3,265 research outputs found

    A Review on the Application of Natural Computing in Environmental Informatics

    Get PDF
    Natural computing offers new opportunities to understand, model and analyze the complexity of the physical and human-created environment. This paper examines the application of natural computing in environmental informatics, by investigating related work in this research field. Various nature-inspired techniques are presented, which have been employed to solve different relevant problems. Advantages and disadvantages of these techniques are discussed, together with analysis of how natural computing is generally used in environmental research.Comment: Proc. of EnviroInfo 201

    Planning Support Systems: Progress, Predictions, and Speculations on the Shape of Things to Come

    Get PDF
    In this paper, we review the brief history of planning support systems, sketching the way both the fields of planning and the software that supports and informs various planning tasks have fragmented and diversified. This is due to many forces which range from changing conceptions of what planning is for and who should be involved, to the rapid dissemination of computers and their software, set against the general quest to build ever more generalized software products applicable to as many activities as possible. We identify two main drivers – the move to visualization which dominates our very interaction with the computer and the move to disseminate and share software data and ideas across the web. We attempt a brief and somewhat unsatisfactory classification of tools for PSS in terms of the planning process and the software that has evolved, but this does serve to point up the state-ofthe- art and to focus our attention on the near and medium term future. We illustrate many of these issues with three exemplars: first a land usetransportation model (LUTM) as part of a concern for climate change, second a visualization of cities in their third dimension which is driving an interest in what places look like and in London, a concern for high buildings, and finally various web-based services we are developing to share spatial data which in turn suggests ways in which stakeholders can begin to define urban issues collaboratively. All these are elements in the larger scheme of things – in the development of online collaboratories for planning support. Our review far from comprehensive and our examples are simply indicative, not definitive. We conclude with some brief suggestions for the future

    An Ensemble Approach to Space-Time Interpolation

    Get PDF
    There has been much excitement and activity in recent years related to the relatively sudden availability of earth-related data and the computational capabilities to visualize and analyze these data. Despite the increased ability to collect and store large volumes of data, few individual data sets exist that provide both the requisite spatial and temporal observational frequency for many urban and/or regional-scale applications. The motivating view of this paper, however, is that the relative temporal richness of one data set can be leveraged with the relative spatial richness of another to fill in the gaps. We also note that any single interpolation technique has advantages and disadvantages. Particularly when focusing on the spatial or on the temporal dimension, this means that different techniques are more appropriate than others for specific types of data. We therefore propose a space- time interpolation approach whereby two interpolation methods – one for the temporal and one for the spatial dimension – are used in tandem in order to maximize the quality of the result. We call our ensemble approach the Space-Time Interpolation Environment (STIE). The primary steps within this environment include a spatial interpolator, a time-step processor, and a calibration step that enforces phenomenon-related behavioral constraints. The specific interpolation techniques used within the STIE can be chosen on the basis of suitability for the data and application at hand. In the current paper, we describe STIE conceptually including the structure of the data inputs and output, details of the primary steps (the STIE processors), and the mechanism for coordinating the data and the processors. We then describe a case study focusing on urban land cover in Phoenix, Arizona. Our empirical results show that STIE was effective as a space-time interpolator for urban land cover with an accuracy of 85.2% and furthermore that it was more effective than a single technique.

    An Ensemble Approach to Space-Time Interpolation

    Get PDF
    There has been much excitement and activity in recent years related to the relatively sudden availability of earth-related data and the computational capabilities to visualize and analyze these data. Despite the increased ability to collect and store large volumes of data, few individual data sets exist that provide both the requisite spatial and temporal observational frequency for many urban and/or regional-scale applications. The motivating view of this paper, however, is that the relative temporal richness of one data set can be leveraged with the relative spatial richness of another to fill in the gaps. We also note that any single interpolation technique has advantages and disadvantages. Particularly when focusing on the spatial or on the temporal dimension, this means that different techniques are more appropriate than others for specific types of data. We therefore propose a space- time interpolation approach whereby two interpolation methods – one for the temporal and one for the spatial dimension – are used in tandem in order to maximize the quality of the result. We call our ensemble approach the Space-Time Interpolation Environment (STIE). The primary steps within this environment include a spatial interpolator, a time-step processor, and a calibration step that enforces phenomenon-related behavioral constraints. The specific interpolation techniques used within the STIE can be chosen on the basis of suitability for the data and application at hand. In the current paper, we describe STIE conceptually including the structure of the data inputs and output, details of the primary steps (the STIE processors), and the mechanism for coordinating the data and the 1 processors. We then describe a case study focusing on urban land cover in Phoenix Arizona. Our empirical results show that STIE was effective as a space-time interpolator for urban land cover with an accuracy of 85.2% and furthermore that it was more effective than a single technique.

    Design of a graphical framework for simple prototyping of pluvial flooding cellular automata algorithms

    Get PDF
    CCWI 2011: Computing and Control for the Water Industry, 5-7 September 2011, University of Exeter, UKCellular automata (CA) algorithms can be used for quickly describing models of complex systems using simple rules. CADDIES is a new EPSRC and industry-sponsored project that aims to use the computational speed of CA algorithms to produce operationally useful real/near-real time pluvial urban flood models for both 1D-sewer and 2D-surface (dual-drainage) flows. In this paper, the design of a graphical software framework for the CADDIES project is presented. This is intended to simplify the development, testing and use of CA algorithms, and to facilitate the handling of the peripheral tasks of data management and display; allowing the research users to focus on the central tasks of optimisation of CA models and algorithms themselves
    • …
    corecore