34 research outputs found

    The non-zero-sum game of steganography in heterogeneous environments

    Get PDF
    The highly heterogeneous nature of images found in real-world environments, such as online sharing platforms, has been one of the long-standing obstacles to the transition of steganalysis techniques outside the laboratory. Recent advances in identifying the properties of images relevant to steganalysis as well as the effectiveness of deep neural networks on highly heterogeneous datasets have laid some groundwork for resolving this problem. Despite this progress, we argue that the way the game played between the steganographer and the steganalyst is currently modeled lacks some important features expected in a real-world environment: 1) the steganographer can adapt her cover source choice to the environment and/or to the steganalystโ€™s classifier, 2) the distribution of cover sources in the environment impacts the optimal threshold for a given classifier, and 3) the steganalyst and steganographer have different goals, hence different utilities. We propose to take these facts into account using a two-player non-zero-sum game constrained by an environment composed of multiple cover sources. We then show how to convert this non-zero-sum game into an equivalent zero-sum game, allowing us to propose two methods to find Nash equilibria for this game: a standard method using the double oracle algorithm and a minimum regret method based on approximating a set of atomistic classifiers. Applying these methods to contemporary steganography and steganalysis in a realistic environment, we show that classifiers which do not adapt to the environment severely underperform when the steganographer is allowed to select into which cover source to embed

    An Improved VGG16 and CNN-LSTM Deep Learning Model for Image Forgery Detection

    Get PDF
    As the field of image processing and computer vision continues to develop, we are able to create edited images that seem more natural than ever before. Identifying real photos from fakes has become a formidable obstacle. Image forgery has become more common as the multimedia capabilities of personal computers have developed over the previous several years. This is due to the fact that it is simpler to produce fake images. Since image object fabrication might obscure critical evidence, techniques for detecting it have been intensively investigated for quite some time. The publicly available datasets are insufficient to deal with these problems adequately. Our work recommends using a deep learning based image inpainting technique to create a model to detect fabricated images. To further detect copy-move forgeries in images, we use an CNN-LSTM and Improved VGG adaptation network. Our approach could be useful in cases when classifying the data is impossible. In contrast, researchers seldom use deep learning theory, preferring instead to depend on tried-and-true techniques like image processing and classifiers. In this article, we recommend the CNN-LSTM and improved VGG-16 convolutional neural network for intra-frame forensic analysis of altered images

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Developing our capability in cyber security: academic centres of excellence in cyber security research

    Get PDF

    An examination of the Asus WL-HDD 2.5 as a nepenthes malware collector

    No full text
    The Linksys WRT54g has been used as a host for network forensics tools for instance Snort for a long period of time. Whilst large corporations are already utilising network forensic tools, this paper demonstrates that it is quite feasible for a non-security specialist to track and capture malicious network traffic. This paper introduces the Asus Wireless Hard disk as a replacement for the popular Linksys WRT54g. Firstly, the Linksys router will be introduced detailing some of the research that was undertaken on the device over the years amongst the security community. It then briefly discusses malicious software and the impact this may have for a home user. The paper then outlines the trivial steps in setting up Nepenthes 0.1.7 (a malware collector) for the Asus WL-HDD 2.5 according to the Nepenthes and tests the feasibility of running the malware collector on the selected device. The paper then concludes on discussing the limitations of the device when attempting to execute Nepenthes

    ์ธ๊ณต์ง€๋Šฅ ๋ณด์•ˆ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ์ƒ๋ฌผ์ •๋ณดํ•™์ „๊ณต, 2021. 2. ์œค์„ฑ๋กœ.With the development of machine learning (ML), expectations for artificial intelligence (AI) technologies have increased daily. In particular, deep neural networks have demonstrated outstanding performance in many fields. However, if a deep-learning (DL) model causes mispredictions or misclassifications, it can cause difficulty, owing to malicious external influences. This dissertation discusses DL security and privacy issues and proposes methodologies for security and privacy attacks. First, we reviewed security attacks and defenses from two aspects. Evasion attacks use adversarial examples to disrupt the classification process, and poisoning attacks compromise training by compromising the training data. Next, we reviewed attacks on privacy that can exploit exposed training data and defenses, including differential privacy and encryption. For adversarial DL, we study the problem of finding adversarial examples against ML-based portable document format (PDF) malware classifiers. We believe that our problem is more challenging than those against ML models for image processing, owing to the highly complex data structure of PDFs, compared with traditional image datasets, and the requirement that the infected PDF should exhibit malicious behavior without being detected. We propose an attack using generative adversarial networks that effectively generates evasive PDFs using a variational autoencoder robust against adversarial examples. For privacy in DL, we study the problem of avoiding sensitive data being misused and propose a privacy-preserving framework for deep neural networks. Our methods are based on generative models that preserve the privacy of sensitive data while maintaining a high prediction performance. Finally, we study the security aspect in biological domains to detect maliciousness in deoxyribonucleic acid sequences and watermarks to protect intellectual properties. In summary, the proposed DL models for security and privacy embrace a diversity of research by attempting actual attacks and defenses in various fields.์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐœ์ธ๋ณ„ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋ฐ˜๋ฉด ๊ฐœ์ธ์˜ ๋ฏผ๊ฐํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ์œ ์ถœ๋˜๋Š” ๊ฒฝ์šฐ์—๋Š” ํ”„๋ผ์ด๋ฒ„์‹œ ์นจํ•ด์˜ ์†Œ์ง€๊ฐ€ ์žˆ๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๋Š”๋ฐ ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๊ฐ€ ์™ธ๋ถ€์— ์œ ์ถœ๋˜์ง€ ์•Š๋„๋ก ํ•˜๊ฑฐ๋‚˜, ์ต๋ช…ํ™”, ๋ถ€ํ˜ธํ™” ๋“ฑ์˜ ๋ณด์•ˆ ๊ธฐ๋ฒ•์„ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์— ์ ์šฉํ•˜๋Š” ๋ถ„์•ผ๋ฅผ Private AI๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ๋…ธ์ถœ๋  ๊ฒฝ์šฐ ์ง€์  ์†Œ์œ ๊ถŒ์ด ๋ฌด๋ ฅํ™”๋  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ์ ๊ณผ, ์•…์˜์ ์ธ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ธ๊ณต์ง€๋Šฅ ์‹œ์Šคํ…œ์„ ์˜ค์ž‘๋™ํ•  ์ˆ˜ ์žˆ๊ณ  ์ด๋Ÿฌํ•œ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ ์ž์ฒด์— ๋Œ€ํ•œ ์œ„ํ˜‘์€ Secure AI๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ•™์Šต ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๊ณต๊ฒฉ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹ ๊ฒฝ๋ง์˜ ๊ฒฐ์† ์‚ฌ๋ก€๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๊ธฐ์กด์˜ AEs ์—ฐ๊ตฌ๋“ค์€ ์ด๋ฏธ์ง€๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋ณด๋‹ค ๋ณต์žกํ•œ heterogenousํ•œ PDF ๋ฐ์ดํ„ฐ๋กœ ์—ฐ๊ตฌ๋ฅผ ํ™•์žฅํ•˜์—ฌ generative ๊ธฐ๋ฐ˜์˜ ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์—ฌ ๊ณต๊ฒฉ ์ƒ˜ํ”Œ์„ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ ์ด์ƒ ํŒจํ„ด์„ ๋ณด์ด๋Š” ์ƒ˜ํ”Œ์„ ๊ฒ€์ถœํ•  ์ˆ˜ ์žˆ๋Š” DNA steganalysis ๋ฐฉ์–ด ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ฐœ์ธ ์ •๋ณด ๋ณดํ˜ธ๋ฅผ ์œ„ํ•ด generative ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์ต๋ช…ํ™” ๊ธฐ๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ์š”์•ฝํ•˜๋ฉด ๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์„ ํ™œ์šฉํ•œ ๊ณต๊ฒฉ ๋ฐ ๋ฐฉ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์‹ ๊ฒฝ๋ง์„ ํ™œ์šฉํ•˜๋Š”๋ฐ ๋ฐœ์ƒ๋˜๋Š” ํ”„๋ผ์ด๋ฒ„์‹œ ์ด์Šˆ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๊ณ„ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๊ธฐ๋ฐ˜ํ•œ ์ผ๋ จ์˜ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค.Abstract i List of Figures vi List of Tables xiii 1 Introduction 1 2 Background 6 2.1 Deep Learning: a brief overview . . . . . . . . . . . . . . . . . . . 6 2.2 Security Attacks on Deep Learning Models . . . . . . . . . . . . . 10 2.2.1 Evasion Attacks . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Poisoning Attack . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Defense Techniques Against Deep Learning Models . . . . . . . . . 26 2.3.1 Defense Techniques against Evasion Attacks . . . . . . . . 27 2.3.2 Defense against Poisoning Attacks . . . . . . . . . . . . . . 36 2.4 Privacy issues on Deep Learning Models . . . . . . . . . . . . . . . 38 2.4.1 Attacks on Privacy . . . . . . . . . . . . . . . . . . . . . . 39 2.4.2 Defenses Against Attacks on Privacy . . . . . . . . . . . . 40 3 Attacks on Deep Learning Models 47 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.2 Portable Document Format (PDF) . . . . . . . . . . . . . . 55 3.1.3 PDF Malware Classifiers . . . . . . . . . . . . . . . . . . . 57 3.1.4 Evasion Attacks . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 60 3.2.2 Feature Selection Process . . . . . . . . . . . . . . . . . . 61 3.2.3 Seed Selection for Mutation . . . . . . . . . . . . . . . . . 62 3.2.4 Evading Model . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.5 Model architecture . . . . . . . . . . . . . . . . . . . . . . 67 3.2.6 PDF Repacking and Verification . . . . . . . . . . . . . . . 67 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.1 Datasets and Model Training . . . . . . . . . . . . . . . . . 68 3.3.2 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.3 CVEs for Various Types of PDF Malware . . . . . . . . . . 72 3.3.4 Malicious Signature . . . . . . . . . . . . . . . . . . . . . 72 3.3.5 AntiVirus Engines (VirusTotal) . . . . . . . . . . . . . . . 76 3.3.6 Feature Mutation Result for Contagio . . . . . . . . . . . . 76 3.3.7 Feature Mutation Result for CVEs . . . . . . . . . . . . . . 78 3.3.8 Malicious Signature Verification . . . . . . . . . . . . . . . 78 3.3.9 Evasion Speed . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.10 AntiVirus Engines (VirusTotal) Result . . . . . . . . . . . . 82 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Defense on Deep Learning Models 88 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.1.1 Message-Hiding Regions . . . . . . . . . . . . . . . . . . . 91 4.1.2 DNA Steganography . . . . . . . . . . . . . . . . . . . . . 92 4.1.3 Example of Message Hiding . . . . . . . . . . . . . . . . . 94 4.1.4 DNA Steganalysis . . . . . . . . . . . . . . . . . . . . . . 95 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.2.2 Proposed Model Architecture . . . . . . . . . . . . . . . . 103 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.5 Message Hiding Procedure . . . . . . . . . . . . . . . . . . 108 4.3.6 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . 109 4.3.7 Performance Comparison . . . . . . . . . . . . . . . . . . . 109 4.3.8 Analyzing Malicious Code in DNA Sequences . . . . . . . 112 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5 Privacy: Generative Models for Anonymizing Private Data 115 5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.2 Anonymization using GANs . . . . . . . . . . . . . . . . . 119 5.1.3 Security Principle of Anonymized GANs . . . . . . . . . . 123 5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.2 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.4 Evaluation Process . . . . . . . . . . . . . . . . . . . . . . 126 5.2.5 Comparison to Differential Privacy . . . . . . . . . . . . . 128 5.2.6 Performance Comparison . . . . . . . . . . . . . . . . . . . 128 5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6 Privacy: Privacy-preserving Inference for Deep Learning Models 132 6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.1.3 Deep Private Generation Framework . . . . . . . . . . . . . 137 6.1.4 Security Principle . . . . . . . . . . . . . . . . . . . . . . . 141 6.1.5 Threat to the Classifier . . . . . . . . . . . . . . . . . . . . 143 6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2.2 Experimental Process . . . . . . . . . . . . . . . . . . . . . 146 6.2.3 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.5 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . 149 6.2.6 Performance Comparison . . . . . . . . . . . . . . . . . . . 150 6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7 Conclusion 153 7.0.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.0.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 155 Bibliography 157 Abstract in Korean 195Docto

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area

    Air Force Institute of Technology Research Report 2006

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technologyโ€™s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area
    corecore