120 research outputs found

    Foreword to the special issue on pattern recognition in remote sensing

    Get PDF
    Cataloged from PDF version of article.The nine papers in this special issue focus on covering different aspects of remote sensing image analysis. © 2012 IEE

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Foreword to the Special Issue on Pattern Recognition in Remote Sensing

    Full text link

    Remote sensing big data computing: challenges and opportunities

    Get PDF
    As we have entered an era of high resolution earth observation, the RS data are undergoing an explosive growth. The proliferation of data also give rise to the increasing complexity of RS data, like the diversity and higher dimensionality characteristic of the data. RS data are regarded as RS ‘‘Big Data’’. Fortunately, we are witness the coming technological leapfrogging. In this paper, we give a brief overview on the Big Data and data-intensive problems, including the analysis of RS Big Data, Big Data challenges, current techniques and works for processing RS Big Data

    Science for Disaster Risk Reduction

    Get PDF
    This thematic report describes JRC's activities in support to disaster management. The JRC develops tools and methodologies to help in all phases of disaster management, from preparedness and risk assessment to recovery and reconstruction through to forecasting and early warning.JRC.A.6-Communicatio

    Challenges and Opportunities of Multimodality and Data Fusion in Remote Sensing

    No full text
    International audience—Remote sensing is one of the most common ways to extract relevant information about the Earth and our environment. Remote sensing acquisitions can be done by both active (synthetic aperture radar, LiDAR) and passive (optical and thermal range, multispectral and hyperspectral) devices. According to the sensor, a variety of information about the Earth's surface can be obtained. The data acquired by these sensors can provide information about the structure (optical, synthetic aperture radar), elevation (LiDAR) and material content (multi and hyperspectral) of the objects in the image. Once considered together their comple-mentarity can be helpful for characterizing land use (urban analysis, precision agriculture), damage detection (e.g., in natural disasters such as floods, hurricanes, earthquakes, oil-spills in seas), and give insights to potential exploitation of resources (oil fields, minerals). In addition, repeated acquisitions of a scene at different times allows one to monitor natural resources and environmental variables (vegetation phenology, snow cover), anthropological effects (urban sprawl, deforestation), climate changes (desertification, coastal erosion) among others. In this paper, we sketch the current opportunities and challenges related to the exploitation of multimodal data for Earth observation. This is done by leveraging the outcomes of the Data Fusion contests, organized by the IEEE Geoscience and Remote Sensing Society since 2006. We will report on the outcomes of these contests, presenting the multimodal sets of data made available to the community each year, the targeted applications and an analysis of the submitted methods and results: How was multimodality considered and integrated in the processing chain? What were the improvements/new opportunities offered by the fusion? What were the objectives to be addressed and the reported solutions? And from this, what will be the next challenges

    Foreword to the special issue on pattern recognition in remote sensing

    Get PDF
    [No abstract available

    Mineral identification using data-mining in hyperspectral infrared imagery

    Get PDF
    Les applications de l’imagerie infrarouge dans le domaine de la gĂ©ologie sont principalement des applications hyperspectrales. Elles permettent entre autre l’identification minĂ©rale, la cartographie, ainsi que l’estimation de la portĂ©e. Le plus souvent, ces acquisitions sont rĂ©alisĂ©es in-situ soit Ă  l’aide de capteurs aĂ©roportĂ©s, soit Ă  l’aide de dispositifs portatifs. La dĂ©couverte de minĂ©raux indicateurs a permis d’amĂ©liorer grandement l’exploration minĂ©rale. Ceci est en partie dĂ» Ă  l’utilisation d’instruments portatifs. Dans ce contexte le dĂ©veloppement de systĂšmes automatisĂ©s permettrait d’augmenter Ă  la fois la qualitĂ© de l’exploration et la prĂ©cision de la dĂ©tection des indicateurs. C’est dans ce cadre que s’inscrit le travail menĂ© dans ce doctorat. Le sujet consistait en l’utilisation de mĂ©thodes d’apprentissage automatique appliquĂ©es Ă  l’analyse (au traitement) d’images hyperspectrales prises dans les longueurs d’onde infrarouge. L’objectif recherchĂ© Ă©tant l’identification de grains minĂ©raux de petites tailles utilisĂ©s comme indicateurs minĂ©ral -ogiques. Une application potentielle de cette recherche serait le dĂ©veloppement d’un outil logiciel d’assistance pour l’analyse des Ă©chantillons lors de l’exploration minĂ©rale. Les expĂ©riences ont Ă©tĂ© menĂ©es en laboratoire dans la gamme relative Ă  l’infrarouge thermique (Long Wave InfraRed, LWIR) de 7.7m Ă  11.8 m. Ces essais ont permis de proposer une mĂ©thode pour calculer l’annulation du continuum. La mĂ©thode utilisĂ©e lors de ces essais utilise la factorisation matricielle non nĂ©gative (NMF). En utlisant une factorisation du premier ordre on peut dĂ©duire le rayonnement de pĂ©nĂ©tration, lequel peut ensuite ĂȘtre comparĂ© et analysĂ© par rapport Ă  d’autres mĂ©thodes plus communes. L’analyse des rĂ©sultats spectraux en comparaison avec plusieurs bibliothĂšques existantes de donnĂ©es a permis de mettre en Ă©vidence la suppression du continuum. Les expĂ©rience ayant menĂ©s Ă  ce rĂ©sultat ont Ă©tĂ© conduites en utilisant une plaque Infragold ainsi qu’un objectif macro LWIR. L’identification automatique de grains de diffĂ©rents matĂ©riaux tels que la pyrope, l’olivine et le quartz a commencĂ©. Lors d’une phase de comparaison entre des approches supervisĂ©es et non supervisĂ©es, cette derniĂšre s’est montrĂ©e plus appropriĂ© en raison du comportement indĂ©pendant par rapport Ă  l’étape d’entraĂźnement. Afin de confirmer la qualitĂ© de ces rĂ©sultats quatre expĂ©riences ont Ă©tĂ© menĂ©es. Lors d’une premiĂšre expĂ©rience deux algorithmes ont Ă©tĂ© Ă©valuĂ©s pour application de regroupements en utilisant l’approche FCC (False Colour Composite). Cet essai a permis d’observer une vitesse de convergence, jusqu’a vingt fois plus rapide, ainsi qu’une efficacitĂ© significativement accrue concernant l’identification en comparaison des rĂ©sultats de la littĂ©rature. Cependant des essais effectuĂ©s sur des donnĂ©es LWIR ont montrĂ© un manque de prĂ©diction de la surface du grain lorsque les grains Ă©taient irrĂ©guliers avec prĂ©sence d’agrĂ©gats minĂ©raux. La seconde expĂ©rience a consistĂ©, en une analyse quantitaive comparative entre deux bases de donnĂ©es de Ground Truth (GT), nommĂ©e rigid-GT et observed-GT (rigide-GT: Ă©tiquet manuel de la rĂ©gion, observĂ©e-GT:Ă©tiquetage manuel les pixels). La prĂ©cision des rĂ©sultats Ă©tait 1.5 fois meilleur lorsque l’on a utlisĂ© la base de donnĂ©es observed-GT que rigid-GT. Pour les deux derniĂšres epxĂ©rience, des donnĂ©es venant d’un MEB (Microscope Électronique Ă  Balayage) ainsi que d’un microscopie Ă  fluorescence (XRF) ont Ă©tĂ© ajoutĂ©es. Ces donnĂ©es ont permis d’introduire des informations relatives tant aux agrĂ©gats minĂ©raux qu’à la surface des grains. Les rĂ©sultats ont Ă©tĂ© comparĂ©s par des techniques d’identification automatique des minĂ©raux, utilisant ArcGIS. Cette derniĂšre a montrĂ© une performance prometteuse quand Ă  l’identification automatique et Ă  aussi Ă©tĂ© utilisĂ©e pour la GT de validation. Dans l’ensemble, les quatre mĂ©thodes de cette thĂšse reprĂ©sentent des mĂ©thodologies bĂ©nĂ©fiques pour l’identification des minĂ©raux. Ces mĂ©thodes prĂ©sentent l’avantage d’ĂȘtre non-destructives, relativement prĂ©cises et d’avoir un faible coĂ»t en temps calcul ce qui pourrait les qualifier pour ĂȘtre utilisĂ©e dans des conditions de laboratoire ou sur le terrain.The geological applications of hyperspectral infrared imagery mainly consist in mineral identification, mapping, airborne or portable instruments, and core logging. Finding the mineral indicators offer considerable benefits in terms of mineralogy and mineral exploration which usually involves application of portable instrument and core logging. Moreover, faster and more mechanized systems development increases the precision of identifying mineral indicators and avoid any possible mis-classification. Therefore, the objective of this thesis was to create a tool to using hyperspectral infrared imagery and process the data through image analysis and machine learning methods to identify small size mineral grains used as mineral indicators. This system would be applied for different circumstances to provide an assistant for geological analysis and mineralogy exploration. The experiments were conducted in laboratory conditions in the long-wave infrared (7.7ÎŒm to 11.8ÎŒm - LWIR), with a LWIR-macro lens (to improve spatial resolution), an Infragold plate, and a heating source. The process began with a method to calculate the continuum removal. The approach is the application of Non-negative Matrix Factorization (NMF) to extract Rank-1 NMF and estimate the down-welling radiance and then compare it with other conventional methods. The results indicate successful suppression of the continuum from the spectra and enable the spectra to be compared with spectral libraries. Afterwards, to have an automated system, supervised and unsupervised approaches have been tested for identification of pyrope, olivine and quartz grains. The results indicated that the unsupervised approach was more suitable due to independent behavior against training stage. Once these results obtained, two algorithms were tested to create False Color Composites (FCC) applying a clustering approach. The results of this comparison indicate significant computational efficiency (more than 20 times faster) and promising performance for mineral identification. Finally, the reliability of the automated LWIR hyperspectral infrared mineral identification has been tested and the difficulty for identification of the irregular grain’s surface along with the mineral aggregates has been verified. The results were compared to two different Ground Truth(GT) (i.e. rigid-GT and observed-GT) for quantitative calculation. Observed-GT increased the accuracy up to 1.5 times than rigid-GT. The samples were also examined by Micro X-ray Fluorescence (XRF) and Scanning Electron Microscope (SEM) in order to retrieve information for the mineral aggregates and the grain’s surface (biotite, epidote, goethite, diopside, smithsonite, tourmaline, kyanite, scheelite, pyrope, olivine, and quartz). The results of XRF imagery compared with automatic mineral identification techniques, using ArcGIS, and represented a promising performance for automatic identification and have been used for GT validation. In overall, the four methods (i.e. 1.Continuum removal methods; 2. Classification or clustering methods for mineral identification; 3. Two algorithms for clustering of mineral spectra; 4. Reliability verification) in this thesis represent beneficial methodologies to identify minerals. These methods have the advantages to be a non-destructive, relatively accurate and have low computational complexity that might be used to identify and assess mineral grains in the laboratory conditions or in the field

    Advanced Multi-Sensor Optical Remote Sensing for Urban Land Use and Land Cover Classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest

    Get PDF
    This paper presents the scientific outcomes of the 2018 Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society. The 2018 Contest addressed the problem of urban observation and monitoring with advanced multi-source optical remote sensing (multispectral LiDAR, hyperspectral imaging, and very high-resolution imagery). The competition was based on urban land use and land cover classification, aiming to distinguish between very diverse and detailed classes of urban objects, materials, and vegetation. Besides data fusion, it also quantified the respective assets of the novel sensors used to collect the data. Participants proposed elaborate approaches rooted in remote-sensing, and also in machine learning and computer vision, to make the most of the available data. Winning approaches combine convolutional neural networks with subtle earth-observation data scientist expertise
    • 

    corecore