,z,) < 0, where
f(z1,...,z,) is a formula over variables x1, ..., z,. Furthermore, assume that this inequality is
not implied by other predicates: i.e., that at least one input ¢ € X exists that does not fulfil ¢:
CE ®x ACFE ¢ or, in other words, that ® defines a segment of the frontier of X. It is obvious to
see that values that lie on this segment (i.e., inputs that fulfil 9f(x1,...,z,) = 0) are boundary
values. Formula f(z1,...,2,) =0, which we derived from ¢ by replacing < by =, is denoted by
Of(x1,...,x,) or ¢ in the remainder. Thus, 9¢ is a sufficient condition for & to be a boundary
value of ¢. The same applies for the analogous case in which ¢ has the form f(z1,...,2,) > 0.
In this case, J¢ is defined as shown in Equation 4.52.

8f(.131,...,1‘n) S
Of(x1,...,xp) >

) =

) =0 (4.52)
éf(:cl,...,acn):() ’

For the discrete case in which the variables are of integer or floating-point type, we can specify
the sufficient condition d¢ for a boundary value of inequalities involving < and >, as shown in
Equation 4.53.

Of (1, y2n) <02 f(z1,...,20)
Of (x1,...,2n) > 02 f(z1,...,2,)

d(0)
si(0)

|
Vo)

(4.53)

sd(x) denotes the smallest decrement (i.e., next lower representable value), and si(z) denotes the
smallest increment (i.e., the next higher representable value). In case of an integer variable z,
sd(z) is given by z — 1 if « is greater than the smallest representable value of the concrete integer
type. For a floating-point variable, this value is the next lower representable floating point value,
as specified by IEEE 754. The smallest increment si(z) is defined analogously.

For the continuous case, i.e., z1,...,z, € R, there is no boundary value for a formula of the
form f(z1,...,2,) < 0 because there will always a smaller e for which the ball B.(¢) will only
contain values that fulfil f(zq,...,z,) <O0.

To summarise the observations above, given an IEC X described by a predicate ®x = ¢AAL_; &5,
where the ¢; are formulae of one of the forms introduced above and ¢ is of arbitrary form, the
boundary values can be selected by solving the predicate 0®x as defined by Equation 4.54 with
0J¢; as defined above.

0Px £ dx A (\n/ 0¢;) (4.54)

i=1

Note that, for discrete variable domains, Equation 4.54 may have no solution. However, this
fact does not mean that no boundary values exist. Consider, for example, an inequality ¢ £
22 —26 < 0 over integer variable z. d¢ = 22 —26 = 0 has no integer solution. However, constraint
programming/optimisation techniques could be used to obtain the boundary value x = 5 in this
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special case.* Thus, our approach using an SMT solver and Equation 4.54 does not guarantee
that we will find all boundary values; but the solutions found are guaranteed to be boundary
values. Note that, for our case studies, we were able to generate boundary values for all IECs.
In many cases, it is possible to get boundary values by reformulation of predicates—such as by
changing the above predicate to 22 — 25 < 0, which is semantically equivalent for the integer
domain.

To randomly select boundary values by solving Equation 4.54, interval selection cannot be used
because of the “narrow nature” of boundaries. However, for the selection of interior values,
interval analysis is in many cases still applicable.

Example 22. Consider the IEC X described by the predicate @y =y < 2% —2- 22 - 25 -2 +
55N Ny —x > —-2Ay < -3 2+ 10, as introduced in Example 21. The following conditions for
boundary values can be identified:

dy<a®—2-22-25.2+55=y=a>-2-22—-25-24+55
oy —x>-2=y—x=si(-2)
y<-3-z+10=y=-3-z+ 10.

Thus, boundary values can be obtained by solving the following:

Py AN(y=2°—2-22—-25-2+55V
y—x = si(—2)V
y=—3-z+ 10).

Examples for solutions (in the form of (x,y)) are (1,2), (0.5, —2.4999998) and (2.75,1.75).

The considerations above can reasonably be used for the calculation of boundary values for parts
of the TEC frontier, where integer or floating values are involved. However, for boolean input
variables, the definitions from above are of limited use. Therefore, we follow the boundary-
value definition given in [PHH16b] to calculate boundary values for predicates including boolean
variables:

oz =z (4.55)

Oz & - (4.56)
0—p & ONNF(—yp) (4.57)
A(p A ¢) = () AO(0) (4.58)
AV ¢) = (0(p) A=9) V (¢ A D(9)). (4.59)

For formulae containing a boolean variable z, an assignment of x = true is a boundary value,
since a change of the value of = will result in the formula evaluating to false (Equation 4.55). The

4However, this boundary value will not detect any defects related to the confusion of < and < in z2 — 26 < 0.
In fact replacing < by < or 26 by any integer constant from [25,35] yiels I/O-equivalent mutants.
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same argument applies to —x (Equation 4.56). Formulae of the form — have to be reformulated
to the negation normal form, denoted by NNF(—y) (Equation 4.57). Then the two last rules
(Equation 4.58 Equation 4.59) can be used to obtain boundary values from formulae containing
A and V. The intuition behind Equation 4.59 is that for a boundary value ¢ of ¢ V ¢, according
to Equation 4.51, the evaluation of ¢V ¢ has to change to false if one component of the boundary
value ¢ is changed. This is the case for all values ¢ that either do not fulfil ¢ and are a boundary
value for ¢ or that do not fulfil ¢ and are a boundary value of ¢.

Example 23. Consider the IEC defined by predicate ®x = a A (bV ¢) over boolean variables a,
b, c. Boundary values for this IEC are calculated as follows:

AaN(bVe)=0dand(bVe) Equation 4.58
=aN0bVe) Equation 4.55
=aA ((0(b) A—=c)V (mbAI(c))) Equation 4.59
=aA((bA-c)V(mbAc)) Equation 4.55

Note from the example above, that the final boundary predicate is the Modified Condition/De-
cision Coverage (MC/DC) condition of the original predicate. Hence, the MC/DC condition of
a predicate that involves boolean variables only can be considered the boundary value condition.

To summarise, we use Equation 4.53 and Equation 4.52 for boundary-value selection for integer
and floating-point data-type guard conditions. For guard conditions involving boolean variables
only, we use the MC/DC conditions of the respective guard conditions.

[KLPUO4] not only formalises the definition of boundary values but also defines boundary-
coverage criteria. [KLPUO04] introduces a hierarchy of coverage criteria ranging from the One-
Boundary criterion (at least one boundary value is selected) to the All-Boundaries criterion,
which states that every boundary value is chosen. Intermediate criteria like All-Edges (at least
one boundary value from each edge of the IEC) or Multi-Dimensional (every variable takes its
minimum and maximum value) lie in between. Our approach to calculate boundary values by
solving Equation 4.54 can best be considered a Some-Boundary approach, as we neither guar-
antee that all boundary values are selected (this would be infeasible in case of infinite input
domains) nor that every edge or even every vertex is covered. Such guarantees would require
an IECP refinement which drastically increases the number of IECs and in turn the overall test
effort. However, the combination with randomisation will result in multiple different boundary
values being selected.

4.3.4 Extension of Test Cases for the Heuristic Exploration of Additional
States

The heuristics presented above are efficient for tackling the problem of a mismatch of the IECP
of the test model and the SUT. The second issue that has an influence on the test strength is the
problem of additional states. As seen in Section 2.5.3, the fault domain is dependent on the upper
bound of the number of states the SUT is assumed to have. Increasing m apparently results
in a larger fault domain and thus theoretically increases the number of faulty systems that are
rejected by the generated test suite. On the other side the exponential growth on the number of
generated test cases makes the increase of m intractable for most problems. Therefore, we present
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a heuristic to increase the test strength of our IECP approach in the presence of additional states
in the implementation.

The general idea behind our heuristic is to extend the existing set of test cases by random suffixes.
Contrary to the approach of increasing variable m for application of the W/Wp-method, this
does not introduce extra test cases. Instead, existing test cases are extended. In case of system
and HSI tests, the number of test cases is the most important cost metric. In many cases, a
restart of the SUT is very costly compared to a single test step. Therefore, the extension of test
cases will in general not introduce significant extra costs. Still, the extended test cases might
reveal errors in the SUT that can only be uncovered if a test case of a certain length is executed.

Assume that a = m —n is the number of additional states, where n is the number of states in the
minimal DFSM abstraction of our reference model and m is the number of states the minimal
DFSM representation of our SUT is assumed to have.

All test cases generated by the Wp-method (or the W-method), denoted by W,, are extended by
a sequence of inputs of length a, resulting in a set of test cases, denoted by W;. The resulting
test suite obviously has a better (or at least the same) test strength as the original one, because
all test cases in WV, are prefixes of test cases in W;. Thus, W, uncovers at least all faults that
are revealed by W,,.

4.3.4.1 Heuristics for Suffix Generation

The generation of the test case suffixes can be performed in different ways.

1. Perform a random walk of length a through the DFSM starting at the state reached by the
prefix from W,

2. As 1, but ensure that every vertex of the DFSM is reached equally often as the final state
after application of the complete input sequence (i.e., the prefix from W, and the randomly
generated suffix of length a) to the initial system state.

3. As 1, but ensure that every edge of the DFSM is selected equally often as final edge in the
path resulting from application of the complete input sequence to the initial system state.

The heuristics presented above perform a random search for additional states. After application
of the randomly generated suffix, an additional faulty state in the implementation might be
reached. This state could still show correct outputs: i.e., the same outputs as state ¢. that is
expected according to the test model’s DFSM. Therefore, it is necessary to identify this state.
Thus, the prefix from W, extended by the randomly generated suffix must be further extended
by an element from the characterisation set CS or from the state-identification set W.. Note that
the state-identification set of the final state and the characterisation set will in general contain
more than one input sequence that is necessary to identify a state. To keep the number of test
cases unchanged, one input sequence is chosen randomly.

The random generation of paths through our SUT, or the DFSM representation of the SUT, can
be reduced to the problem of random generation of combinatorial structures. [DGGO04] presents
a generic approach to generate random paths from any graphical representation: for example,
graphs, DFSMs, STSs. The main focus of this work is to perform the random generation uni-
formly over all existing paths, additionally guided by coverage criteria. Our random generation
of suffixes is based on the approach presented in [DGGO04] and is presented below. First, we
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recall the approach from [DGGO04] and then state how our three heuristics listed above can be
realised.

4.3.4.2 Uniform Random Generation of Paths in a Graph

Given a directed graph G = (V, E), with vertices V' and edges that are labelled with elements
leL: ECV xLxV,let P, denote all paths of length n that start at the start vertex v, and
end in the end vertex v.. A path P of length n is a sequence of alternating vertices and edges
P =wvg.eq.v1..... Up—1.€n—1.Vp, such that v; and v;11 are connected by an edge e; = (v, [, v;41) €
E for i € {0,...,n — 1}. Note that paths are sometimes restricted to paths where each vertex
occurs at most once. These paths are called simple paths. In our case, the paths to be generated
randomly are not constrained to be simple paths.

The aim of uniform random generation of paths in a graph is that every path from the set of
paths of length n, denoted by P, is generated with the same probability. To achieve this, the
algorithm shown in Algorithm 6 is performed.

Algorithm 6 Uniform Random Generation of a Path in a Graph

Input: G = (V, E) as a directed graph
Input: v as the vertex to start at
Input: v, as the vertex where the path ends
Input: n as the requested length of the path
Output: a path P = vs.eq.v1..... Up—1-€p—1-Ve Of length n
1: function GENERATERANDOMPATH
m:=n
V= Vg
P =,
while m > 0 do
A= {(v,l,v)|(v,l,v;) € E}
randomly select e from A with probability for e = (v, l,v;) defined by f,,(m—1)/f,(m)
P := P.e.w;
VI=
m:=m—1
end while
12: return P
13: end function

— =
= o

The algorithm starts at the start vertex, vs. Initially, vs becomes the current vertex (variable
v), and the path is successively extended with the next randomly selected edge that starts from
the current vertex v. Then the target vertex of this edge becomes the current vertex v, and the
next edge is chosen. The loop terminates after n iterations. The algorithm has to guarantee
that all paths of length n to end vertex v, can be generated and that each possible path of
length n is generated with the same probability. This is realized by a special distribution: An
edge e = (v,1,v;) starting at the current vertex v is selected with probability f,,(m —1)/f,(m).
fu(m) is the number of paths of length m that start from vertex v and end at the end vertex, ve.
Thus, f,,(m—1)/f,(m) is the ratio of the number of paths of length m starting with v.e;.v; and
ending in v, to the overall number of paths of length m starting in v and ending in v.. Therefore,
the probability of choosing an edge is proportional to the number of paths that are still possible
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after this edge has been chosen. In particular, the probability for an edge leading to a vertex
from which no path to v, exists is zero. It is obvious that this distribution guarantees that, (1)
all and only paths of length n from v, to v, can be generated, and (2) that each possible path is
generated with the same probability.

fu(m) can be calculated recursively:

1 ifv=nuw,
fv(o) = {0 clse (460)
folm)= > fulm-1) for m > 0. (4.61)
(v,l,v)eEE

Algorithm 6 makes extensive use of f,(m). Therefore, it is beneficial to use the algorithmic
concept of dynamic programming. Every f,(m) is calculated at most once for each value of
v € Vand m € {0,...,n}. Once the value for f,(m) is calculated, this value is stored in a
look-up table. This value can be reused in later calculations that require it. [FZC94] shows that
the approach can be implemented very efficiently. The number of operations for the generation
of the look-up table is in O(n - |[V|?) in the worst case, and the number of operations for random
path generation is in O(nlogn) in the worst case. In the worst case, the memory needed for the
look-up table is in O(n - |V]).

4.3.4.3 Implementation of Suffix Heuristics

Recall the three proposed heuristics listed in Section 4.3.4.1. The first heuristics aims at a
purely random generation of paths through the DFSM of the SUT. In this case, no final state
exists; consequently, there is no v.. In this case, Algorithm 6 is unnecessary, because the DFSMs
considered in this work are completely specified. There are no vertices in the DFSM without
outgoing edges. Therefore, every vertex allows for a next edge to be selected (and the out degree
is exactly the same for every vertex). In this special case, the random generation of paths through
the DFSM graph can be performed by randomly selecting a (i.e., the number of additional states
the SUT is assumed to have) edge labels. Note that each edge label in our DFSM abstraction
represents an IEC. Hence, the uniformly generated random path through the DFSM of length a
with an arbitrary target state represents a random sequence of TECs.

However, heuristics 2 and 3 aim at visiting a specific state or a specific transition to ensure
that every state or every edge has been visited equally often. A uniform generation of all paths
through the graph guarantees that all possible paths of a specific length are generated uniformly;
but this does not guarantee that specific states or edges of the graph are covered equally well.
States (or edges) that are hard to be covered, because of a low number of paths that go through
this state could be missed by Heuristic 1. This problem has to be overcome by Heuristic 2. This
can be achieved for Heuristic 2 as shown in Algorithm 7.

Each test case from W, is to be extended by a suffix. After application of the input trace t € W),
a state g5 is reached. This state becomes the start vertex for random path generation. The end
vertex for the path generation is chosen randomly from the set of all least “visited” states. In
this case, a state ¢ is said to be visited if it is the target state after application of the test input
sequence t extended by the randomly generated suffix. Initially, all ¢ € Q) are visited zero times.
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Algorithm 7 Suffix Generation for Heuristic 2

for each t € W, do
qs := state after application of t to g
randomly select g. from the least visited states
suf :=GENERATERANDOMPATH(M, g5, g,a)
extend t by sequence of inputs in suf
increment number of visits for g,

end for

Once start and end vertices are chosen, generateRandomPath as defined in Algorithm 6 can be
used to generate a random path of length a.

For the implementation of Heuristic 3, this algorithm is slightly adapted, as shown in Algorithm 8.

Algorithm 8 Suffix Generation for Heuristic 3

for each t € W, do
qs := state after application of ¢ to q
randomly select e = (¢,1,1,¢’) from the least visited edges
suf :=GENERATERANDOMPATH(M, ¢s, q,a — 1)
extend t by sequence of inputs in suf and ¢
increment number of visits for e
end for

In this case, the algorithm keeps track of the visits of edges of the DFSM. A least-visited edge
e = (q,1,9,q") is chosen, and then generateRandomPath is used to generate a random path to
the source state of e with length a — 1. This path is extended by the input symbol of e, resulting
in a random path that visits e in the last step.

As mentioned earlier, the complexity of uniform random path generation is in O(n - |V'|?) for the
look-up table generation and in O(nlogn) for the path generation, given a fixed graph and a
fixed end vertex. Applied to our case, n is determined by the number of additional states a the
implementation is assumed to have. |V| is determined by the number of states in the minimised
DFSM representation of the SUT.

The end vertex is not fixed in our implementation of heuristics 2 and 3. Therefore, multiple
look-up tables are needed: namely, |V| look-up tables have to be generated, since every vertex
of the DFSM graph can be chosen as end vertex for the path generation. Exactly |[W,| random
suffixes have to be generated. This yields an overall runtime complexity in O(a - |V|?) for the
generation of the look-up tables and an overall runtime complexity in O(|W,| - a - loga) for the
generation of all random suffixes.

4.3.5 Implementation-Efficiency Considerations

In this subsection, we will give some insights into our implementation of the ECPT approach. We
will detail some efficiency considerations. We think that these are necessary to guarantee that
the test-case generation scales up for complex systems. The main computational effort arises
from the reachability analysis that has to be performed to determine the reachable SECs, for
the calculation of the IECs and for the calculation of concrete inputs from IECs. The latter has
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already been described in Section 4.3.2.3. Another potential scalability problem arises from the
use of the W/Wp-method. The number of test cases is significantly affected by the sizes of the
characterisation and state-identification sets. Therefore, we present an algorithm to determine
minimal versions of these sets.

4.3.5.1 Reachability Analysis

In this section, we present an algorithm for the system’s reachability analysis. The goal of
this algorithm is to identify all reachability MO-pairs which are needed to define the system’s
transition relation in INF (cf. Section 2.5.2.6). Thus, we propose an algorithm that performs a
reachability analysis and captures all reachable MO-classes Ao = {ay,...,a,} together with
the conditions for transitions between state classes a;,a; given as a first-order logic predicate,
Qg

In [HP16a], an algorithm is presented that calculates the INF from a transition relation of
arbitrary form. However, the approach presented there relies on two steps: (1) all possible
MO-classes, even unreachable MO-classes, have to be enumerated; and (2) the calculation of a
Disjunctive Normal Form (DNF) representation from an arbitrary form of the global transition
relation R is necessary. This DNF representation can always be calculated, but in general, this
DNF representation will be of exponential complexity.

For the efficient calculation of an INF, we propose an alternative. For our approach, we assume
that it is possible to symbolically extract, given a current state s, the conditions for all possible
successor states s’.5 If a global transition relation R of arbitrary form is given, this is always
possible. Thus, our assumption is not restrictive compared to the algorithm proposed in [HP16a].
This symbolic extraction can, for example, be performed by using an abstract model represent-
ation of a SysML model and the state-machine semantics. In case of a single state machine, the
conditions can be extracted considering only the current location the state machine resides in.
All outgoing transitions from this location define one condition, g; ;. We believe that, for other
formal semantics, the extraction of conditions for future evolution, given a fixed state, should be
possible as well. For imperative programming languages like C, the Hoare logic [Hoa69] could
be used to give another example. In any case, such an extraction should always be at least as
easy as the definition of a global transition relation.

The set of concrete value combinations for variables in M U O induces a partitioning of the system
state space: B = {by,..., by} with b; = {m — d;, 4 — é;} for all i = 0,...,m. Note that B is
not an SECP as defined in Section 2.5.2.1. An SECP is defined over the set of reachable quiescent
states. The state classes b; from B may include state classes that might not be reachable or
contain solely transient states. B must be recursively enumerable but not necessarily finite,
although the variable data types and value bounds used in the concrete modelling formalism
(e.g., SysML models) usually restrict the set of possible value combinations. The finiteness is
no strict requirement, because we do not enumerate all value combinations; instead, we use
only the reachable combinations. Thus, in our algorithm, we merely have to assume that the
MO-partitioning Ayo is finite.

If we are able, to extract the conditions to transition from a state s with fixed concrete values
for variables in M U O, the transition relation can conceptually be described by a predicate:

5 R .
°These successor states must not necessarily be quiescent.
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RE \ mi=dAj=&Ngi; i =dj N =& (4.62)
bi,bjEB

This predicate may be of infinite size, depending on the finiteness of B. This predicate is not
explicitly instantiated. Instead, we only extract the terms g; ; from the concrete modelling
formalism, whenever needed by our algorithm. The predicate g; ; describes the condition for a
RIOSTS to transit from a state class b; € B to a state class b;. The source and target states
from these classes may or may not be quiescent. Quiescent states are exactly those states in b;
that fulfil Gii-

The algorithm shown in Algorithm 9 starts with the initial state, so. The state class of this state
solmuo is added to the set of reached states R and to the work list W. Then the algorithm
performs a search, as long as the work list is not empty. In every loop iteration, the state classes
from W are examined. For each state class, all quiescent successor state classes are calculated
using function successor. This can be performed in parallel. To this end, let ||zcx f(x) denote
the parallel execution of function f for every = in X. If f returns a set of elements from Y
(i.e., f(z) CY), the expression ||zex f(z) returns the union of all results: i.e., |l.ex f(z) =
U.ex f(x). Hence, Line 6 illustrates that the calculation of quiescent successor state is performed
in parallel for each state class from the work list W. Consequently, all the reachable MO-pairs
that are calculated are added to the result set P. If a new state class a; has been found, this
class is added to R and W. Finally, P is returned by function reachability.

The search for quiescent successor states is performed by the recursive function successor.
This function is called with the first parameter a;, representing the starting point of the search.
Because multiple intermediate states might exist before a quiescent state is reached, second
parameter b, represents a state class containing the current intermediate state. ;. describes
the condition for a transition from a quiescent state in a; to members from b.. Some of the
members of b, might be quiescent. Therefore, it is checked whether the predicate 3; . A gc.c
is solvable. To this end, ;. is added as a constraint to the SMT solver. It is guaranteed, by
the way in which successor is called, that ;. has a solution. Additionally, g . is added as
an assumption. Assumptions are additional constraints that the solver has to fulfil. After a
call to solverSolve these assumptions are dropped, while the constraints are retained. This
allows incremental use of SMT solvers. Conflict clauses that are learnt from previous calls to
solverSolve can be reused in later calls, often resulting in improved runtime performances.

If the SMT solver finds a solution, the predicate j3; ; A g¢,c describes the condition for a transition
from states in a; to quiescent states in b.. Thus, (a;,b.) is a new reachability MO-pair with
tic = Pic A ge,c. While some (or none) of the members in b, may be quiescent, others may be
transient. Therefore, all conditions g. ; from the transition relation (extracted from the concrete
system description) are considered. For each condition, successor is called recursively using
b; as second argument and §; . A g ; as third argument. As Line 26 indicates, the body of the
for-loop can be executed in parallel®, which makes the whole algorithm highly parallel.

Algorithm 9 is a very efficient and highly parallel algorithm that uses two facts:

6In a concrete implementation like in C++ common data structures in the body of the for loop have to be
protected from data races. E.g. the update of R has to be locked by some synchronisation means like mutexes
and the SMT solver has to be duplicated among the execution threads.
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Algorithm 9 Enhanced MO-Reachability Analysis

Input: R with g; ; calculated on the fly

Output: {((a;,a;),a; ;)} all reachability MO-pairs together with predicate «; ;
1: function REACHABILITY

2: P:= > P is the result set, i.e., the set of MO-pairs and predicates
3: R :={so|muo} > R is the set of reached MO-classes
4: W = {so|muo} > W is the set of unconsidered MO-classes
5: while W not empty do

6: E :=||a,ew SUCCESSOR(a;, a;, true) > Call successor for each unconsidered MO-class
7 W =10

8: for each ((a;,a;),a;;) € E do

9 P:=PU{((ai,a;),qi;)}

10: if a; ¢ R then

11: R:=RU {aj}

12: W =W uU{a;}

13: end if

14: end for

15: end while

16: return P

17: end function

18:

Input: a; starting MO-class for successor analysis

Input: b, state class containing intermediate states

Input: ;. predicate describing the condition for a transition from a; to b,

Output: {((a;,a;),a; ;)} all reachability MO-pairs that start at a; and go through b,
19: function SUCCESSOR

20: P:=0 > P is the result set
21: SOLVERADDCONSTRAINT(; )

22: SOLVERASSUME(gc. )

23: if SOLVERSOLVE( ) then

24: P:=PU{((ai;be), Bic N gee) }

25: end if

26: for || each g ; from R do

27 SOLVERASSUME(g,, ;)

28: if SOLVERSOLVE( ) then

29: P := PUSUCCESSOR(a;,b;,58;.c A gec,;)
30: end if

31: end for

32: end function
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4.3 Equivalence Class Partition Testing

1. No global transition relation is needed. Instead, during reachability analysis, conditions for
a transition from the current state can be extracted from the concrete description means.
Usually, these conditions are magnitudes smaller than the global transition relation. This
in turn accelerates the SMT solver calls.

2. The calculation of successor states can be performed in parallel, resulting in good runtimes
on multi-processor platforms.

Example 24. Consider the model from case study Route 12a (Lyngby). The route controller
has 18 variables in M U O. The domain of these variables reaches from the boolean domain
to the integer interval [0,5]. This leads to an overall number of possible value combinations
for variables M U O of 283,435,200. Additionally, many of the complex guard conditions used
in the state machine describing the behaviour of our route controller use boolean operators A
and V. This will result in an exponential explosion of the transition-relation predicate when
transformed to a DNF representation in a naive way. Thus, an enumeration of all possible even
unreachable value combinations (state classes) and the construction of a DNF representation is
far from realisable for the Route 12a (Lyngby) case study.

The reachability analysis shown in Algorithm 9 reveals that merely 28 MO-states are reachable.
In our reachability analysis, only a very small subset of conditions must be considered. The SMT
instances that have to be solved by the SMT solver are drastically smaller than they are for an
approach that considers global transition relations. Because the runtime of a typical SMT solver
depends on the size of the SMT instance, this will usually result in a significant improvement of
runtime.

4.3.5.2 Calculation of Input Equivalence Classes

Algorithm 10 describes an efficient way to calculate an initial IECP (cf. Section 2.5.2.7). This
is performed by finding all possible functions f : IDX — IDX, for which the predicate @ =

Nicipx i, f(i) is solvable.

The overall number of possible functions from IDX to IDX is [IDX|™"X|. Thus, an enumeration
of all possible functions is infeasible for all but the most trivial of systems. We therefore propose
to recursively construct functions f and to use an incremental SMT solver and parallel execution
for an efficient calculation of all solvable predicates of the form ®y,. The recursive construction
of a function f can be aborted as soon as a constructed partial function f’ : IDX -4 IDX results
in an infeasible ® 4.

The function calcIECP shown in Algorithm 10 merely calls the recursive function recCalcIECP
with the default arguments. The recursive function recCalcIECP is used to recursively enumerate
all possible functions f. This is done by mapping all indices from IDX = {1,...,n} starting at
one to all possible values from the image IDX. The second parameter of recCalcIECP denotes
the current index from the domain, which shall be assigned in the current recursive function call
of recCalcIECP. A value ¢ > n indicates that a complete (and solvable) mapping f has been
constructed. In this case, the recursion terminates and the third parameter ®, which describes
the predicate that is constructed simultaneous to f, is returned as a new predicate ®; describing
one IEC X;. If parameter ¢ < n, f is still a partial mapping and ® is a predicate describing a
superset of a potential IEC X ;. Note that it is guaranteed by the way recCalcIECP is called that
® has at least one solution. In this case, we have to recursively consider all possible mappings f
that can be built by assigning ¢ with all possible values from the image set IDX. All assignments
of the form 7 — j are checked for plausibility by adding o; ; as an assumption to the SMT solver.
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Algorithm 10 Calculation of Input Equivalence Classes

Input: R in INF
Output: {®y,,..., Py, } all solvable predicates ®y, that describe IECs of the form Xy,
1: function cALCIECP
2: return RECCALCIECP(R,1,true)
3: end function
4:
Input: R in INF
Input: i € IDX index of current MO-class to consider, with IDX = {1,...,n}
Input: & predicate describing a solvable superset of the potential IEC
Output: {®@y,,..., Py} solvable predicates ®;, that describe IECs of the form X,
5: function RECCALCIECP

6: if i > n then

7: return {®}

8: end if

9: R:=0

10: SOLVERADDCONSTRAINT(D)

11: for | each j € IDX do
12: SOLVERADDASSUMPTION(v; )
13: if SOLVERSOLVE( ) then

14: R := RU RECCALCIECP(R, i+ 1, ® A a; ;)
15: end if
16: end for
17: return R

18: end function
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4.3 Equivalence Class Partition Testing

If ® A o ; is solvable, the recursion is continued; otherwise, it is aborted because assignment
i — j led to a partial mapping f’ whose predicate @, has no solution. Again, our algorithm can
use parallel execution. The for-loop can be executed in parallel for all possible assignments, as
indicated by operator || in Line 11.

4.3.5.3 Calculation of Minimal Characterisation and State-identification Sets

The number of test cases generated by the W/Wp-method depends largely on the size of the char-
acterisation and state-identification sets. Unfortunately, the characterisation set as calculated
by Algorithm 2 is not guaranteed to be minimal.

The problem of finding a minimal characterisation set can be reduced to the minimal-hitting-set
problem. The hitting-set problem is the problem of finding a solution W C U (called the hitting
set) which is a minimal subset of elements from the universe U = {1,...,n}, such that for a
family of subsets of U: {Ui,...,Uy} with U; C U for all ¢« = 1,...,m, all subsets contain at
least one element of W:

VUiG{Ul,...,Um}ZUiﬂW7é@. (463)

In the remainder of this section, we abbreviate the minimal-hitting-set instance {Uy,...,Upn},
as introduced above, as {U;}.

The minimal hitting set is a hitting set W for which no subset exists which is itself a hitting set.
The minimal-hitting-set problem is known to be NP-complete [Kar72].

The hitting-set problem can be solved by a SAT solver. To this end, we formulate the hitting-set
problem as a SAT instance. Let b, denote a boolean variable representing element u from the
universe U = {1,...,n}. The predicate to be solved ® can be defined as follows:

s A\ (\/ b) (4.64)

i€{l,....m} ueU;

The minimal hitting set can be found by using an SMT solver that is able to find a solution
under additional optimisation constraints. Thus, the problem can be formulated as follows:

MHS({U;}) = solve(®) and minimise( Z bu). (4.65)
uclU

We use the SMT solver Z3 [BPF15] to solve this SMT instance with the optimisation goal
minimise (3, .y bu). D ,cp bu has to be understood as an integer addition of boolean variables:
i.e., >, cp bu is the number of boolean variables assigned true.

The calculation of a minimal state-identification set for DFSM state ¢; can be performed using
Algorithm 11. First of all, a minimal-hitting-set instance {U;} is constructed. To this end, a
subset U; from the universe, which is the characterisation set CS in this case, is constructed for
every other DFSM state ¢;. U; contains all input traces from CS that distinguish ¢; and ¢;: ILe.,
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Algorithm 11 Algorithm for the Calculation of a Minimal State-identification Set W;

Input: M =(Q,q,%1,%¥0,d,w) a minimal DFSM
Input: CS characterisation set of M
Input: ¢; the state of M to be identified
Output: W; minimal subset of CS identifying g;
function STATEIDENTIFICATIONSETMINIMAL
(U} = {Ujlg; € Qua; # 4:.Uj = {0 € CSJu*(41:0) # w*(q5,0)})
W, :=MHS({U;})
return W;
end function

different output traces are generated when the input trace is applied to both states. From each
of these Uj, at least one input trace has to be selected to distinguish ¢; from every other state.
Thus, the minimal-hitting-set algorithm (Equation 4.65) can be used.

Algorithm 12 Algorithm for the Calculation of a Minimal Characterisation Set CS

Input: M = (Q,q,%X7,%0,0,w) a DFSM
Input: {C1,...,C} the Py tables of M
Output: CS minimal characterisation set of M
function CHARACTERISATIONSETMINIMAL
Y :={04,l0, 9 € Q,q % q;,0:,; € DISTINGUISHINGSEQUENCE*(M, {C1,...,Cx},qi,q5)}
(Ui} :={Ui;lai,q5 € Q. 45 #* 45, Ui j = {0 € Zlw"(¢s,0) # w*(g;,0)}}
CS :=MHS({U1,...,Un})
return CS
end function

The calculation of a minimal characterisation set can be performed quite similarly. Our approach
is shown in Algorithm 12. First of all, we define our universe to get a minimal hitting set from as
the set X of all possible distinguishing sequences of minimal length. This set can be calculated
by considering all pairs of distinguishable states ¢;, ¢; and collecting the distinguishing sequences
of minimal length. Therefore, we use a slightly modified version distinguishingSequencex* of
Algorithm 3. Algorithm 3 calculates only one possible distinguishing sequence of minimal length.
This calculation is indeterministic because of the use of the elem() operator in Algorithm 3. Let
distinguishingSequence* be the version of Algorithm 3 that returns the set of all possible
distinguishing sequences that result from all possible choices for the elem() operator.

The minimal-hitting-set instance is now constructed with all subsets U; ; for distinguishable states
@i, q;. Ui ; contains all input traces from ¥ that produce different outputs when applied to ¢; and
gj- Note that this may include traces that are not returned by distinguishingSequence* when
called for g; and g;: i.e., traces which have traces from the result set of distinguishingSequencex
as prefix. In this way, we ensure that prefixes in the minimal characterisation set CS are dropped,
as the minimal-hitting-set solution will not contain these prefixes.
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5 A Novel Approach to Mutation Analysis
for HW/SW Integration Tests

This chapter introduces our novel approach for test-strength evaluation of HSI tests. First, we
briefly depict the state-of-the-art of mutation analysis and then motivate and present our new
mutation-analysis method based on SystemC mutations.

5.1 Mutation Analysis State-of-the-Art

Implementation

): Mutant Generator |

Mutant

Test Cases

Test Case Execution |

! .

JFAIL JFAIL JFAIL

no. FAIL

Mutation Score =
no. mutants

Figure 5.1: Overview of the Mutation Analysis Process

Different approaches to mutation analysis and mutation testing exist. By mutation analysis, we
understand the process of generating mutants to evaluate the mutation score of a test suite.
An overview of this process is depicted in Figure 5.1. Given an implementation of the SUT
which passes the test suites under consideration, faulty versions of the SUT implementation are
generated using a mutant generator. Usually, the mutant generator is a tool that systematically
injects faults into the implementation. An implementation with injected faults is called mutant.
Usually, the fault injection is performed using mutation operators. A mutation operator is an
operator that introduces syntactic changes to the implementation. These operators are defined by
the syntactic elements (locations) they can be applied to and by the change that is introduced to
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5 A Novel Approach to Mutation Analysis for HW/SW Integration Tests

the elements they are applicable to. In general, a mutant generator can apply mutation operators
in multiple locations of the implementation. This results in a huge number of possible mutants.
A mutant is called a first-order mutant if the mutant is obtained by the application of one
mutation operator in exactly one location. Most mutant generators produce first-order mutants
only. In contrast to this, a high-order mutant is a mutant that is obtained by the application of
mutation operators in more than one location of the implementation.

Note that the term implementation does not restrict mutation analysis to typical implementation
languages. An implementation can be considered a model of the SUT behaviour, and every
model can be considered an implementation of the SUT. Thus, mutation analysis is applicable to
modelling languages like UML/SysML, DFSMs but also to typical SW-implementation languages
like Java or C/C++.

The evaluation approach we call mutation analysis in this work must not be confused with an
approach widely known as mutation testing. By mutation testing, we mean the use of mutants
to (automatically) generate test cases. In mutation testing, an implementation/model of the
SUT is mutated using mutation operators, as introduced above. For the resulting mutant, one
or more test cases are generated that are able to kill this mutant. A mutant is said to be killed
if the application of at least one test case of a test suite fails for the mutant. Otherwise, the
mutant is said to be alive.

In the next subsections, we categorise and give an overview of state-of-the-art mutation-analysis
approaches. Depending on the model /implementation language used, the mutation types can be
categorised as model mutations, HW mutations and SW mutations. The following subsections
roughly present the overall idea of the different mutation types. A detailed discussion of related
work in this area is given in Section 7.4.

5.1.1 Model Mutations

5.1.1.1 DFSM Model Mutations

For the domain of DFSMs, a very simple fault model exists. As mentioned in Section 2.4.2,
there are two types of faults: transfer and output faults. These faults relate to the simple fault
operators of changing the target state of a transition or changing the output of a transition.
Additionally, a DFSM can be manipulated by deleting a state or introducing extra states. In
this case, the transition and output functions of the DFSM have to be manipulated as well.
Hence, state deletion/introduction of extra states can be considered a variant of high-order
mutation. This fault model has widely been used [Cho78, FvBK™91] to compare testing methods.
This model, however, applies only at the level of DFSM. In our evaluation, we do not use
this fault-model as the primary evaluation means, as the resulting mutants are of limited use.
Our method is proven to be complete for erroneous implementations with at most m states.
Hence, the mutation score is 100% for erroneous implementations with at most m states in their
DFSM abstraction. However, in Section 6.3, we use DFSM mutations for the evaluation of the
suffix heuristics to explore additional states. There, we intentionally introduce additional states
to ensure that the SUT is outside the fault domain and then investigate the mutation score
considering the different suffix heuristics.
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5.1.1.2 UML Model Mutations

Another model mutation approach is implemented in the tool, MoMuT::UML [KST*15]. The
authors of [KST15] use UML-specific mutation operators to generate mutants from UML mod-
els. Instead of mutation analysis, MoMuT::UML follows the mutation-testing approach. Based
on the generated mutants test cases are selected to kill these mutants. The mutation operators
of [KSTT15] are applicable to our UML/SysML state machines as well. In preliminary work,
we used these mutation operators to conduct our experiments. However, we observed that the
mutations tend to introduce erroneous behaviour that is too easy to detect. RT achieved very
high mutation scores of up to 85%. This demonstrates that, at least for our case studies, UML
mutation operators are of limited use. We are interested in mutations that are, (1) hard-enough
to be detected, and (2) valid surrogates for real faults to be expected in an implementation of
the SUT. The latter requirement led to doubts that model mutations are an appropriate evalu-
ation means for our testing methodology. We believe that model mutations are a valid means to
automatically generate test goals from a test model. However, the use of mutation operators for
test strength evaluation of HSI tests should always consider mutations that are to be expected
in real implementations. Since UML/SysML is an abstract description means, we believe that
the exclusive application of model mutation operators will miss many of the typical faults to be
expected in real-world scenarios. The roots of these faults will first emerge on a more concrete
level: e.g., at the HW-description or SW source-code levels.

5.1.2 SW-Mutation Analysis

SW source code can be a target of mutation analysis. Source code is by definition a means of
concrete formal description for the behaviour of (a part of) a system. This formal description
can very easily be manipulated. Many approaches exist, ranging from the earliest mutation-
analysis experiments [DLS78] to mutation operators for modern, high-level OO languages like
Java [MOKO5]. The main advantage of SW-mutation analysis is that the mutated program is
not an abstract model of the expected SUT, but is most likely the test target itself. The faults to
be discovered by a SW testing approach are most likely introduced in the implementation phase
and manifest themselves as faults in the source code of the SUT. Some evidence exists to show
that faults introduced using SW mutation operators relate to real faults [ABLO05, JJI"14].

5.1.3 HW-Mutation Analysis

The validation and verification of integrated circuits is a major research area. In this domain,
fault injection, a technique that injects faults on the bit level of an integrated circuit, is widely
applied. These faults represent HW faults that can be caused by hardware defects introduced
by design errors or in the manufacturing process. Fault injection is strongly related to mutation
testing and can be understood as the HW-related counterpart of SW-mutation analysis.

In fault injection, the injected faults can be categorised as stuck-at faults and transient faults.
Stuck-at faults are assumed to be permanent, whereas transient-fault models introduce faults
that happen at one point in time. It is assumed that these faults only appear temporarily and
disappear in a consecutive clock cycle. Transient faults usually model faults that are triggered
by external events (e.g., radiation). The focus of this fault model is mainly to evaluate the fault
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tolerance of a system. Fault tolerance is out of the scope of this work; therefore, we consider
only permanent errors, using the stuck-at fault model.!

5.2 HW/SW-Mutation Analysis

5.2.1 The Need for a Formal Fault Model of Typical HW/SW Integration
Errors

The previous section presented mutation-analysis approaches that are based on syntactically
seeded faults (mutation operators). Faults can be seeded at different levels of abstraction and
in different parts of the system. As shown in [ABL05, JJI*14], software mutations are good
surrogates for real SW-related faults. The mutation score achieved by SW-mutation analysis is
therefore a good measure of the test strength of a SW test approach. However, the validity of
these results is limited to the experimental evaluation of software tests. There is no evidence that
the results gained by SW-mutation experiments are sound for the evaluation of HSI or system
tests. Apart from this, HW-related faults that may be introduced in the manufacturing process
or by bad design can be evaluated using fault injection and the stuck-at fault model, for example.

An integrated HW/SW system will surely contain SW-related and HW-related errors. Addition-
ally, it must be expected that, during HSI additional faults can be introduced to the integrated
system that do not only result from errors in software or hardware. These errors may result from
mismatches in the hardware and software designs. Unfortunately, there is no formal fault model
to the best of our knowledge that focuses on typical HSI faults.

To overcome the aforementioned problem, we propose a fault model to mimic typical HSI faults.
This fault model is based on mutation operators applied to system specifications described in
the SystemC design language. This fault model is realised by a mutant generation tool to allow
for automation of mutation analysis for HW/SW integration errors.

5.2.2 Requirements for a Mutant Generation Tool of Typical HW/SW
Integration Errors

A mutant generator aiming at mutation analysis of typical HW/SW integration errors should
fulfil certain requirements. In the following, some of the requirements that we consider to be
useful are listed. A mutant generator for mutation analysis aiming at the evaluation of HSI tests
should do the following:

e cover software-related errors,
e cover hardware-related errors,
e cover errors resulting from mismatches in the software and hardware design,

e cover errors resulting from the faulty integration of software and hardware modules (e.g.,
wrong configuration data, misconfigured communication of modules),

I1We assume that the fault tolerance of the SUT is evaluated and validated using other means than our MBT
approach.
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e cover errors resulting from special characteristics of the target platform (e.g., operating
system, hardware specification, byte order),

e be applicable to every valid SystemC model,
e be easy to use,
e generate a large number of mutants, and

e generate syntactically correct mutations.

Note that we intentionally ignore the class of runtime errors for our evaluation approach. Runtime
errors usually result from incorrect code (like invalid memory addresses for read-and-write op-
erations, violation of array boundaries, race conditions) which may cause erroneous behaviour.
However, runtime errors are not always detectable; in the worst case, runtime errors are observ-
able only by chance. The nature of runtime errors makes it hard to detect this class of defects by
functional tests. In fact, the absence of runtime errors is usually referred to as a non-functional
requirement of a system. It is a well-known fact that runtime errors are best detected by abstract
interpretation [KF16]. Therefore, runtime errors are out of the scope of our evaluation approach.
We assume that abstract interpretation is used before HSI tests are applied; therefore, the SUT
is supposed to be free of runtime errors.

5.2.3 A SystemC Mutation Tool

The generation of SystemC mutants is performed in a systematic and automated manner. To
this end, a tool based on the clang LibTooling library? has been implemented. This tool is
a back end to the well-known clang compiler. The clang compiler is used to parse C/C++
code and generates an abstract syntax tree (AST). Based on this AST mutation, operators are
implemented: Syntactic patterns are matched and replaced to generate single-fault mutations.
The next paragraphs list and group all mutation operators that were used for our experiments.
The descriptions were taken from our previous publication [HHP17] with slight modifications to
fit this work.

Ordinary mutation operators Mutation operators are commonly used in SW mutation tools
[MOKO05, Jusl4]. These mutation operators include the replacement of logical, arithmetical and
relational operators and the replacement of conditions in while and if statements with the con-
stants true and false.> These operators are used to mimic software-related errors that may still
be present in the HSI phase. Though many of the software-related errors are expected to be
uncovered by unit testing, these errors must still be considered for HSI testing because the de-
tection of all software errors by unit testing cannot be guaranteed. Furthermore, it is possible
that software-related errors are introduced during the HSI phase, because the software code im-
plementing some of the interfaces between modules might be erroneous itself. In the remainder of
this work, we refer to these classical software-mutation operators as ordinary mutation operators.

Since the focus of this work is to demonstrate the applicability of our test method to HW/SW
integration tests, we augmented the ordinary mutation operators with mutations that we would
expect in typical HW/SW integration scenarios.

2see http://clang.llvm.org/docs/LibTooling.html

3Besides these “traditional” mutation operators [MOKO5] also supports object-oriented (OO) mutation operators.
These operators have been neglected in this work, because the different implementations of our case studies
did not use the object oriented concepts that are targeted by OO mutation operators.
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Byte-order mutation A potential error in distributed systems communicating over network
protocols results from the wrong interpretation of data. Typically, data is sent in big-endian
(network) byte order, while the data is then interpreted in little-endian (host) byte order on
the local machine. To capture potential flaws resulting from this mismatch, we introduce a
mutation operator that replaces every assignment of integer variables with an assignment using
a right-hand side expression with an inverted byte order.

Listing 3 Example of Byte Order Mutation

int32_t x;//1little endian, width 32 bit

x=13;

//assignment will be replaced by
x=htobe32(13);

// htobe32(n) transforms n in host byte order
// to the same integral number represented

// in 32 bit big endian byte order

Precision mutation Every floating-point operation is performed with a fixed precision. A
mismatch in precision between the specification and the actual implementation might result in
unexpected behaviour.* To mimic errors resulting from wrong precision, we use a mutation
operator that replaces constant floating-point literals with another constant floating-point literal
of different precision. In C and C++, this subtle error can easily be introduced.

Example 25. For example, the following expression used in a condition of an if-statement is a
candidate for the proposed mutation operator.

Listing 4 Example of Precision Mutation

float x,y;
if (x*%0.1£f<y) { //literal will be replaced: if(x*0.1<y) {

}

The above example demonstrates that a subtle change in the floating-point literal can introduce
non-conforming behaviour. In C/C++, the operations are automatically performed with the
least required precision. Therefore, the expression x*0.1f<y is evaluated with single precision
(float type), while the expression x*0.1<y is evaluated with double precision (double type).
Because there is no exact binary representation of the real number 0.1, the evaluation of both
conditions will differ for some values of x and y.

Sensitivity mutation Another source of errors is related to concurrency and timing. In Sys-
temC, modules have a sensitivity list: i.e., a list of signals. Whenever the value of a signal in the
module’s sensitivity list changes, the method of the module is executed. An easy way to intro-
duce timing and concurrency errors is to manipulate the sensitivity list of modules. Therefore, a
simple mutation operator removes signals from a module’s sensitivity list. This results in update
methods being called in the wrong order or not at all.

4We consider a mismatch in precision a real error, while in real world examples a mismatch only resulting from
different precisions might be negligible.
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Example 26. Consider, for example, the excerpt of the SystemC implementation of the airbag
controller shown in Listing 5. In this case, the sensitivity mutation would prevent the firing
of the airbag, because the update method of the crash_indication sub-module would not be
called. This sub-module is responsible for firing the airbag as soon as the crash counter variable
(crash_ctr) exceeds the threshold (CRASH_THRESHOLD).

Listing 5 Example of Sensitivity Mutation

SC_MODULE (crash_indication) {
sc_in<int> crash_ctr;
sc_in<int> defect;
sc_out<int> fire;

SC_CTOR(crash_indication) {
SC_METHOD (update) ;
sensitive<<crash_ctr;
//the previous line will be removed by the
//sensitivity mutation operator

}
void update () {
if (fire || defect) {
return;
}
if (crash_ctr >=CRASH_THRESHOLD) {
fire=1;
¥

Stuck-at fault mutation Typically, hardware-related faults are modelled using fault models on
a bit level. Stuck-at faults model errors in which one signal is constantly stuck at the logical value
one or zero. These faults can be caused by hardware defects introduced in the manufacturing
process but also by design errors. Therefore, these potential design errors are in the scope of
HW/SW integration tests.

The stuck-at mutation is implemented by overriding the read method of SystemC signals. For
each stuck-at mutation, a single bit of a single signal is constantly overridden with 1 or 0 whenever
the signal’s value is read.

Switch-ports mutation The last mutation operator we consider is an operator that interchanges
the connection of signals to ports. In SystemC, a module can have ports for modelling the
module’s inputs and outputs. Signals are connected to the ports, supplying the value that can
be read or written by a module through its port.

The switch-ports mutation swaps the connection of two signals to ports of the same type and
thus effectively swaps the variables that a module reads from or writes to. This type of fault
mimics a possibly wrong configuration of the integrated system, where a module reads from a
wrong memory location. The mutation operator captures a wrong wiring of input ports and two
modules that communicate with inconsistent network protocol definitions.
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Example 27. For example, for the CSM, the two system inputs V_est and V_mrsp will be
switched by the mutation operator leading to wrong control decisions in the mutated SUT.

Listing 6 Example of Switch-ports Mutation

//the system under test
ceiling_speed_monitor sut( )

//signals for the system’s inputs
fi_signal<float> V_est;
fi_signal<float> V_mrsp;

//signals for the system’s outputs
fi_signal<signed int> DMICmd;
fi_signal<bool> DMIdisplaySBI;
fi_signal<signed int> TICmd;

int sc_main(int argc, charx argv[]) {

//wrongly connected input signals
sut.V_est(V_mrsp);
sut.V_mrsp(V_est);

//connect output signals to output ports

sut .DMICmd (DMICmd) ;

sut .DMIdisplaySBI(DMIdisplaySBI);

sut.TICmd (TICmd) ;

//run the test suite

int result = Catch::Session().run(argc,argv);
return result;

5.2.3.1 Implementation Details of the SystemC Mutation Tool

The mutation tool uses clang’s LibTooling framework. LibTooling is a C++ library provided by
clang to give developers access clang’s internal infrastructure.

LibTooling offers, among other functionality, parsing of C/C++ programs; access to the abstract
syntax tree (AST); tracing of AST nodes to source-code locations; and iteration through the AST
by visitors, matchers, and source-to-source transformations.

Our SystemC mutation tool makes excessive use of matchers. Matchers are predicates that
describe patterns of the AST. Every occurrence of such a pattern in an AST that matches is
subject to a mutation operator. The mutation is then implemented in a callback function that
gets called for every match of a matcher.

Listing 7 and Listing 8 are examples of the matchers used in the SystemC mutant generator.
These matchers make it possible to specify patterns to be matched by predefined C macros.
These matchers can be combined to allow the specification of arbitrary complex patterns that
cover every possible AST structure of parsed C/C++ programs. As the reader has probably
observed, the matcher used to find integer assignments in a program to be mutated is quite
complex. This is mainly due to the complexity of the AST of C++ programs. An integer
assignment in C++ can either be a binary operator of an ordinary variable or a class-member
variable, or an overloaded operation call. This is especially relevant for the use of signals and
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ports in SystemC models. While assignments in this case look like ordinary binary operations,
they are overloaded operation calls of the base classes sc_port or sc_signal.

Listing 7 Overview of Binary Operator Matchers

StatementMatcher relOpMatcher =
binaryOperator (

anyO0f (
hasOperatorName ( ),
hasOperatorName ( ),
hasOperatorName ( ),

hasOperatorName (
)
) .bind( )

StatementMatcher aritOpMatcher =
binaryOperator (
any0f (

hasOperatorName ( ),
hasOperatorName ( ),
hasOperatorName ( ),
hasOperatorName ( ),
hasOperatorName ( )
)
) .bind ( )
StatementMatcher logicalOpMatcher =
binaryOperator (
any0f (
hasOperatorName ( ),
hasOperatorName ( )
)
) .bind( );

StatementMatcher binOpMatcher = anyOf (relOpMatcher, aritOpMatcher,
logicalOpMatcher);

The implementation of our SystemC mutant generator together with the SystemC models is
available under www.mbt-benchmarks.org.
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Listing 8 Complex Example of Matchers Used for the Byte-order Mutation

StatementMatcher intAssignmentMatcher =
binaryOperator (

hasOperatorName ( ),
hasLHS (
any0f (
declRefExpr (
to(

varDecl (
hasType (isInteger ())
) .bind ( ))),
memberExpr (
member (
hasType (
(TypeMatcher) anyOf (
isInteger (),
referenceType (pointee (isInteger ())))))) .bind(
)))) .bind( )

StatementMatcher intAssignmentOverloadedMatcher =

cxxOperatorCallExpr (

hasOverloadedOperatorName ( ),

hasArgument (0,
anyO0f (
memberExpr (
member (
hasType (
cxxRecordDecl (

(internal::Matcher <CXXRecordDecl>) anyOf (
isSameOrDerivedFrom ( ),
isSameOrDerivedFrom ( )))))) .bind(

)’
declRefExpr (to(varDecl(
hasType (
cxxRecordDecl (

(internal::Matcher <CXXRecordDecl>) anyOf (
isSameOrDerivedFrom ( ),
isSameOrDerivedFrom ( ))))) .bind(

)))))) .bind(
)

126



6 Experimental Evaluation

The experimental evaluation of our ECPT approach with its extensions and heuristics presented
in Section 4.3 is described in this chapter. The evaluation is based on previous work that has been
published in [BHH 14, BHP 14, HHP15, PHH16a, HHP17]. Our first experiments [HHP15] were
based on Java software mutations and considered the CSM and airbag-controller case studies.
In that work, we compared different approaches for the test-case generation, including the use of
refined IECPs for boundary-value testing. The results obtained in [HHP15] indicate that the use
of a refined TECP results in an increase of test strength that is relatively expensive. Therefore,
we consider our randomised strategy, which includes boundary values in 50 percent of the cases,
favourable, because the number of test cases is not increased by this approach.

In [PHH16a], we investigated the test strength of the ECPT approach for both interlocking case
studies, again using Java software mutations. To confirm the good results in the scope of HSI
testing, we proposed our novel evaluation approach in [HHP17] and applied this approach for
experiments considering the CSM and airbag controller case studies.

Therefore, the experimental evaluation described in this chapter is mainly based on the experi-
ments published in [HHP17] where we used the SystemC mutant generator presented previously.
We took parts of the experimental description and threats to validity from [HHP17] and reph-
rased it to fit this work. Furthermore, the experimental evaluation presented here extends the
experiments from [HHP17] in the following way:

1. The interlocking case studies are considered in this work: The experiments are extended to
the route-controller case studies Route 2011 (example network) and Route 12a (Lyngby).
Experiments for these case studies have been published in [PHH16a]. These experiments
were based on Java SW mutations.

2. The strategies for additional states exploration are first presented and evaluated in this
work. We compare the three proposed suffix heuristics using DFSM mutations in Sec-
tion 6.3.

3. An optimised implementation has been used, resulting in fewer test cases using the Wp-
method and minimal state-identification sets and a minimal characterisation set, as de-
scribed in Section 4.3.5.3.

6.1 Experimental Setup

6.1.1 Compared Strategies

For our experimental evaluation, we are interested in a comparison of different testing strategies.
We want to gain empirical evidence for the superiority of the ECPT approach in general and for
the heuristics that we proposed in Chapter 4 in particular. We use RT as a minimal-strength
benchmark to be surpassed by our ECPT approach.
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The following list gives an overview of all testing strategies to be evaluated in our experiments:

STRAT-1 The original complete ECPT strategy, as introduced in Section 2.5, which uses the
coarsest IECP with fixed representatives for every IEC.

STRAT-2 An extension of STRAT-1 by random concrete input selections from each IEC, whenever
the IEC is referenced in a symbolic test case.

STRAT-3 An extension of STRAT-1 using random selection and boundary-value selection. Ran-
domly select concrete inputs from an IEC used in symbolic test cases, such that 50% of the
inputs come from the interior of the IEC and the rest come from the boundary of the IEC.

STRAT-RND We use RT as a minimal benchmark. We expect our ECPT approach to at least
reach the same mutation score as conventional random testing. This strategy uses randomly
generated sequences of random input vectors. For a fair comparison we generate an RT
test suite of the same shape as every ECPT strategy that we apply. Same shape means
that for every ECPT test suite composed of n test cases of lengths 1, ...,[,, where the
i-th test cases has length [;, we generate a similar RT test suite with n test cases where
the i-th test case is a sequence of exactly [; input vectors.

STRAT-n,, Complementary to the way in which concrete input selection is performed, the
coarsest IECP can be refined using requirement-based refinement (cf. Section 4.3.1.2).
Therefore, STRAT-n, denotes the set of strategies that is obtained by using STRAT-1,
STRAT-2 or STRAT-3 with a requirement-based IECP refinement. This strategy has
been used exclusively for the CSM case study because the existing requirements regarding
different speed intervals lend themselves for a natural refinement of the IECP.

We apply the Wp-method with the assumption that the number of states in the DFSM abstraction
of the implementation is less or equal to the number of states in the test model, thereby to keep
the number of test cases at a minimum. Hence, no additional states in the implementation
are assumed for the experiments in the following section. Section 6.3 presents the experimental
evaluation of our heuristics, addressing the additional states problem.

6.1.2 Conduction of Experiments

For the experimental evaluation, we created correct SystemC implementations from each model
of the case studies. The implementation was performed by hand in a straightforward way. Next,
mutants were automatically generated from each implementation using our SystemC mutation
tool. For each case study, we applied the subset of the SystemC mutation operators that was
reasonably applicable. In particular, this means that the precision mutation operator was applied
to the CSM and airbag controller only, since these case studies use floating-point calculations.
The sensitivity mutation was applied to the airbag-controller case study to internal signals and
events only. The other case study implementations used a programming paradigm in which all
input variables were cyclically polled, which makes the sensitivity-mutation operator inapplicable
to these implementations. All other mutation operators, as presented in Chapter 5, were fully
applied to all case studies.

Note that the mutants generated by our mutation tool may accidentally be I/O-equivalent.
Therefore, in an additional step, the generated mutants have been investigated manually and all
I/0O-equivalent mutants were discarded for the experiments. This process could be accelerated by
first running all test strategies against the mutants. All mutants that were not killed by any of the

128



6.2 Experimental Results

test suites were manually investigated. For the manual investigation, each remaining mutant was
compared to the original implementation and we checked to see the mutant was I/Oequivalent
or not. In some cases, this decision was trivial. For example, many similar mutations were
I/O-equivalent because the range of valid input/output values restricts the number of possible
stuck-at mutations. A stuck-at-zero mutation of the most significant bit of a variable that never
gets a value that is high enough for this bit to be set is trivially I/O-equivalent. For the CSM,
for example, 38 mutants, which were not killed by any of the test strategies, remained after the
first test run. Of these, 29 I/O-equivalent mutants could be identified. These were discarded
from the experiments.

Afterwards, the derived test cases were executed against the remaining mutants to measure the
mutation score of the test suite: i.e., the ratio of mutants that were “killed” by the test suite to
the total number of non-I/O-equivalent mutants.

Since some of the strategies depend on the utilisation of random values for the concrete value
selection, each of their test suites were generated and executed against the mutants by using

ten different random seeds. Therefore, the experimental results show the mean number of killed
mutants together with the standard deviation.

6.2 Experimental Results

Table 6.1: Results for the Ceiling Speed Monitor. For each strategy, 93 test case were generated.

Mutation Type Strategy || Mutation Score Mutation Score
ECPT Tests RT
STRAT-1, 10.0 (0.0)/10 = 100.0 % 1(21)/10 = 71.0%
STRAT-2, 10.0 (0.0)/10 = 100.0 % 1(21)/10 = 71.0%
byte-order STRAT-3, 10.0 (0.0)/10 = 100.0 % 1(21)/10 = 71.0%
STRAT-1, 69.0 (0.0)/91 = 75.8% 477 (8.1)/91 = 524 %
STRAT-2, 83.2(1.3)/91 = 914 % 477 (8.1)/91 = 524 %
ordinary STRAT-3, 86.7 (0.8)/91 = 953 % 477 (8.1)/91 = 524 %
STRAT-1, 0 (0.0)/5 = 00% 0 (0.0)/5 = 00%
STRAT-2, 0 (0.0)/5 = 00% 0 (0.0)/5 = 00%
precision STRAT-3, 0 (0.0)/5 = 00% 0 (0.0)/5 = 00%
STRAT-1, 46.0 (0.0)/50 = 92.0% 30.8 (1.5)/50 = 61.6 %
STRAT-2, 46.1 (1.3)/50 = 922 % 30.8 (1.5)/50 = 61.6 %
stuck-at STRAT-3, 46.7 (1.3)/50 = 934 % 30.8 (1.5)/50 = 61.6 %
STRAT-1, 0 (0.0)/2 = 100.0 % 0 (0.0)/2 = 100.0 %
STRAT-2, 0 (0.0)/2 = 100.0 % 0 (0.0)/2 = 100.0 %
switch-ports STRAT-3, 0 (0.0)/2 = 100.0 % 0 (0.0)/2 = 100.0 %
STRAT-1, || 127.0 (0.0)/158 = 80.4% | 87.6 (10 8)/158 = 554 %
STRAT-2, || 141.3 (1.8)/158 = 89.4 % | 87.6 (10.8)/158 = 554 %
all STRAT-3, || 145.4 (1.4)/158 = 92.0 % | 87.6 (10.8)/158 = 554 %
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Table 6.1 shows the mutation score for all test strategies compared to a random test suite of the
same size. The mutation score is shown in column three and four, in the form k(o)/t = p%,
where k indicates the mean number of mutants that were killed by applying the test strategy ten
times with different random seeds. ¢ indicates the total number of non-I/O-equivalent mutants,
and p indicates the ratio of k/t in percent. o denotes the standard deviation of k. The results are
grouped for the different types of mutation operators and the last row shows the overall result
consisting of all mutations.

At a first a glance, two observation can be made. First, it is obvious that the ECPT approach
outperforms random testing for most mutation-operator types and never exhibits lesser test
strength. Second, from all compared strategies STRAT-3, received the best overall mutation
score and is able to significantly increase the test strength of the ECPT approach when comparing
the overall results of STRAT-1,. and STRAT-3,.. The superiority of STRAT-3, is mainly caused
by the high mutation score for the class of ordinary mutations. In particular, the replacements
of relational operators—namely, the replacement of > by > and < by < and the reverse—can only
be revealed by boundary-value tests.

The results for the class of ‘ordinary’ mutation operators shown here confirm the observations
made in [HHP15] for a Java implementation of the Ceiling Speed Monitor. In contrast to the
Java mutation experiments presented there, we used our randomisation heuristics STRAT-3,. in
this work, which achieved a mutation score of 95.3% for ordinary mutations. We think that this
score can be considered effective, so that a further increase of test cases (for example, by refining
the input equivalence partitioning) is not necessary. It should be noted, however, that [HHP15,
Table 2] shows that 100% fault coverage can be achieved for this case study and the ordinary
mutation-operator class when refining the input partitioning and applying the ECPT approach
with 610 test cases.

The performance of the ECPT tests is very high for mutations of the stuck-at fault model. All
faults that were caused by wrongly connected signals (switch-ports mutation) and byte-order
mutations were uncovered by ECPT tests, though it has to be mentioned that random tests were
able to reveal all switch-ports mutations for this case study as well.

All compared strategies performed equally weakly for the precision mutations, though the low
number of these mutations might weaken the validity of these results. The precision mutants
had a structure similar to the following mutant shown in Listing 9.

Listing 9 Example of a Precision Mutation

float dV_sbi(float v) { float dV_sbi(float v) {
if (v <= 110) { if (v <= 110) {
return 5.5f; return 5.5f;
} else if (v <= 210) { } else if (v <= 210) {
return 0.045f * v return 0.045 * v
+ 0.55f; + 0.55f;
} else { } else {
return 10.0f; return 10.0f;
} }
} }

The behaviour of the mutant (right-hand side) differs from the original implementation in the
way that the original expression 0.045f * v + 0.55f is calculated with single precision, while
the expression in the mutant is calculated in double precision. The I/O-behaviour is only affected
in cases in which the narrowed double-precision value of the overall expression differs from the

130



6.2 Experimental Results

original result completely calculated in single precision. Unfortunately, this condition is not
necessarily fulfilled when calculating arbitrary or even boundary values. The results of the
precision mutations indicate that a more sophisticated approach is needed to reveal such subtle
errors. Such an approach needs IEEE 754 conformant floating-point arithmetic. Since we use
the SONOLAR SMT solver, our approach could be refined as part of future work. This would
be beneficial for the concrete input calculation for SUTs, where precision errors are considered
critical.

Table 6.2: Results for the Airbag Controller. For each strategy, 722 test case were generated.

Mutation Type Strategy || Mutation Score Mutation Score
ECPT Tests RT
STRAT-1 3.0 (0.0)/3 = 100.0 % | 2.0 (0.0)/3 = 66.7%
STRAT-2 3.0 (0.0)/3 = 100.0% | 2.0 (0.0)/3 = 66.7%
byte-order STRAT-3 3.0 (0.0)/3 = 100.0% | 2.0 (0.0)/3 = 66.7%
STRAT-1 60.0 (0.0)/67 = 89.6% | 34.4(0.5)/67 = 51.3%
STRAT-2 64.0 (0.0)/67 = 955 % | 34.4(0.5)/67 = 51.3%
ordinary STRAT-3 66.5 (0.5)/67 = 993 % | 34.4(0.5)/67 = 51.3%
STRAT-1 0.0 (0.0)/2 = 00% 0.0 (0.0)/2 = 00%
STRAT-2 0.0 (0.0)/2 = 00% 0.0 (0.0)/2 = 00%
precision STRAT-3 1.0 (0.0)/2 = 50.0% 0.0 (0.0)/2 = 00%
STRAT-1 10.0 (0.0)/10 = 100.0% | 6.6 (0.5)/10 = 66.0%
STRAT-2 10.0 (0.0)/10 = 100.0% | 6.6 (0.5)/10 = 66.0%
sensitivity STRAT-3 10.0 (0.0)/10 = 100.0% | 6.6 (0.5)/10 = 66.0%
STRAT-1 36.0 (0.0)/59 = 61.0% | 429 (1.0)/59 = T2.7%
STRAT-2 56.0 (0.0)/59 = 949 % | 42.9(1.0)/59 = 727 %
stuck-at STRAT-3 58.1(0.5)/59 = 985% | 42.9(1.0)/59 = 727 %
STRAT-1 4.0 (0.0)/4 = 100.0 % | 4.0 (0.0)/4 = 100.0 %
STRAT-2 4.0 (0.0)/4 = 100.0% | 4.0 (0.0)/4 = 100.0 %
switch-ports STRAT-3 4.0 (0.0)/4 = 100.0 % | 4.0 (0.0)/4 = 100.0 %
STRAT-1 || 113.0 (0.0)/145 = 77.9% | 89.9 (1.2)/145 = 62.0%
STRAT-2 || 137.0 (0.0)/145 = 945% | 89.9(1.2)/145 = 62.0%
all STRAT-3 || 142.6 (0.8)/145 = 083 % | 89.0 (1.2)/145 = 62.0%

The higher complexity of the airbag controller compared to the CSM increased the required
test effort. 722 test cases were generated for each of the strategies—STRAT-1,-2,-3—and for the
compared random-testing strategy. Note that the number of test cases differs from the results
presented in [HHP17] because of the use of minimal state-identification sets and a minimal
characterisation set for the Wp-method.

The experimental results for the airbag controller shown in Table 6.2 confirm the observations
seen before. The ECPT testing approach has a test strength that is significantly higher than the
test strength of naive random testing. Again test strategy STRAT-3 achieved the best mutation
score caused by the superiority over STRAT-1,-2 for ordinary mutations but for stuck-at faults as
well. The results for the airbag controller show that the mutation score for stuck-at faults largely
depends on the number of different input vectors. STRAT-1 (61%) performed significantly worse
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than STRAT-2 (94.9%). The selection of boundary values improved this mutation score to a
total of (98.5%).

Compared to the CSM, the sensitivity-mutation operator was applicable to this case study. All
sensitivity mutations were uncovered by the three compared ECPT strategies. In contrast to
this, the mutation score of RT for this mutation operator indicates that random tests do not
provide a sufficient level of confidence that errors due to missed signal changes and events are
actually detected; therefore, a more sophisticated approach, like our ECPT approach, is needed
for such errors.

Table 6.3: Results for the Route 2011 (example network). For each strategy, 477 test case were

generated.
Mutation Type | Strategy || Mutation Score Mutation Score
ECPT Tests RT
STRAT-1 2 0 (0.0)/3 = 66.7% 0 (0.0)/3 = 00%
byte-order STRAT-2 0 (0.0)/3 = 66.7% 0 (0.0)/3 = 00%
STRAT-3 (O 3)/3 = 69.7% (0 0)/3 = 00%
STRAT-1 || 146.0 (0.0)/150 = 973 % | 77.8(9.0)/150 = 51.9%
ordinary STRAT-2 || 146.4 (1.1)/150 = 97.6 % | 77.8 (9.0)/150 = 51.9%
STRAT-3 || 146.2 (0.8)/150 = 975 % | 77.8 (9.0)/150 = 51.9%
STRAT-1 || 148.1 (0.3)/173 = 85.6 % | 163.0 (4.3)/173 = 942 %
stuck-at STRAT-2 || 150.9 (4.8)/173 = 87.2% | 163.0 (4.3)/173 = 942 %
STRAT-3 || 154.4 (3.3)/173 = 89.2 % | 163.0 (4.3)/173 = 94.2 %
STRAT-1 93.0 (0.0)/94 = 989 % | 883 (1.2)/94 = 93.9%
switch-ports STRAT-2 93.0 (0.0)/94 = 989 % | 883 (1.2)/94 = 93.9%
STRAT-3 93.0 (0.0)/94 = 989 % | 883 (1.2)/94 = 93.9%
STRAT-1 || 389.1 (0.3)/420 = 92.6 % | 329.1 (8.9)/420 = 784 %
all STRAT-2 || 392.3 (5.4)/420 = 93.4 % | 329.1 (8.9)/420 = 784 %
STRAT-3 || 395.6 (3.6)/420 = 94.2 % | 329.1 (8.9)/420 = 784 %

Table 6.3 and Table 6.4 show the results of the interlocking case studies Route 2011 (example
network) and Route 12a (Lyngby), respectively. The overall results confirm the superiority of
the ECPT approach compared to RT. This is especially true for the Route 12a (Lyngby) case
study. While the ECPT strategies obtained an overall mutation score of 88 to 90 percent, RT
merely achieved a mutation score of 38 percent for the most complex route controller used in
our experiments. For Route 2011 (example network), the same is true. The reader may find
that RT achieved a much higher mutation score (around 78 percent) for Route 2011 (example
network). This discrepancy of the overall RT mutation score of both interlocking case studies
can mainly be explained by differences in the complexity of both case studies. We can observe
that a lower complexity of the model results in a higher coverage of the overall system behaviour
by RT. For the complex case study, Route 12a (Lyngby), RT input sequences were very likely
not to cover parts of the system behaviour that can only be exercised after longer sequences of
dedicated inputs. It is, for example, very unlikely that a random input sequence will exercise
the whole sequence of route allocation, locking, occupancy and sequential release. Therefore, the
low mutation scores of RT for the complex Route 12a (Lyngby) were to be expected. Thus, we
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Table 6.4: Results for the Route 12a (Lyngby). For each strategy, 2222 test case were generated.

Mutation Type | Strategy || Mutation Score Mutation Score
ECPT Tests RT
STRAT-1 0 (0.0)/5 = 100.0 % 0 (0.0)/5 = 60.0%
byte-order STRAT-2 0 (0.0)/5 = 100.0 % 0 (0.0)/5 = 60.0%
STRAT-3 0 (0.0)/5 = 100.0 % 0 (0.0)/5 = 60.0%
STRAT-1 || 220.0 (0.0)/224 = 982% | 496 (2.8)/224 = 221%
ordinary STRAT-2 | 2136 (7.6)/224 = 954 % | 496 (2.8)/224 = 221%
STRAT-3 | 216.7 (6.4)/224 = 96.7 % | 496 (2.8)/224 = 221%
STRAT-1 281.0 (0.0)/421 = 66.7 % | 110.0 (0.0)/421 = 26.1%
stuck-at STRAT-2 286.7 (4.8)/421 = 68.1 % | 110.0 (0.0)/421 = 26.1%
STRAT-3 2979 (8.3)/421 = 70.8% | 110.0 (0.0)/421 = 26.1%
STRAT-1 665.0 (0.0)/675 = 985 % | 345.0 (0.0)/675 = 51.1%
switch-ports STRAT-2 670.0 (1.0)/675 = 99.3 % | 345.0 (0.0)/675 = 51.1%
STRAT-3 671.9 (1.4)/675 = 99.5% | 345.0 (0.0)/675 = 51.1%
STRAT-1 1171.0 (0.0)/1325 = 884 % | 507.6 (2.8)/1325 = 383 %
all STRAT-2 1175.3 (8.2)/1325 = 88.7% | 507.6 (2.8)/1325 = 383 %
STRAT-3 || 1191.5 (13.4)/1325 = 89.9 % | 507.6 (2.8)/1325 = 383 %

conclude that the superiority of our ECPT (at least over RT) will be even more apparent for
SUTs of higher complexity.

The results of the ECPT approach confirm that ECPT is indeed suitable to reveal almost every
ordinary mutation and nearly all switch-ports mutations. Considering the ordinary mutation
operators, for both case studies, all ECPT strategies achieved mutation scores > 95 percent.
Surprisingly, for Route 12a (Lyngby), STRAT-2 and STRAT-3 obtained lower mutation scores
than STRAT-1 on average. We assume that this is caused by the fact that, for this case study,
the negative effect of randomisation was reflected in the experimental results. As explained in
Section 4.3.2, the random selection of concrete inputs from IECs may lead to situations in which
the completeness property with respect to the fault model, as introduced in Section 2.5.3, is not
preserved. However, this negative effect could be encountered by first running the test suite with
a fixed representative and afterwards applying a randomised test suite according to STRAT-2 or
STRAT-3. We repeated our experiments using this strategy and observed that a combination of
the test suite with fixed IEC representatives with STRAT-2 and STRAT-3 achieved a mutation
score of 100 and 98.7 percent, respectively, for the ordinary mutation operators. However, in
this case, the number of test cases was increased to 4444 test cases. For SUTs of high criticality,
this approach might be favourable, while in other cases the testing effort might be critical and
justify the use of the randomised strategies STRAT-2 or STRAT-3 only.

For both route-controller case studies, ECPT could demonstrate its suitability to reveal switch-
ports mutations. For the Route 12a (Lyngby) case study, the ECPT approach was able to reveal
> 98 percent of the 675 switch-ports mutations. This result is remarkable since the former case
studies and the respective SystemC mutations resulted in a low number of switch-ports muta-
tions due to the lower number of system inputs and outputs. For Route 12a (Lyngby), it could
be demonstrated that in case of a high number of input variables—which increases the risk of
integration errors due to erroneous connections or misconfigurations that are mimicked by the
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switch-ports mutation—our ECPT offers a reasonably high level of test strength. Comparing
this result to the mutation score of around 51 percent achieved by RT, the results indicate that
erroneous communications and interconnections are difficult to discover simply by stimulating
the system inputs by random values whenever the complexity and number of system variables
becomes high enough. We conclude that the high test strength of ECPT for switch-ports muta-
tions is not caused by a combination of chance and the large number of test cases but can be
considered a substantial strength of our ECPT approach.

Considering the stuck-at mutations, the experimental results highlight two facts worth mention-
ing. First, RT shows a surprisingly high mutation score of 94 percent for Route 2011 (example
network) and a very low mutation score of 26 percent for Route 12a (Lyngby). Again, this
discrepancy is to be expected because of the differing complexities of both case studies. Second,
the mutation scores for stuck-at mutations are not as satisfying as the mutation scores observed
for the other case studies so far. For Route 12a (Lyngby), the ECPT strategies yield mutation
scores of 67 to 71 percent. Many of the mutations were not revealed by the test suite because of
some “redundancy” in the input variables. Consider, for example, a stuck-at mutation in one of
the input variables representing the route state of a conflicting route. This mutation may result
in the input variable never evaluating to ALLOCATING or LOCKED from the perspective of
the route controller. In this case, the error can only be observed if this exact input variable is the
only variable set to ALLOCATING or LOCKED in a test step. In the IECs calculated by our
ECPT approach, however, there is no distinction between input vectors in which all conflicting
routes or only one conflicting route is set to ALLOCATING or LOCKED. The same argument
applies for other input variables, like the state of flank-protection elements. We expect these
mutations to be revealed anyway during HSI testing of the complete interlocking system in which
every route controller is tested in isolation using the ECPT approach. Most of the uncovered
stuck-at mutations are related to internal system-state variables like the conflicting route-status
variables. The state of a conflicting route is written by the route controller of this conflicting
route. If a functional error of this route controller leads to a situation in which a single bit in
this state variable is constantly stuck at zero or one, the respective ECPT HSI tests of this route
controller will definitely reveal such an error, since simple output faults are captured by the fault
model of our approach.

6.3 Deterministic Finite-State Machine Experiments for
Additional States Mutations

To investigate the test strength of the heuristics for exploration of additional states, we performed
dedicated experiments using DFSM mutations. The use of SystemC mutations was insufficient
for this, because the first-order mutants rarely resulted in additional states in an implementation.
The use of DFSM mutations makes it possible to introduce additional states directly to the DFSM
abstraction. The resulting mutants will be outside the fault domain because of the additional
states,! while the IECP of the mutants will be equal to the IECP used for testing. Therefore, the
results presented in the remainder of this study clearly focus on the evaluation of the heuristics
presented in Section 4.3.4.

1Recall that in the previous experiments we applied the Wp-method under the assumption that the number of
states in the implementation was equal to the number of states in the specification (m = n). Thus, every
DFSM mutation with at least one additional state is outside the fault domain.
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The mutants were created as follows. In a first step, additional equivalent states were added to
the DFSM by duplication of existing states and changing the target of existing transitions in
some cases from the original state to the equivalent duplicated state. Afterwards, a single DFSM
fault (i.e., a transfer or an output fault) was seeded. The resulting DFSM was checked to be
non-I/0O-equivalent and to contain more states in its minimised DFSM than the original DFSM.

For our experiments, 2000 mutants were generated in each case with up to 10 additional states.
The concrete number of additional states generated by the mutation algorithm varied, but our
observations indicate that the actual number of additional states was distributed quite uniformly.
For the test-case generation, we used the three heuristics presented in Section 4.3.4, with the
assumption that the SUT does at most contain 10 additional states.

In the following tables, SUF-R denotes the heuristics performing a random walk of length 10
through the DFSM. SUF-S denotes the heuristics that guarantees that every state is visited
equally often. SUF-E denotes the heuristics that ensures that every edge is taken equally often.
Again, we generated a random test suite to compare the ECPT test suites to a test suite with
the same number of test cases with same length as the test cases generated by ECPT—including
the suffix of length 10 for STRAT-R, STRAT-S and STRAT-E.

Table 6.5: Results for Random Suffix Heuristics for the Ceiling Speed Monitor Considering DFSM
Mutants with Additional States. For each strategy, 93 test case were generated.

Strategy Mutation Score Mutation Score

ECPT Tests RT
STRAT-1,. 463.0 (0.0)/2000 = 23.1% 4.6 (7.9)/2000 = 02%
SUF-R 1361.2 (46.1)/2000 = 68.1 % || 63.7 (86.2)/2000 = 3.2%
SUF-S 1359.4 (97.7)/2000 = 68.0 % || 63.7 (86.2)/2000 = 32 %
SUF-E 1439.5 (76.4)/2000 = 72.0 % || 63.7 (86.2)/2000 = 3.2%

Table 6.5 shows that, for the CSM case study, about 70 percent out of the 2000 mutants could be
detected using the suffix heuristics. Without the use of the suffix heuristics, merely 23 percent
of the mutants could be revealed, which is not surprising, given the fact that the mutants were
outside the fault domain because of their additional states. The improvement to a mutation
score of up to 72 percent by use of STRAT-E is remarkable given the fact that the number of
tests was not increased and the search for the mutation was randomised and only guided in a
way ensuring that the original DFSM was uniformly covered.

Comparing the three heuristics, SUF-E shows the best results—discovering up to 80 mutants
more than the other heuristics. SUF-R and SUF-S show quite similar results. The comparison
to RT points out that the naive choice of arbitrary input values to generate test sequences was
not sufficient to reveal errors resulting from additional states in the implementation. RT merely
achieved a mutation score of 3.2 percent when applying random test sequences of the same length
as our ECPT strategies with suffix heuristics. This very low mutation score results from the fact
that a random choice of input values from the input domain using a uniform distribution of
values is very likely to select values from X; and X5 (cf. Figure 3.3) while the other IECs are
very unlikely to be selected because of their narrow shape.

Table 6.6 confirms the observation that SUF-E performs best for the airbag controller. In this
case, about 98 percent of the 2000 mutants were rejected by the test suite using strategy SUF-E.
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Table 6.6: Results for Random Suffix Heuristics for the Airbag Controller Considering DFSM
Mutants with Additional States. For each strategy, 722 test case were generated.

Strategy Mutation Score Mutation Score

ECPT Tests RT
STRAT-1 1666.0 (0.0)/2000 = 83.3 % || 233.1 (32.8)/2000 = 11.7%
SUF-R 1942.8 (11.1)/2000 = 97.1 % || 305.0 (63.2)/2000 = 152 %
SUF-S 1962.0 (10.5)/2000 = 98.1 % || 305.0 (63.2)/2000 = 15.2%
SUF-E 1966.6 (11.2)/2000 = 98.3 % || 305.0 (63.2)/2000 = 152 %

Note that the value of STRAT-1 indicates that more than 83 percent of the mutants were killed
without any suffix heuristics, although these mutants were not covered by the fault domain.
Therefore, the improvement of the suffix heuristics is not as obvious as for the CSM. Still, the
final mutation score is remarkable.

Comparing the results with RT, it is apparent that RT, with a mutation score of about 15 percent,
is inadequate to deal with the additional-states mutants from these experiments. Compared to
the CSM case study, the RT mutation score did not suffer from the large inequality of IEC sizes;
therefore, RT yielded slightly better, but still unacceptably low, mutation scores.

Table 6.7: Results for Random Suffix Heuristics for the Route 2011 (example network) Consid-
ering DFSM Mutants with Additional States. For each strategy, 477 test case were

generated.
Strategy Mutation Score Mutation Score
ECPT Tests RT
STRAT-1 869.0 (0.0)/2000 = 43.5 % || 573.5 (12.0)/2000 = 28.7 %
SUF-R 1617.2 (24.7)/2000 = 80.9 % || 665.7 (16.0)/2000 = 33.3 %
SUF-S 1683.4 (16.6)/2000 = 84.2 % || 665.7 (16.0)/2000 = 33.3 %
SUF-E 1690.1 (18.5)/2000 = 84.5 % || 665.7 (16.0)/2000 = 33.3 %

Table 6.7 and Table 6.8 show the results for the interlocking case studies Route 2011 (example
network) and Route 12a (Lyngby), respectively. Again strategy SUF-E performed best and
revealed on average 85 percent of the mutations. SUF-S was in both case a little less effective,
and SUF-R showed the worst results of the three compared suffix strategies. Still, all suffix
strategies were able to double the mutation score for the additional-states mutations considered
in these experiments when compared to STRAT-1.

The surprisingly high mutations score that RT achieved for the Route 2011 (example network)
model can be explained by appealing to the relatively large number of test cases applied to a
DFSM with merely eight states.

The high variance in the mutation scores is probably correlated with the difference in DFSM
characteristics. In particular, the number of states of the minimised DFSM abstraction seems
to be correlated with the mutation scores achieved by the ECPT heuristics. Observe that the
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Table 6.8: Results for Random Suffix Heuristics for the Route Controller for Route 12a (Lyngby)
Considering DFSM Mutants with Additional States. For each strategy, 2222 test case
were generated.

Strategy Mutation Score Mutation Score

ECPT Tests RT
STRAT-1 822.0 (0.0)/2000 = 41.1 % | 16.5 (2.1)/2000 = 0.8 %
SUF-R 1595.4 (61.5)/2000 = 79.8 % || 19.0 (2.0)/2000 = 0.9 %
SUF-S 1684.3 (10.7)/2000 = 84.2 % || 19.0 (2.0)/2000 = 09 %
SUF-E 1716.5 (22.3)/2000 = 85.8 % || 19.0 (2.0)/2000 = 0.9 %

number of states for CSM, Route 2011 (example network), Route 12a (Lyngby) and the airbag
controller are 4, 8, 17 and 44, respectively. The mutation scores achieved by ECPT in combina-
tion with suffix heuristics yields the same order. For CSM, the lowest mutation score is achieved,
while we observe the highest mutation score for the Route 12a (Lyngby) model. Note that the
seeding of 10 additional states has a higher impact for models with lower numbers of states. The
recurrence diameter of the resulting mutant is increased in any case by a value in the range of
one and ten. Obviously, the relative increase is higher for smaller models, thereby resulting in
harder-to-detect mutations.

From these experiments, it can be summarised that SUF-E seems to be the best option when
suffixes shall be generated to explore additional states in an SUT. From the experimental results,
we conclude that such an approach is recommendable for test suites in which additional test-case
length does not excessively introduce extra testing effort. As argued before, for system tests, the
number of test cases is usually the critical factor, as a system reset is time costly. Additional
test steps are usually not as expensive and may be acceptable. The suffix heuristics were able to
increase the mutation scores in the presence of additional-states mutations by factors of up to
three in our experiments—without a need for a larger number of test cases.

One could argue that the mutation scores are in most cases far from 90 percent—except for the
airbag controller. As mentioned earlier, for application to safety-critical systems, this value may
be insufficient if our ECPT approach is applied without complementary verification measures.
However, we again emphasize that the results are nonetheless remarkable given that the approach
is not guided by any implementation details. No information regarding the implementation
internals is used, and a more sophisticated approach will probably require internal information
to better guide the test generation. In practice, testing activities will be complemented by code-
coverage monitoring, which will give some insight into the parts that are not sufficiently covered
by ECPT tests. The suffix heuristics may help to cover some previously uncovered parts of the
implementation. However, such a best-effort approach can in the best case reduce some costs
for manual test-case specification. Some parts of the system will still need to be tested by more
sophisticated approaches and manually defined test cases considering expert knowledge of the
implementation. Furthermore, safety-related standards like [Eur0O1] require long-duration tests
that are specifically dedicated to the exploration of system states that are to be expected after
long test sequences. Thus, the ECPT test can be expected to be complemented by other testing
activities to raise the confidence in the absence of harmful additional states in the SUT.
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6.4 Threats to Validity

6.4.1 Dependence on Syntactic Model Representation

Usually, MBT and the test strength of the generated test cases can be expected to be dependant
on the concrete syntactical representation of the test model. Fortunately, this threat to validity
is encountered by our ECPT approach. As mentioned in Section 2.5.4, the ECPT is independent
of concrete model representations. The RT approach used for comparison in our experiments is
independent of the concrete model representation as well. In case of RT, we use the test model
as an oracle only: I.e., we apply the randomly generated input traces to the test model to obtain
the expected result, which contains only expectations for output variables. Thus, internal model
variables have no impact on the generated test suites and test oracles.

6.4.2 Threats Caused by Model Selection

The selection of models might have an impact on the experimental results. To reduce this threat,
we used different models with opposing characteristics. The CSM has a very small recurrence
diameter, a small number of internal states, and relatively wide input equivalence classes. The
airbag controller, on the other hand, has many internal states, a large recurrence diameter,
and narrow input equivalence classes. While both models have input classes that are unions
of continuous subsets of R™, the case studies of the route controllers—Route 12a (Lyngby) and
Route 2011 (example network)—work with input classes which are subsets of (very large) discrete
sets specified by complex predicates that represent train and track element constellations in a
railway network. For these classes, interior values and boundary values have to be defined in a
different way than described in Section 4.3.3. Despite these considerable differences, the results
obtained with test strategy STRAT-3 are on the same level for all compared case studies. The
test model of Route 12a (Lyngby) further illustrates that very large state spaces can be dealt
with and that our approach is scalable to systems of high complexity. The mutation experiments
conducted for the case studies all yielded comparable results. This raises confidence that the
results are generalisable to other models as well. Therefore, we conclude that the residual threat
related to model selection is very low.

6.4.3 Threats Caused by the Mutant Generator

Threats to validity might be caused by the mutant generator that we used in our experiments.
In our previous work [HHP15], we used three different Java mutant-generation tools. The results
from the pJava tool were presented. Apart from that, the PITest? and the Major mutation
framework [Jusl4] were applied. All these tools used similar mutation operators. So far, in
all of our experiments, the observed impact of the choice of a specific mutant generation tool
was quite low. Based on this, we implemented the “ordinary” mutation operators mentioned
above. The results of all three Java-mutant generators were comparable to the results of our
SystemC-mutant generator using the subset of ordinary mutation operators.

2See http://pitest.org/
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6.4 Threats to Validity

6.4.4 Dependencies on the DFSM Test Strategies Applied

The comparison of results from previous work also indicates that the test strength of STRAT-
1,-2,-3 is robust with respect to the selection of complete DFSM testing strategies: While we
used the Wp-Method in this work, in previous work we used both the W-method and the Wp-
method. In [PHHI16b], we used both methods on the same interlocking case studies. Both
methods obtained very similar results in experiments in which Java mutations were used. The
Wp-Method [FvBK ™91, LvBP94] usually results in fewer test cases than the W-Method, while
guaranteeing the same fault coverage at the DFSM level. Fewer test cases, however, also implies
that fewer random selections from input equivalence classes will be performed when applying
strategies STRAT-2 and STRAT-3. The experiments from [PHH16b] indicate that this does not
affect the test strength for SUT behaviours outside the fault domain. Therefore, we expect that
our results do not significantly depend on the specific DFSM testing approach that is applied.

6.4.5 Runtime Error Detection

In preliminary stages of our experiments, we also tried out some types of typical runtime-error
mutations. Typical runtime errors include stack-overflow errors, memory-access violations caused
by invalid pointer addresses or invalid array indexes and race conditions. The results showed
that our approach is not well-suited for the detection of runtime errors. It is a well-known fact
that runtime errors are hard to detect via functional testing [KF16].

To overcome this problem, a variety of tools exists to detect typical runtime errors without
dynamic execution of code. These tools use static analysis methods and abstract interpretation
to statically determine the dynamic behaviour of software [CCEFT06, CCFT09]. Nonetheless,
our testing strategy may, in some situations, reveal runtime errors during execution which may
be based on the fact that our approach results in high code coverage, which is correlated with
detection probabilities in general. But the sporadic nature of runtime errors—especially errors
related to memory-access violations and memory corruption—usually results in indeterministic
behaviour during test execution.

6.4.6 Significance of SystemC Mutations as Surrogates for Real HW /SW
Integration Faults

While evidence exists that software mutations provide a good way to evaluate the test strength
of a testing strategy [ABLO05, JJIT14], there is no empirical evidence that the SystemC mutation
approach presented in this work is coupled with real HSI faults. The reason is obviously that we
were, to the best of our knowledge, the first to consider such an approach for the evaluation of
HST tests. Future experiments following an experimental setup comparable to [ABL05, JJIT14]
will have to investigate the representativeness of our proposed mutations. Therefore, a threat to
validity considering the applicability of our testing strategy to HSI testing remains. This threat
should be a starting point for future work.
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6.4.7 Threats Concerning the Deterministic Finite-State Machine
Mutations

The use of DFSM mutations in the experiments above was due to the need for mutants containing
additional states. These may not be representative of real erroneous SUTs with additional states.
However, the way the mutants were generated—Dby first introducing equivalent states and then
seeding a single fault—might find its analogy in real development lifecycles. Use of a software
clone—i.e., a piece of code that is duplicated as an exact or very similar copy—is considered a
bad practice in software development. This is due to the observation that clones increase the
maintenance effort of software and increase the risk of errors. A change in one instance of the
clone but not the other instance of the clone will result in inconsistencies that are in many
cases the cause of error. Thus, software clones in an implementation and errors emerging from
changes in one instance of the clone might result in erroneous SUTs that look similar to the
mutants considered in these experiments.
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7 Related Work

This chapter provides an overview of related work. We give some references to work that is related
to automated test-case generation, including MBT and equivalence class partition testing. For
an extensive overview, please also refer to [ABCT13] and the references therein. Finally, we refer
to work related to the domain of mutation analysis for test-strength evaluation.

7.1 Model-based Testing

The approaches presented in [HLSU02, HAIMRO04, EKRV06] show how model checking techniques
can be used to generate test suites on extended finite-state machines (EFSMs). [HLSU02] encodes
different criteria, such as state and transition coverage, but also includes advanced data-flow
criteria like define-use-pairs as CTL formulas. These CTL formulas are then checked on the
model and the counter-example that is returned by the model checker represents a test case that
is needed to fulfil a certain coverage criterion. Similarly, [HdMRO04] uses an incremental approach
that generates test cases to fulfil a set of goals. These goals are encoded as model-checking
instances. The set of test cases is iteratively augmented, and test cases are extended to fulfil all
test goals. [EKRV06] additionally tries to optimise the test cases with respect to test-case length.
This is done by guiding the search of the UPPAAL model checker. However, all these approaches
require the EFSM state space to be finite. Note that EFSMs can be straightforwardly expressed
by RIOSTSs. Therefore, our approach is applicable to EFSMs with inputs from possibly infinite
domains.

Most UML-based MBT approaches try to fulfil structural-coverage criteria, like state and trans-
ition coverage of state machines [FHP02]. For these approaches, the generated test suite largely
depends on the syntactical representation of the test model. In contrast to this, our approach
is independent of the syntactical representation of the reference model. The RT-Tester MBT
component (RTT-MBT) [PVL11, Pell3] that our implementation relies on is an example for
an industrial-strength tool making it possible to generate test cases from UML/SysML state
machines. The tool makes it possible to generate test cases covering different goals, includ-
ing goals that contribute to the following coverage criteria: state coverage, transition coverage,
hierarchical transition coverage, basic control-states pair coverage and MC/DC coverage [Pel13].
Additionally, user-defined goals can be specified using linear temporal logic (LTL) specifications.
The implementation presented in this work reuses several parts of RTT-MBT and augments
RTT-MBT by the novel ECPT approach.

[FG09] evaluates different MBT test-case generation techniques. The authors define different
existing coverage criteria, including different structural, control and data-flow criteria and muta-
tion coverage. Again, these coverage criteria are formulated as CTL model-checking instances.
The main result of the evaluation is that no coverage criterion can be considered superior to
another. All criteria “cross-cover” other criteria but no criterion completely subsumes all other
criteria. The authors conclude that a combination of different criteria in combination with a
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flexible framework, as given by the use of a model checker, is supposed to achieve the best
results. Taking these results into account, future work could address the combination of our ap-
proach with other test criteria. These could be used for IEC refinement or for more sophisticated
heuristics to be used for concrete input calculation from IECs.

Other MBT approaches [dVT00, KATP02, Tre96b, Bell0] are based on LTSs. These approaches
use the ioco-conformance relation [Tre96a]. LTSs are an event-based formalism which, in its
original form, relies on a finite event alphabet. To model concrete data from large or even infinite
domains, Symbolic transition systems (SyTSs) can be used. In [FTWO04], the ioco-conformance
relation is lifted to SyTSs. [FTWO04] describes an algorithm to derive a test suite that is sound
and complete for a given set of system traces. However, the generated test suite is not necessarily
finite and no equivalence partitioning of system variables is considered. Therefore, the concrete
value selection for input variables from an infinite input domain results in an infinite number of
test cases.

An MBT approach that comes close to the approach presented in this work is presented in [DBI12].
Stream X-machines (SXMs) are used as a modelling formalism. SXMs are FSMs enriched by
a possibly infinite memory and transitions that are labelled by processing functions. [DBI12]
uses a modified version of the W-method [Cho78] to generate a complete test suite. The main
assumption used by the authors of [DBI12] is that the processing functions are correctly imple-
mented. In contrast to this, our approach guarantees completeness for all systems that are part
of the fault domain, as defined in Section 2.5.3. This is a less restrictive assumption compared
to that in [DBI12].

[Gau95] investigates the theory of complete (respectively exhaustive) testing theories. Restricting
an exhaustive test set to a finite subset can be regarded as the introduction of hypotheses called
selection hypotheses in [Gau95]. For example, the uniformity hypothesis relates to equivalence
class partition testing which states that the SUT shows equivalent behaviour for all members
of an equivalence class. The notion of “completeness with respect to a fault model” as used
throughout this work was first introduced in [PYvB96].

For DFSMs, different complete testing theories exist. This work uses the W-method originally
proposed in [Cho78]. The Wp-method [FvBK"91] modifies the W-method to produce smaller
test suites. Other examples of complete testing theories are the D-method (distinguishing se-
quence) [Gon70], T-method (transition tour) [NT81], UIO-method (unique input output) [SD85],
and modified versions of the UIO method: i.e., the SUIO-method (single UIO) [ADLU91] and
the MUIO-method (multiple UTIO) [SLD92]. A generalised version of the Wp-method [LvBP94]
is applicable to non-deterministic FSMs as well. Other approaches that are applicable to non-
deterministic FSMs are presented in [PY14, Hie04].

Another possible way to generate test cases is to intentionally introduce faults into the SUT
and then derive test cases that are able to reveal this specific fault, as in [KST"15] where UML
models are mutated. Section 7.4 gives some more examples of work related to mutation testing.

The MBT approach treated in this work is based on a wide range of previous work mainly
conducted at the Department of Operating Systems at the University of Bremen [PVL11, Pell3].
This work led to the development of RT'T-MBT, which has been the baseline for the development
of our implementation of the ECPT approach. ECPT testing theory has been developed in
[HP13], and the completeness of the approach has been proven therein. In [HP16a], more details
including an implementation proposal have been laid out. The approach has been generalised for
the application to non-deterministic systems as well in [HP16b]. However, our implementation
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does not yet consider the results of [HP16b]. The fact that the ECPT is independent of the
syntactical representation is discussed in detail in [PH16].

Another aspect of MBT to be considered is the feature of incremental testing. While an SUT
will usually be implemented incrementally, it is advantageous if the testing approach supports
incremental testing. Incremental test approaches shall make it possible to focus on the changes
introduced by some deltas—like addition and modification of transitions in FSM-based test
models. In turn, the test generation can be accelerated, and in the best case, test execution
can be limited to the changes that were introduced. In [VBM15], in the context of product-line
testing (where deltas are introduced by configuration of products from a common core model
of the product line), incremental testing has been applied to test models obtained from the
DeltaJava framework. The authors propose an incremental test-case generation approach, and
it is shown that the test-case generations can be accelerated by a factor of two using this delta-
oriented approach. The complexity considerations given in [VBM15] indicate that this result
can be generalised to other applications. Therefore, the consideration of incremental FSM-based
testing may be worth pursuing as a way for our ECPT approach to speed up test-case generation
and limit the test-case execution to test cases that are needed to verify the changes introduced
between different software versions.

7.2 Equivalence Class Partition and Boundary-value Testing

Testing based on equivalence classes, often referred as partition testing, has long been known as
a worthwhile approach. Therefore, safety-related standards [Eur01, RTC92, ECS09] mandate for
the use of equivalence-class testing. Early work on the formalisation of testing and equivalence-
class testing [GG75, WO80, RC81] focused on stateless specifications and implementations (e.g.,
the implementation and specification of a single function). [WO80] introduced the concept of
revealing subdomains. A revealing subdomain is a subset of the input domain with the follow-
ing property: If one input of this domain reveals an error, all other inputs of this subdomain
reveal an error as well. Note the correspondance to our definition of a fault domain given in
Section 2.5.3—especially Equation 2.78. Given an input partitioning of revealing subdomains,
a test suite derived by selection of one representative from each subdomain is complete in our
words or ideal-i.e., valid and reliable—in the words of [GGT75]. Because the proof that a subdo-
main is revealing is infeasible in general, [WO80] and [RC81] propose an approach that combines
implementation (white-box) information and specification (black-box) information. Symbolic
execution techniques can be used to calculate an input partition of the implementation (the path
partition) and an input partition according to the specification (the problem partition [WO80] or
specification domain [RC81]). The intersection of both partitions can then be used for test-data
generation.

[DF93] addresses automated partition analysis for state-based models. VDM specifications are
used for partition analysis. The approach requires the calculation of a DNF representation of
the specification. From this DNF, an FSM is calculated and this FSM is used in turn to generate
test sequences. In our work, we intentionally prevented the use of a DNF representation of
the transition relation, because, in general, this DNF will grow exponentially for more complex
specifications. Instead, we use our optimisation as presented in Section 4.3.5.1.

Furthermore, state-equivalence class calculation for reactive systems is addressed in [GGSV02].
The authors describe how systems defined in a formalism called abstract state machines can
be abstracted to an FSM. The approach presented in [GGSV02] is applicable to systems with
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finite inputs but with potentially infinite state space. The algorithm depends on a user-defined
equivalence relation and a relevance condition: i.e., a condition to prune state-space exploration.
The state space is explored and state-equivalence classes, called hyperstates by the authors, are
calculated. In general, the choice of the equivalence relation and relevance condition may result
in an under-approximation of the final FSM: L.e., not all reachable state equivalence classes may
be found and hence the FSM may be incomplete. The approach presented there is related to our
reachability analysis presented in Section 4.3.5.1. In contrast to [GGSV02], we are able to deal
with infinite input domains by use of our IEC abstraction. The use of the ~MO equivalence for
abstraction in combination with the restriction of model and output variable domains to finite
sets results in an FSM abstraction that is guaranteed to be complete and finite in our special
case.

In the aforementioned work [RC81], the authors suggest the use of boundary values from IECs to
be used to reveal so-called domain errors. Evidence for the fact that boundary-value testing yields
higher fault coverage than equivalence-partition testing in isolation is given in [Rei97]. A formal
definition of boundary coverage criteria has been introduced in [KLPUO04]. [Rei97] again focuses
on stateless specifications. In contrast to this, [KLPU04] addresses the sequencing problem,
which, if we understand it correctly, solves the problem of finding a sequence from the initial
state to a state in which a boundary value is applicable. However, the approach described in
[KLPUO04] uses an equivalence-class definition that considers only the local effect predicates—i.e.,
the pre and post conditions of functions—while our definition of IECs always considers the effect
of inputs on every possible state. Furthermore, in our work, we merely use the One-Boundary
criterion to select a single boundary value. We do not use one of the stricter boundary-coverage
criteria (such as All-Edges) presented in [KLPUO04], although the effectiveness of these criteria
integrated with our test-case generation could be investigated in future work. However, at the
moment of this writing, we consider a value a boundary value if it lies on at least one “edge” of
an IEC. However, in combination with the randomisation, we use multiple boundary values. We
intentionally do not refine the IECP to fulfil a strict boundary coverage criterion, because this
would result in an exponential growth of the IECP. Our heuristics, denoted as STRAT-3 in our
experiments, showed good results while not affecting the size of the generated test suites. Still,
this heuristic approach preserves the completeness of our approach in contrast to that of [Rei97]
and [KLPUO04], which do not give any statement about guaranteed fault coverage, as defined by
a formal fault model.

7.3 Adaptive Random Testing

Adaptive random testing (ART) [CKMT10], in contrast to RT, focuses on optimised distribu-
tions of test data over the input domain. This distribution is favoured based on the assumption
that failures—respectively inputs that provoke failures—form contiguous regions. The distance of
new test inputs to existing inputs that have not yet raised a failure should thus be maximised.
Therefore, randomly selected test data should be evenly spread over the input domain. Again,
most research in the domain of ART focuses on state-less tests in which input vectors are gener-
ated in contrast to sequences of input vectors that are needed for the testing of reactive systems.
However, in [AIB10], a combination of ART and search-based testing is applied to real-time
embedded systems.

[CTYO01] presents surprising results of comparing random testing and partition testing. Note
that partition testing there means the general approach to the partitioning of the input domain
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by arbitrarily pre-defined criteria. The authors show that equivalence partition testing does
not necessarily always perform better than RT. The test strength of partition testing strongly
depends on the failure patterns: i.e., on the location of inputs that are able to provoke failures. If
these failure inputs are uniformly spread over all IECs then partition testing behaves worse than
random testing. The authors propose a technique called proportional sampling to ensure that
partition testing behaves at least as well as RT. Proportional sampling extends partition testing
by restricting partition testing in a way which assures that the number of inputs from each IEC
used in testing is proportional to the size of the IEC. This is called the proportional sampling
condition. It guarantees that partition testing is at least as good as random testing regardless
of the failure patterns. If the failure pattern has a form—in which many failures are in the same
partition—then partition testing is the right method; otherwise, proportional sampling is able
to improve partition testing. The interval bisection introduced in Section 4.3.1.1 ensures that
the proportional sampling condition will finally be ensured. Given a refined IECP obtained by
interval bisection, it is ensured by construction that the number of refined IECs is proportional
to the size of the original IECs. It must be noted, however, that proportional sampling is able to
improve the test strength in case of poor choices of equivalence classes only. These are cases in
which RT performs better than partition testing. We believe that our ECPT approach will most
likely result in partitionings that are “good enough” to surpass RT. Our experimental results
support this hypothesis. However, in the unlikely case in which our ECPT approach performs
worse than RT, interval bisection can be used to ensure that at least the test strength of RT is
achieved. As argued before, this will result in an enlarged fault domain as well.

7.4 Mutation Analysis and Mutation Testing

The first mutation-analysis experiments were preformed in the late seventies [DLS78]. [JH11]
gives an overview of work that evolved from these early experiments. While most of this work is
related to mutation analysis, [ABM98] proposes the use of mutation testing: i.e., the concept to
drive the test-case generation by mutations.

When using mutation analysis for experimental test-strength evaluation or mutation testing for
the automated generation of test cases, one relies on the representativeness of the generated
mutants. The central question is whether the mutants that are used are a valid surrogate for
real faults. Some experimental evidence exists to show that this is the case [ABL05, JJIT14].
[ABLO5] investigates whether there are statistically significant differences in failure detection
ratios of different test suites randomly drawn from large test pools when using real faults and
when using randomly seeded mutations. The authors used eight subject programs, written in C.
For these programs, large pools of test cases and faults are available. The experiments show that
mutation scores obtained using SW mutation operators seem to be a good indication of the real
fault-detection capability of a test suite. The results suggest that mutations are neither easier
nor significantly harder to detect than real faults. In their statistical experiments, the authors of
[JJT*14] use a similar approach. Additionally, the effect of code coverage on fault-detection cap-
abilities is considered in the experiments. Code coverage may have an impact on both mutation
score and real fault-detection capability. Therefore, the authors control this variable in their
experiments. The results indicate that there is a positive correlation between mutation score
and real fault-detection capabilities and that this correlation is significantly stronger than the
correlation between statement coverage and fault-detection capabilities.

145



7 Related Work

7.4.1 Model-Based Mutation Testing

A model-based approach for mutation testing is presented in [KSTT15]. The tool MoMuT::UML
supports the mutation based test-case generation from UML models that are composed of class
diagrams, state machines and instance diagrams. The tool uses strong mutation testing: ILe.,
the equivalence of a mutant to the original model is checked using the ioco-conformance re-
lation of LTSs. For non-equivalent mutants, a trace can be computed that reveals the ioco
non-conformance. Because of the use of ioco and LTS semantics, this approach is limited to
finite systems.

Another model-based mutation-testing approach is proposed by [PM11, PM12]. This approach
follows the weak mutation-testing approach: L.e., a mutant is considered non-equivalent as soon
as the internal state differs from the original model (in contrast to strong mutation testing in
which the difference must be observable). Therefore, this approach is applicable as a white-box
testing strategy in which the internal state can be observed.

[HMO09] describes a way to generate mutation-based test cases for probabilistic and stochastic
FSMs: i.e., FSMs whose transitions contain probabilities or stochastic times. The generated test
sequences are applied several times and the output is investigated using statistical methods to
decide whether the observations match the expected frequency of observations.

Mutation-testing approaches allow for a mutation score of 100 percent given enough computa-
tional effort. This value can hardly be achieved by other approaches. While mutation testing
intentionally tailors the test cases to achieve 100 percent mutation score, our approach is com-
pletely independent of any mutation engine. The fact that our approach nearly achieves full
mutation coverage is therefore a remarkable result. In addition to this high mutation score, our
approach guarantees completeness with respect to a fault model that may contain a fault do-
main of infinite size. Mutation testing guarantees only the absence of certain syntactically seeded
faults, which represent a necessarily finite fault domain which is dependent on the syntactical
representation of the reference model and the mutation operators used.

7.4.2 SW-Mutation Analysis

A variety of approaches and tools related to SW mutation testing exist. In the late seventies,
[DLST78] first proposed the use of simple errors in programs to assess test data. The authors
suggested selecting test data that is able to reveal these errors and make use of the coupling
effect: I.e., complex error conditions are composed of simple errors. Thus, test data that reveals
simple errors will also be sufficient to reveal complex errors. Since then, a wide range of SW
mutation testing and analysis tools emerged. [Jusl14] presents the Major mutation framework,!
which makes it possible to mutate Java programs and run JUnit test cases against the mutants.
For the practical application of SW mutation analysis, mutation tools are mainly concerned
with optimisations to allow for scalability for large programs. [Jus14] uses a compiler-integrated
mutation engine that implements optimisations. Most mutation tools use a common set of
traditional mutation operators that are mainly based on replacement and deletion of arithmetical,
logical and conditional operators, of constants and of statements. Besides these traditional
mutation operators, [MOKO05] proposes object-oriented mutation operators for Java programs.
These operators have been implemented in the pJava tool?.

lsee http://mutation-testing.org/
2see https://cs.gmu.edu/~offutt/mujava/
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7.4 Mutation Analysis and Mutation Testing

7.4.3 HW-Fault Injection

[CP95] gives a thorough overview of fault injection methods. The main objective of the fault
injection methods discussed there and in the references given there is the assessment of a sys-
tem’s dependability. To this end, faults are injected into a safety-critical system to determine
whether the fault-tolerance mechanisms of the system are sufficient. The injected faults simu-
late hardware-related permanent and transient faults. Some of the approaches model software
component faults as well. These faults may result from the functional incorrectness of the sys-
tem resulting in the crash of a software component. However, these classical fault injections
methods are not directly applicable for the test-strength evaluation of the HSI tests. Our eval-
uation approach aims at the detection of systematic functional errors that result in permanent
non-conforming I/O behaviour of the SUT. Hardware faults, at least transient faults, relate to
unexpected events that are triggered by external events. Software component faults as simulated
by fault injection methods mostly correlate with runtime errors. Recall that such errors are out
of the scope of our HSI test-evaluation approach, as functional tests are not beneficial for the
detection of runtime errors. We assume that abstract interpretation [KF16] is used before HSI
tests are applied.

7.4.4 SystemC-Based Fault Injection

[MMGS14] presents an approach that uses SystemC as the target language of a fault injection
approach. The authors propose applying fault injection on multiple levels. Faults are injected at
the register transfer level (RTL). Additionally, high-level errors are injected at the behavioural
level. This is achieved by manipulation of variable values. The main contribution of [MMGS14]
is an improved approach to the assessment of the fault tolerance of a system by reducing the
number of masked faults. The authors of [PAP10] propose a similar approach by using fault
injection methods on SystemC models for an early evaluation of fault-tolerance mechanisms
during the design phase. The approach is demonstrated on a safety-critical odometry example
from the ETCS specification. However, the approaches proposed in [MMGS14, PAP10] are not
directly applicable to the test-strength evaluation of HSI tests, as their work focuses on transient
faults on the hardware and software component levels. Again, our approach is not intended to
be used for the detection of transient and runtime errors.

7.4.5 High-Order Mutation Testing

In our experiments, we observed some limitations of first-order mutants. In our case, first-order
mutants were not sufficient to evaluate the test strength for erroneous implementations whose
DFSM abstractions contain additional states. This observation of limitations is in line with
the results of [JH09]. The authors propose the use of high-order mutants. They are specially
interested in the identification of subsuming mutants: i.e., mutants that are harder to kill than
the first-order mutants they are constructed from. [JH09] reports some empirical results obtained
from ten non-trivial case studies. The results there led to the publication of a manifesto for high-
order mutation testing [HJL10]. In [HJL10], the authors argue against the wide-spread belief
that high-order mutations are too expensive because of an exponential explosion of the possible
number of high-order mutants. Search-based optimisation can be used to efficiently calculate
subsuming mutants from the theoretically infinite set of possible high-order mutants. Second,
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the authors thoroughly discuss widespread beliefs and wrong conclusions from the competent-
programmer hypothesis, which states that incorrect versions of a program written by a competent
programmer are very likely to be almost correct and thus are very close to the correct version.
The authors argue that ’semantically close’ does not necessarily indicate ’syntactically close’.
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8 Conclusion

In this work, we presented a complete testing strategy applicable to reactive systems with po-
tentially infinite input domains. To exhaustively test such systems, an infinite set of test cases
would be required. However, under the prerequisite that the internal and output variables are
from a finite domain, equivalence class partitioning can be used to abstract these systems to
DFSMs. This allows for the application of complete DFSM testing theories on the abstract
DFSM level. Calculation of concrete test cases from abstract test cases yields a concrete test
suite that is applicable to the concrete SUT. It has been proven that the overall approach is
completei.e., sound and exhaustive for a formal fault model-by the authors of [HP16a]. Thus,
two of the main challenges in testing—namely, the selection of adequate test cases and test data
and the justification of this adequateness—are remedied by this approach.

We have shown that this approach is feasible by implementation of a fully automated workflow for
test-case generation from SysML state machines. The tool can easily be augmented to deal with
other description means, given that the behavioural semantics can be expressed by RIOSTSs.
Furthermore, we have demonstrated that the test-case generation scales up for real-world case
studies—including a test model for a modern interlocking system of very high complexity.

While the completeness property of our approach is beneficial to justify the approach from a
formal perspective, at the end, a testing strategy can only be considered reasonable, if (1) the
testing effort is reasonably low (usually the testing effort is bounded by some project budgets
limiting resources such as time and money for a test campaign of an SUT), and (2) the testing
strategy has a high test strength: i.e., it is able to find as many errors as possible. For many
MBT strategies, it is not possible to define a formal fault model. Therefore, a comparison
of test strength by comparison of fault models is in most cases infeasible. Furthermore, the
connection of fault models to real faults is hard to establish by mathematical means. To show
that the test strength of our approach is reasonably high, we therefore proposed a novel mutation-
analysis approach aiming at the evaluation of the test strength in the context of HSI testing.
For a comparison, we used random testing. The experiments have shown the superiority of the
ECPT approach against random testing. Furthermore, the experiments show that the ECPT
approach in its original form can be enhanced by a combination of randomisation and boundary-
value selection. The improvements to the ECPT approach we propose in this work are able
to significantly improve the mutation score of the ECPT approach without increasing testing
effort. We consider the mutation score achieved for all considered case studies-ranging from 90
percent up to 98 percent—a very high value. This value can be achieved if the ECPT is combined
with randomisation and boundary-value selection. We therefore propose this combination as
the best alternative to yield a testing theory that is complete with respect to the fault model,
as proven in [[IP16a] and shows a very high test strength in experiments using mutations and
examining SUTs that are independent of the fault domain. In fact, many of the mutants used
in our experiments are outside the fault domain. At least all mutants that are not killed by the
original ECPT strategy, denoted as STRAT-1, must be outside the fault domain. SUTs that are
outside the fault domain because of a greater number of states in their DFSM representation
impose special challenges on our testing approach. While in general, the W/Wp-method makes
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it possible to generate complete test suites for arbitrarily large SUTs, the resulting test suite will
grow exponentially with the expected number of states in the SUT. We presented heuristics that
are based on the uniform random generation of paths in a graph. These heuristics have been
shown to significantly improve the test strength using DFSM mutations. Still, the number of
test cases was not increased by these heuristics.

The selection of models and the wide range of systems that we examined gives hope that the
results shown in this work are generalisable to other systems as well. In particular, we have
demonstrated the applicability of ECPT testing to the railway domain. It can be summarised
that ECPT with its guaranteed completeness with respect to a fault model and its experimentally
measured high mutation scores can be considered a valuable formal method for the verification
of interlocking systems and safety-related train on-board computer functionality. We believe
that our approach is able to ensure the safety and reliability of complex embedded systems
in the railway domain and other application areas. For the interlocking case studies, we have
additionally shown how model checking and MBT in combination [HP15] can be used to verify
that an implementation fulfills its specification, which itself has been proven to fulfil safety
constraints [VHP17].

Besides the notable results presented in this work, there are many opportunities for future re-
search. While we used SysML state machines in this work for the modelling of system behaviour,
our approach is in general applicable to every formalism whose semantics can be expressed by
RIOSTSs. In our mutation-analysis approach, we used SystemC models as the modelling lan-
guage for the implementation used for the experiments. SystemC might be a candidate for a
modelling formalism to be supported by our ECPT testing strategy. It might be worthwhile to
investigate the potential of the extraction of a transition relation from SystemC models.

Another possible extension of the ECPT approach is to allow for the modelling of physical
constraints. For system tests, a general problem for testing is to find realistic input data. While
our approach currently assumes that every input variable can change its value in an arbitrary
way, it is necessary for system tests that inputs obey certain constraints. In particular, inputs
that are related to physical entities are usually subject to physical constraints. One possible
way to augment our approach is to allow for physical constraints to be modelled—for example by
parametrics, a SysML diagram type used to model physical laws and other types of constraints.

In addition to the approaches for IECP refinement presented above, further extensions are pos-
sible. One possible approach is refinement using implementation details. If some of the imple-
mentation details of the SUT are known (e.g., if source code of parts of the SUT is available),
they can be used to either, (1) check whether the IECP used for test-case generation is fine-
grained enough or, (2) to refine the IECP using implementation details. The second option
could be implemented, for example, by using conditions in if- and loop statements, assuming an
implementation language like C/C++. But for programs of arbitrary form, this is not a trivial
task. For example, C allows for expressions including function calls, which are not necessarily
side-effect free. Even worse, C++ allows for polymorphism: For virtual member function calls,
the behaviour can only be predicted at run-time. Exceptions introduce another level of complic-
ation. Therefore, it can be expected that, for general programs, it will most likely not be possible
to extract an IECP that can be proven to fulfil Equation 2.78. However, some information of
the code can be used to refine an IECP to get closer to an optimal IECP and to improve the
test strength.

In this work, we have presented the integration of random test concepts and boundary-value tests
to the ECPT strategy. Future work could investigate the integration of other test criteria to be
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considered for IECP refinement or concrete value selection. Finally, for our proposed mutation-
analysis approach, a detailed investigation of the representativeness for typical HSI faults needs
to be conducted to counter possible threats to the validity of the experiments presented in this
work.

We hope that the results obtained in this work and future research results will finally bring MBT
and ECPT to industry and make the approach a best practice for the verification of safety-critical
systems. Progress in the area of MBT is necessary to cope with the increasing complexity of
embedded systems and to help to improve the safety and reliability of future technologies. With
this work, we demonstrate that MBT is both applicable and beneficial due to its automation and
fault-detection capabilities.
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Glossary

CSM Ceiling speed monitor. The ceiling speed monitor denotes a mode of the speed-and-distance
monitoring function of the on-board computer of ETCS trains. This mode is active when
the train is moving on the track without approaching its target destination. In this mode,
the on-board computer supervises the agreement of the current train speed with the current
speed limit. 23, 70, 71, 91, 124, 127-129, 131, 132, 135-138

DFSM Deterministic finite-state machine. A method for the description of finite-state systems,
also known as finite automaton. In this work, we are using transducers: i.e., finite-state
machines with an input and output alphabet. 14, 33, 38-47, 59, 62-67, 71, 73-75, 77,
88-90, 92, 94, 106, 108, 109, 115, 116, 118, 127, 128, 134-137, 139, 140, 142, 147, 149, 150,
163, 165

DNF Disjunctive normal form. A special form of a Boolean formula that is composed of ORs
of clauses. Clauses are ANDs of literals. Literals are variables in positive form or negated.
110, 113, 143

DSL Domain specific language. A modelling language that is application specific. 14, 80

ECPT Equivalence-class partition testing. Our testing approach, which is based on input and
state equivalence classes. The partitioning of infinitely many concrete inputs to a finite
number of input-equivalence classes allows for the application testing of theories that are
complete with respect to a fault model. 15, 16, 79, 80, 88, 89, 92, 95, 101, 109, 127-138,
141-143, 145, 149-151, 163

ERTMS European rail-traffic management system. A standard for European rail-traffic man-
agement. It is composed of ETCS and GSM-R: a mobile communication standard. 19

ETCS European train-control system. The subsystem of ERTMS which includes signalling, train
control and train-protection functionality. 15, 19, 20, 23, 69, 147

EVC European vital computer. The on-board computer of ETCS trains. 23, 69, 70

FSM Finite-state machine. A method for describing finite-state systems, also known as finite
automaton. In this work we are using transducers, i.e., finite-state machines with an input
and output alphabet. 14, 19, 37, 38, 44, 48, 49, 59, 60, 142-144, 146, 163

HSI HW/SW integration is a phase in the lifecycle of system development. The phase is char-
acterized by the integration of HW and SW components. Usually, the phase is followed by
the system integration phase. 15-17, 24, 33, 79, 80, 106, 117, 119-121, 127, 134, 139, 147,
149, 151

HSI test HW/SW integration tests are tests performed in the HW/SW integration phase of
system development. 16, 35
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Glossary

IEC An input equivalence class is a member of an input equivalence-class partitioning. An input
equivalence class contains inputs that produce exactly the same outputs when applied to
any quiescent system state. 16, 33, 58, 59, 62, 63, 66, 74, 88, 90-96, 98-105, 108, 109, 113,
114, 128, 133-136, 142, 144, 145

IECP An equivalence class partitioning of the input domain of a RIOSTS that has the property,
that every input equivalence class contains inputs that produce exactly the same outputs
when applied to any quiescent system state. 5860, 62-64, 66, 67, 71, 72, 74, 75, 88, 90-94,
102, 105, 106, 113, 127, 128, 134, 144, 145, 150, 151, 163

INF Index-normal-form. A normalised form of the transition-logical predicate describing the
transition relation of a RIOSTS. This form can be used to derive an IECP of the RIOSTS.
61, 62, 110, 114

LTS Labelled transition system. A description means for systems. A system is described by
means of states and transitions that are labelled by events. 37, 142, 146

MBT Model-based testing. Approach for the verification of systems. MBT is based on the
automatic generation of test cases from formal test models. 14, 15, 20, 25, 36, 37, 72,
79-81, 88, 120, 138, 141-143, 149-151, 163

MC/DC Modified condition/decision coverage. A coverage metric for decisions. A decision is a
Boolean formula composed of conditions by logical operators. Each condition of a decision
must take each possible value at least once, and values must be chosen such that each
condition has affected the overall evaluation of the decision at least once (meaning that a
change in any of the other conditions will change the overall outcome of the decision). 105,
141

PRNG Pseudo random number generator. 96, 100

RIOSTS Reactive input-output state-transition system. A method for describing state-based
reactive systems. The behavior of these systems is influenced through the setting of input
variables by the environment of the system. The behaviour of the system can be observed
through the values of the output variables. 25, 50-55, 57, 59-63, 66, 67, 88, 89, 92, 94,
111, 141, 149, 150

RSM Release speed monitor. A mode of the speed-and-distance monitoring function of the
on-board computer of ETCS trains that is active when a train is very close to its target
destination, where it is to come to a standstill. 23

RT Random testing. A light-weight testing approach in which test inputs are randomly drawn
from the input domain. 16, 119, 127-129, 131-138, 144, 145

SAT Boolean satisfiability problem. An NP-complete decision problem. The problem is to find
a solution for a Boolean formula or to prove that no such formula exists. 94-96, 115

SEC A state equivalence class is a member of a state equivalence-class partitioning. A state
equivalence class collects states that produce exactly the same outputs for every possible
input trace. 5659, 74, 92, 93, 109
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Glossary

SECP State equivalence-class partitioning. An equivalence-class partitioning of the state space
of a RIOSTS that has the property, that every state equivalence class contains states that
produce exactly the same outputs for every possible input trace. 56, 57, 59-64, 67, 71, 74,
92, 93, 110

SIVIA Set inverter via interval analysis. An algorithm based on interval analysis that is used to
calculate the inner and outer approximation of a set. 96, 98-101

SMT Satisfiability modulo theories. An extension of the SAT problem to background theories
such as integers or floating-point arithmetics. SMT instances are typically expressed by
first-order logic. 88, 94-96, 100, 103, 104, 111, 113, 115, 131

STS State-transition system. A description means for state-based systems. 37, 50, 106

SUT System under test. The system that is going to be tested. 14-16, 33, 35-37, 51, 66, 67,
80, 88, 90-94, 99, 105, 106, 108, 109, 117-121, 124, 131, 133, 135, 137, 139, 142, 143, 147,
149, 150

SysML Systems modeling language. An extension to UML aiming at the modelling of systems.
14, 19, 23-26, 37, 52, 70, 72, 74, 88, 110, 118, 119, 141, 149, 150

TSM Target speed monitor. A mode of the speed-and-distance monitoring function of the
on-board computer of ETCS trains that is active when the train approaches its target
destination. 23

UML Unified modeling language. A standardised modelling language providing different de-
scription means for the modelling of software including class diagrams, state machines,
activity diagrams and other items. 14, 24-26, 36, 37, 52, 87, 118, 119, 141, 142, 146
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