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1. Introduction 

In the last thirty years, the application of cellular automata as models of physical systems 
has attracted much attention, particularly for studying and simulating behaviour of fluid 
systems and traffic flow. In this work we present a theoretical analysis of the equilibrium 
properties of the cellular automata models for multi-speed traffic flow in a single lane 
highway. We hope our studies may advance some steps in the line of establishing a quite 
well formulated physical theory for these models. Our interest in this problem comes from 
the believe that general theoretical results about the traffic cellular automata may help very 
much to improve the speed of the associated computer models that scientists and engineers 
use for traffic flow simulations; but on another hand, it is much close related to the need of 
having, in a near future, a simple, but efficient tool for estimating the distribution in space 
and time of the pollutant emission rates coming from vehicular traffic in urban settlements, 
in such a way we can use the simulation results as the emissions input for the air pollution 
dispersion models we use to asses air quality in big urban places like Mexico city. 

1.1 Motivation background and antecedents 
The general development of human societies settled down in urban sites has given new 
dimensions of all kinds to air pollution the world over during the last few decades. For cities 
that have became (or are becoming) into geopolitical centres of urban regions with high 
economic activity, air pollution is a fast growing problem because of the increasing urban 
population causing high densities of motor vehicle traffic, greater electric power generation 
needs, and expanding commercial and industrial activities. The high volumes of emissions 
released to the atmosphere from the urban settlements have such a significant magnitude 
that a healthy air quality cannot be achieved by natural regeneration (or homeostasis) and 
scavenging processes only. 
A major problem causing high levels of air pollution in big urban settlements, which also 
increases the complexity of analysis and evaluation of air quality, is the fossil- fuelled urban 
transport system and its interaction with the city, because motor vehicles produce different 
emissions under different driving conditions of speed, acceleration and idle. Traffic 
problems are, in fact, the main culprits of air pollution in urban areas, but that is not the end 
of the story, because their impacts actually extend even further. The intense traffic of motor 
vehicles, and their recurrent congestion and jamming produce waste of time and money, 
increase the risk of car crashing, promote the social unrest, and produce high stress levels 
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and health deterioration of the inhabitants of the cities. On another hand, urban traffic is a 
very complex problem. A growing number of the metropolitan areas world-wide are 
suffering a transportation demand which largely exceeds capacity. But in many cases, 
unfortunately, a good enough solution or, even desirable is not simply to extend capacity to 
meet the demand. Nowadays a coherent handling of the large, and distributed, 
transportation systems has become in a priority issue in urban planning and management. 
Pollution from traffic consists of particulate matter, nitrogen oxides (NOx), carbon monoxide 
(CO), volatile organic compounds (VOCs), sulphur dioxide (SO2), and also other 
compounds in small amounts, like polyaromatic hydrocarbons (PAH). Lead emission from 
traffic has reduced dramatically after moving to unleaded fuels. Particulates come from the 
exhaust emissions, especially from diesel engines, but also from dust and dirt from roads 
and tires. Other fine particulates are formed by chemical reactions in the atmosphere. 
Formation of ozone O3 in urban areas is mainly caused by traffic pollutants in a 
photochemical reaction with UV radiation from the sun. 
In the Mexico City Metropolitan Area (MCMA), which is composed of 16 delegations of 
Mexico City and 59 municipalities of the State of Mexico, the registered vehicular fleet is 
estimated at more than 4.2 million vehicles. Among these, the 62% are vehicles registered at 
Mexico City and the remaining 38% are units which belong to the State of Mexico. In these 
figures, private cars account for a significant percentage (80% in 2006) of the units for the 
transport of people, and they constitute the most polluting category, producing 52% of the 
CO, 33% of the NOx, and 21% of the SO2 that are released to the MCMA´s atmosphere. 
Diesel vehicles, particularly trucks and buses, are other important emission sources which 
contribute, respectively, with the 28% and 16% of PM2.5 (particles with diameters < 2.5 μm), 
and altogether, with 21% of NOx (SMA-GDF, 2008). 
Against this background, it becomes quite relevant the prediction of the air pollution caused 
by vehicular sources in urban areas. For this purpose, it is quite important to be able to 
estimate the space-time distribution of the motor vehicles moving inside an urban area, 
because, as a matter of methodological order, it is a prior step in estimating the space-time 
distribution of its respective air polluting emissions. Moreover, since changes in the urban 
morphology and the spatial distribution of the build in a city can affect traffic flow, and thus 
the space-time distribution of the vehicle emissions, for the purposes of studying the urban 
air pollution problems, as well as for the city development planning, it is a quite relevant 
issue the searching and the developing of simple and reliable tools for simulating vehicular 
traffic, its emissions and their impacts on air quality. At the MCMA, this is important 
because, in addition of the daily intense traffic, the urban morphology has changed 
significantly in last decade, specially by the construction of second floors on the main traffic 
corridors and explosive growth in the number of skyscrapers and other big buildings. 
Air quality analysis for mobile sources, in most cases, is a very complex process which is 
performed by a combination of several different models. However, although sometimes 
these models are considered independent of each other, such as it occurs when simply we 
take the output of one of the models as the input of next one in line, in the real world we 
find dynamical couplings between processes or phenomena, which cannot be ignored 
completely in their modelling. Then, it is important to take into account the possible 
dynamical couplings between the models in integrating the enveloping computational 
package (or final model) of analysis. 
There are basically three types of models required to perform the analysis of the impact of 
traffic on air quality, as it has been illustrated schematically in Fig. 1. The first type is the 
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model describing and projecting the vehicle activities of the facilities to be analyzed. In 
general, professionals of transportation use two modelling scales, transportation planning 
models (interested in regional analysis) or traffic flow models (interested in local 
transportation facilities such as individual roadways, intersections, and ramps, etc.). The 
second type of analysis (emissions rate models) represents the process of estimating 
emissions by vehicle fleets. When emission rates are combined with vehicle activity data, the 
result is an estimate of emissions by time and space. Once the vehicle activities are 
estimated, and combined with the emissions rates, the atmospheric dispersion of the vehicle 
emissions can be estimated with a pollution dispersion model. This third type of analysis is 
performed to estimate pollution concentrations. This final modelling step is needed to 
estimate pollutant concentrations to which humans are exposed. In this analysis, temporal 
and spatial estimates of pollutants from transportation and other sources, along with 
estimates of background pollution and meteorology conditions, are combined. When this 
analysis is completed, comparisons of estimated pollution concentrations with the National 
Ambient Air Quality Standards are made to determine whether control action is needed. 
 

 

Fig. 1. Simplified combination of models for estimating the impact of traffic flow on air 
quality. In real world there are feedbacks that complicate the system, such as the influence 
of transportation supply on land use, or the effect of traffic flows on travel demand in case 
of congestion. 

The knowledge of the wind circulation events constitute an important issue for estimating 
and understanding how the emissions of air pollutants will be dispersed in an urban 
settlement and how the air pollution of a city may be exported towards neighbouring sites. 
Some local pollution dispersion models require only some limited meteorological inputs, 
but some others may require a detailed knowledge of the wind field, for example. The 
theoretical basis of meteorological models is in the Navier–Stokes equations, which 
constitute a system of coupled and non-linear partial differential equations (Batchelor, 1967). 
For small velocities, these equations can be linearised and solved without much difficulty, 
analytically if the solid boundaries involved are simple, and numerically otherwise. 
However, when air flow velocities are large, instabilities may appear and exact analytical 
methods can no longer be used. Even numerical methods are difficult to use, chiefly because 
scales of different sizes must be taken into account, which forces grids either to be very 
small or variable. In practice, a lot of powerful computer simulation tools for diagnostic and 
prognostic purposes can be found for a variety of applications where the wind field and 
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other meteorological variables are required. Notwithstanding, the numerical solutions 
depend strongly on boundary conditions and initial values; so that special care must be 
taken to correctly initialise all meteorological variables in the computational domain and to 
correctly define the time-varying physics at the boundaries (Zannetti, 1990). Two excellent 
prognostic meteorological models are the PSU/NCAR mesoscale model (MM5) and the 
Weather Research and Forecasting (WRF) model. These models are complex and heavy 
numerical simulation instruments adequate only for mesoscale problems (MM5, 2003). 
In what concerns to the traffic flow modelling, on the other hand, two different conceptual 
frameworks are used in general. The oldest one is based on a coarse-grained fluid dynamical 
description, where traffic is modelled as the flow of a continuum vehicle gas (Kühne, 1998). 
The other framework is that one of the microscopic traffic models. Here, attention is 
explicitly focused on individual vehicles, each of which is modelled as a particle that may 
interact with each other, affecting the others movement. Within this framework, the 
dynamical evolution of the vehicle gas has been described in terms of several different types 
of mathematical formulations. For example, a probabilistic description of vehicular traffic 
has been proposed based on appropriate modifications of the kinetic theory of gases 
(Prigogine & Herman, 1971; Helbing, 1996, 1998; Helbing & Treiber, 1998; Nagatani, 1997a, 
1997b), while a deterministic description is provided by the car-following theories based on 
the Newtonian mechanics (Herman & Gardels, 1963; Gazis, 1967; Rothery, 1998).  
Like the molecular approaches of computational fluid dynamics, microscopic simulation of 
traffic flow phenomenon has always been regarded as a time consuming complex process 
involving detailed models that describe the behaviour of individual particles (such as 
molecules, in the first case, and motor vehicles in the second one). Nevertheless,  in the last 
three decades some conceptually different strategies to simulate the fluid flow and traffic 
flow phenomena have been developed using the cellular automata techniques introduced 
by John von Neumann and Stanislaw Ulam in the early 1950s (von Neumann, 1951, 1966).  
In the first case, fully discrete models obeying cellular automata rules have been worked out 
for the microscopic motion of the particles of a gas, such that the coarse-grained behaviour 
(in the thermodynamic limit) lies in the same universality class as the fluid flow 
phenomenon. This class of dynamical systems, now known as lattice gas models, consist of a 
regular lattice, each site of which can have a finite number of states representing the 
directions of motion of the gas particles, and evolves in discrete time steps obeying a set of 
homogeneous local rules which define the system dynamics. These rules are defined in such 
a way that the physical laws of conservation of mass, momentum and energy are fulfilled 
during the propagation and collisions of the gas particles (Boghosian, 1999). Typically, only 
the nearest neighbours are involved in the updating of any lattice site. 
The first attempt along these lines was undertaken by Leo P. Kadanoff and Jack Swift in 
1968 (Kadanoff & Swift, 1968). The Kadanoff-Swift model exhibits many features of real 
fluids, such as sound-wave propagation, and long-time tails in velocity autocorrelation 
functions. As the authors noted, however, it does not faithfully reproduce the correct motion 
of a viscous fluid (Boghosian, 1999). The next advance in the lattice modelling of fluids came 
in the mid 1970’s, when J. Hardy, O. de Pazzis and Y. Pomeau introduced a new lattice 
model (the HPP model, named for its authors) with a number of innovations that warrant 
discussion here (Hardy et al., 1973, 1976). Like the model of Kadanoff and Swift, the HPP 
model gives rise to anisotropic hydrodynamic equations that are not invariant under a 
global spatial rotation. At the time, this was not considered a problem, since the real 
purpose of these models was to study the statistical physics of fluids, and both models could 
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do this well. Traditional computational fluid dynamicists, however, were not inclined to 
take notice of this as a serious numerical method unless and until a way was found to 
remove the unphysical anisotropy (Boghosian, 1999). Thirteen years passed from the 
introduction of the HPP model to the solution of the anisotropy problem in 1986 by Uriel 
Frisch, Brosl Hasslacher and Yves Pomeau (Frish et al., 1986), and simultaneously by 
Stephen Wolfram (Wolfram, 1986). Frisch, Hasslacher and Pomeau demonstrated that it is 
possible to simulate the Navier-Stokes fluid flows by using a cellular automata gas model on 
a hexagonal lattice, with extremely simple translation and collision rules governing the 
movement of the particles. In the FHP model, named after the authors of the first reference 
given above, all the particles have unit mass and move with the same speed hopping from 
site to site in a hexagonal two-dimensional lattice. The dynamics of this system involves a 
set of collision rules that conserve the number of particles and momentum (kinetic energy is 
trivially conserved). From a strict theoretical point of view, it is not clear at the present time 
if the lattice gas collective equations are equivalent to the Navier-Stokes equations, or if they 
include them as a particular case. However, there has been a growing interest in studying 
the viscous fluid flow using lattice gas models due to its great facility to handle complex 
boundary and initial conditions, and also because the computer simulations have shown 
that lattice gases behave like normal fluids under some restricted conditions (Hasslacher, 
1987; Salcido & Rechtman, 1991, 1993; Rechtman & Salcido, 1996; Salcido, 1993, 1994). The 
FHP model, in particular, is now considered as an efficient way to simulate viscous flows at 
moderate Mach numbers in situations involving complex boundaries. However, it is unable 
to represent thermal or diffusional effects since all particles have the same speed and are of 
the same nature (Chen et al., 1989). Maybe the simplest lattice gas with thermal properties is 
a nine-velocity model defined on a square two-dimensional lattice where particles may be at 
rest or travelling to their nearest or next nearest neighbours (Chen et al., 1989; Rechtman et 
al., 1990, 1992; Salcido & Rechtman, 1991, 1993; Rechtman & Salcido, 1996). 
In the field of air pollution, one of the first attempts to use a cellular automata lattice gas 
approach for modelling transport and dispersion phenomena of air pollutants can be found 
in the work by A. Salcido (Salcido, 1993, 1994; Salcido et al., 1993). There, it is shown how 
the lattice gas rules, in spite of their relative simplicity, are sufficient to simulate, at least 
qualitatively, some complex processes affecting unsteady dispersion, including momentum 
exchange with the surrounding atmosphere and deposition. More recent attempts are found 
in the work by A. Sciarretta and R. Cipollone (Sciarretta & Cipollone, 2001, 2002; Sciarretta 
2006), where a comprehensive stochastic lattice gas model, which provides also reliable 
quantitative predictions, is presented. Lattice gas approaches to the wind field estimation 
problem have been developed also (Salcido et al., 2008; Salcido & Celada, 2010).  
Simultaneously with the development of the lattice gas models, a new class of microscopic 
traffic models emerged also within the conceptual framework of the cellular automata. 
These new models, known as cellular automata traffic models or traffic cellular automata, 
are dynamical systems that are discrete in nature, in the sense that the roads are represented 
by one-dimensional (1D) or two-dimensional lattices, each lattice site being empty or 
containing exactly one vehicle, and time advances with discrete steps. The first studies in 
this field were done by Cremer and Ludwig in 1986 (Cremer & Ludwig, 1986). They 
proposed a fast simulation model for traffic flow through urban networks. In their model, 
the progression of cars on a street was simulated by moving 1-bit variables through binary 
positions of bytes in the storage which were arranged to model the topology of a specified 
network. Also, in terms of some boolean operations, the model was enabled to perform 
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diverse movements of a vehicle, like driving at a constant speed, lane changing, passing, 
decelerating and accelerating, queueing and turning at intersections. Nevertheless, it was up 
to the first half of the nineteen nineties, with the proposals of Nagel and Schreckenberg in 
1992 (Nagel & Schreckenberg, 1992) and of Fukui and Ishibashi in 1996 (Fukui & Ishibashi, 
1996a), that cellular automata attracted attention as microscopic traffic models. From then 
on, traffic scientists have been carrying out many studies about the possibilities of using 
approaches of cellular automata for building models of traffic that not only are well-
formulated from the view of physics and able to reproduce the main behavioural aspects of 
real vehicular traffic, but also being efficient and practical for computer implementation.  
Although traffic cellular automata are quite similar to the cellular automata fluids in several 

respects, and one can talk about the system like a lattice gas in both cases, in contrast to the 

fluid models, the particles in a traffic model could be considered, or better yet, would have 

to be considered as intelligent objects, able to learn from past experience, thereby opening 

the door to the incorporation of behavioural and psychological aspects (Helbing, 2001; 

Maerivoet & De Moor, 2005).  

In this chapter, we will not consider the full process of analysis of impact of traffic on urban 

air quality. Instead, we are interested only in that stage of analysis which is concerned with 

modelling the traffic flow for the purposes of estimating the distribution of the vehicles 

(mobile sources) in space and time. Specifically, we will be concerned just with a simple case 

of this problem, which deals with the simulation of the movement of identical vehicles, but 

at different speed, in a single lane highway. Within this framework, for example, we would 

like to be able of finding out the number density of the vehicles which are moving at any 

given point in the highway, at any given instant, for each speed possible value. So that, by 

means of an emission rate model, later we would be able to estimate also the distribution in 

space and time of the vehicular emissions of air pollutants. For these purposes, here we will 

consider in detail the analysis of the equilibrium properties of the 1D cellular automata 

traffic models, expecting to provide some general results about this class of traffic models 

that may contribute not only to improve the speed of the computer simulations, but also in 

advancing some steps towards a well-established theory of the traffic cellular automata. 

In general, it is important to try to address these problems, or any others in this field, starting 

from the fundamental laws governing the traffic systems behaviour. Using theoretical 

approaches based on continuum or statistical physics, for more than a half a century physicists 

have been trying to understand the basic principles governing traffic phenomena and 

contributing to traffic science by developing models of traffic. The theoretical analysis and 

computer simulation of these models not only provide deep insight into the properties of the 

model but also help on improving understanding of complex phenomena observed in real 

traffic. Moreover, using these models, physicists have been calculating some quantities of 

interest in practical applications in traffic engineering (Chowdhury et al, 2000). 

The rest of this chapter is organized as follows. In the next section, it is provided a general 

description of the main features and basic aspects of cellular automata and of the cellular 

automata models for traffic flow in a highway, including presentation and discussion of the 

main ones with some detail. In section 3, we presented and discussed the equilibrium theory 

of the cellular automata models for traffic flow in a single lane, and in the fourth section we 

provided a detailed comparison of the equilibrium properties of these models against the 

steady states of the Nagel-Schreckenger and Fukui-Ishibashi traffic cellular automata. 

Finally, a section devoted to conclusions and suggestions for future work was included. 
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2. Cellular automata and traffic flow models 

At the suggestion of Stanislaw Ulam, cellular automata were introduced by John von 
Neumann in the early 1950s as very simple mathematical models to investigate self-
organisation and self-reproduction (von Neumann, 1951, 1966). In contrast to the typical 
mathematical models of self-organisation such as dissipative nonlinear differential 
equations or iterated mappings, cellular automata provide an alternative approach, 
involving discrete coordinates and variables as well as discrete time. The main attractive 
feature of cellular automata is that in spite of their conceptual simplicity, which allows for 
an easiness of implementation for computer simulation, so as a detailed and complete 
mathematical analysis in principle, they are able to exhibit a wide variety of amazingly 
complex behaviour. Thus, numerous physical and other systems containing many discrete 
elements with local interactions, for example the dynamical Ising model, gas and fluid 
dynamics, traffic flow, various biological issues, growth of crystals, nonlinear chemical 
systems, and some many others, can be conveniently modelled as cellular automata (Toffoli, 
1984; Doolen et al, 1990; Chopard & Droz, 1998; Wolfram, 1986b, 1994, 2002; Bagnoli, 2001; 
Stauffer, 2001, Maerivoet & De Moor, 2005). 

2.1 Main features of cellular automata 
In order to understand why and how cellular automata can be used as models for various 

systems in nature, we will begin by describing very briefly the main ingredients that 

constitute a cellular automaton: the physical environment, the states of the sites, their 

neighbourhoods, and finally a local transition rule. More complete and detailed descriptions 

can be found, for example, in the works of F. Bagnoli (Bagnoli, 2001) and B. Chopard and M. 

Droz (Chopard & Droz, 1998). 

Cellular automata are fully discrete dynamical systems. The physical environment of a 

cellular automata system is constituted of a finite-dimensional lattice, with each site (cell or 

box) having a finite number of discrete states. The state of the system is completely specified 

by the states at each lattice site. It evolves in time in discrete steps, and its dynamics is 

specified by some fixed and definite rule of evolution, which may be deterministic or non-

deterministic (probabilistic), and, in general, may have many simplifying features: it is 

homogeneous (all sites evolve by the same rule) although inhomogeneous cellular automata 

can been considered too; it is spatially local (the rules for the evolution of each site depend 

only on the state of the site itself and the states of sites in its local neighbourhood); it allows 

for synchronous updating (all cells can be updated simultaneously); it is temporally local 

(the rule depends only on cell values at the previous time-step, or a few previous ones). 

Figure 2 illustrates the most common neighbourhoods used with cellular automata defined 

on one and two-dimensional lattices. 

For 2D (and higher dimensional) cellular automata, the number of nearest and next nearest 

lattice sites contained in the neighbourhood depends on the lattice topology. In Fig. 2, it was 

illustrated only the case of a square 2D lattice.  

The entirely local construction of cellular automata has for a crucial consequence the fact 

that cellular automata rules define no intrinsic length scale other than the size of a single site 

and its neighbourhood, and no intrinsic time scale other than the duration of a single time 

step. In the infinite time limit the configurations are self-similar, and views of the 

configuration with different magnifications are indistinguishable. 
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(1D lattice) 

 
(Square 2D lattice) 

Fig. 2. Neighbourhoods commonly used with 1D and 2D cellular automata. The von 
Neumann neighbourhood (left) consists of the central site itself (in yellow) plus the nearest 
neighbours (in green), and the Moore neighbourhood (right) is composed of the central site 
itself (yellow) plus the nearest and next nearest neighbours (in green).  

In practice, the computer simulations using cellular automata models are carried out on a 
finite rather than an infinite lattice, and therefore it is important to consider how to handle 
the sites on the edges, as this can affect the values of all the sites in the lattice. It is possible 
to define neighbourhoods differently for the sites on the boundary, but then new rules for 
them have to be defined as well. Another possibility is fixing the values of these sites to 
remain constant, corresponding to Dirichlet boundary condition for partial differential 
equations. Most often periodic boundary conditions are assumed, where the first and the 
last sites are identified; for instance, in one dimension the lattice sites are treated as if they 
lay on a circle of finite radius, and similarly for higher dimensions. This also solves the 
boundary problems with neighbourhoods. 
Despite their conceptual simplicity, cellular automata are capable of diverse and complex 
behaviour. For most cellular automata models, however, the only general method to 
determine the qualitative (average) dynamics of the system is to run simulations on a 
computer for several initial global configurations. Cellular automata classification based on 
the study of its dynamics has been a major focus for the researchers. Simulations suggest 
that the patterns generated in the time evolution of cellular automata from disordered initial 
states can be classified as follows (Wolfram, 1984): Class 1: cellular automata which evolve 
to a homogeneous state; Class 2: displaying simple separated periodic structures; Class 3: 
which exhibit chaotic or pseudo-random behaviour; and Class 4: which yield complex 
patterns of localized structures and are capable of universal computation. 

2.2 Traffic cellular automata 
The application of cellular automata to traffic dynamics goes back to Cremer and coworkers 
(Cremer and Ludwig, 1986; Schütt, 1991), to Nagel and Schreckenberg (Nagel & 
Schreckenberg, 1992), and to Fukui and Ishibashi (Fukui & Ishibashi, 1996a). Other early 
cellular automaton studies were carried out by Biham et al. (Biham et al., 1992). These 
proposals of microscopic traffic models stimulated an enormous amount of research 
activity, aimed at understanding and controlling traffic instabilities, which are responsible 
for stop-and-go traffic and congestion, both on freeways (Sasvári & Kertész, 1997) and in 
cities (Helbing, 2001). Since then, cellular automata became popular for the microscopic 
simulation of traffic flow (Vilar & de Souza, 1994; Chowdhury et al, 2000; Helbing, 2001; 
Nagatani, 2002; Nagel et al., 2003; Maerivoet & De Moor, 2005), including multilane 
highways (Wagner et al., 1997; Nagel et al., 1998; Chowdhury et al., 2000; Nagel et al., 2003; 
Maerivoet & De Moor, 2005) and complex urban traffic networks (Fukui & Ishibashi, 1996b; 
Fukui et al., 1996; Esser & Schreckenberg, 1997; Rickert & Nagel, 1997; Nagel & Barrett, 1997; 
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Simon & Nagel, 1998; Maerivoet & De Moor, 2005). Nowadays, there exist an overwhelming 
number of proposals and publications in this field. 
Here, however, we will focus our interests on the cellular automata models for 
unidirectional single-lane traffic flow with periodic boundary conditions. Some insight to 
the importance of studying this basic problem can be obtained by considering, for example, 
traffic flows on unidirectional two-lane motorways: Drivers, in many countries, are by law 
obliged to drive on the right hand lane, unless when performing overtaking manoeuvres. A 
frequently observed phenomenon is then that under light traffic conditions, a slower 
moving vehicle is located on the right lane, and is acting as a moving bottleneck. As a result, 
all faster vehicles will line up on the left lane (overtaking on the right lane is prohibited by 
law), thereby causing a population inversion in the lanes. It is under these circumstances 
that the stability of the car-following behaviour plays an important role (Maerivoet & De 
Moor, 2005). Even for multi-lane traffic, its dynamics is essentially that of parallel single 
lanes when considering densely congested traffic flows. Studying these simplified traffic 
flow conditions is, in fact, the easiest way to determine whether or not internal effects of a 
traffic flow model play a role in, for example, the spontaneous breakdown of traffic, as all 
external effects (i.e., the boundary conditions) are eliminated (Nagel & Nelson, 2005). 
Nevertheless, when applying these models to real-life traffic networks, closed-loop traffic is 
not very representative, as the behaviour near bottlenecks plays a far more important role 
(Helbing, 2001). 

2.2.1 Common features in cellular automata models for traffic flow in a single-lane 
For the basic problem of traffic flow of identical vehicles in a single-lane, there are three 
cellular automata models that we consider important for our purposes in this work: the 
model defined by the Wolfram’s rule CA-184, and the original models proposed by Nagel 
and Schreckenberg (Nagel & Schreckenberg, 1992) and by Fukui and Ishibashi (Fukui & 
Ishibashi, 1996a). These models (hereafter referred as WR184, NS and FI, respectively), so as 
most of cellular automata models for unidirectional single-lane traffic flow, have the 
following basic common characteristics: each of them can be considered as a 1D lattice gas of 
undistinguishable particles with unit mass (model cars) which obey an exclusion principle 
(no more than one particle may occupy any lattice site at any time), can be at rest or moving 
with positive integer velocities v up to an upper limit vmax (reverse motion is forbidden and 
there exists an speed limit), and interact each other according to a specific set of parallel 
updating-rules (applied synchronously to all particles) that conserve the number of particles 
and prevent collisions (car crashes) and overtaking, but do not conserve momentum and 
energy of the particles. The main difference between these models is concerned with the 
particular procedure that is implemented to change the speed of the lattice gas particles. In 
the next three subsections we describe the main features of the sets of rules (updating rules) 
of the models WR184, NS and FI that are consecutively applied to all vehicles in the lattice. 

2.2.2 The Wolfram´s CA184 traffic model 
The simplest one-dimensional cellular automata model for highway traffic flow is the model 
defined by the Wolfram´s rule CA-184. This is a deterministic cellular automata model 
whose dynamics is defined by the following two rules: 
R1. Acceleration and braking:  vi(t+1) ← min{ hi(t), 1 }  
R2. Vehicle movement:   xi(t+1) ← xi(t) + vi(t+1) 
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Rule R1 sets the speed vi of the i-th vehicle, for the current updated configuration of the 
system; it states that a vehicle always strives to drive at a speed of one lattice site per 
timestep, unless its impeded by its direct leader, in which case hi(t), the number of empty 
sites in front of the i-th vehicle at time t, is equal zero, and the vehicle consequently stops in 
order to avoid a collision. The rule R2 just allows the vehicles to advance in the lattice.  
The Wolfram’s rule 184 can be expressed also as follows. The state of each lattice site at any 
time is expressed by a 1-digit binary number, whose value is 1 if the site is occupied by a 
particle and 0 otherwise. For any lattice site, i, the state at time t+1, denoted by σ(i, t+1), will 
be a function of the states σ(i-1, t), σ(i, t), and σ(i+1, t), at time t, in the sites which compose 
the Moore neighbourhood of the site in question, Ni = {i-1, i, i+1}. The configuration of the 
states of the sites in Ni is expressed as a 3-digit binary number ξ(i,t) = σ(i-1,t)σ(i,t)σ(i+1,t). 
Then the evolution in time of the state at the lattice site i can be written as  

σ(i, t+1) = F (ξ(i,t)) 

where the function F is defined by the updating rule given in Table 1. 
 

ξ(i,t) 111 110 101 100 011 010 001 000 

σ(i, t+1) 1 0 1 1 1 0 0 0 

Table 1. Wolfram’s rule 184. All eight possible configurations for the local neighbourhood 
are sorted in the first row, and the results are shown in the second row. The physical 
meaning is that a particle (a 1) moves to the right if its right neighbouring site is empty. 

In Fig. 3, we show the evolution in time of the traffic model WR184. We considered a lattice 
consisting of 500 sites with periodic boundary conditions, and carried out simulations over a 
period of 465 timesteps each, for mean densities n = 0.15, 0.25, 0.35, 0.45, 0.5, 0.55, 0.65, 0.75, 
and 0.85 particles/site. Each case, the initial condition was prepared by distributing the 
particles randomly in the lattice. 
In the figures, the time and space axes are oriented from left to right, and top to bottom, 
respectively. The simulations show the occurrence of a free-flow regime for low densities 
(first row); a transition from a free-flow to a congested-flow regime for densities around the 
critical density nc = 0.50 particles/site (second row); and a congested-flow regime for high 
densities (third row). As time advances, the congestion waves can be seen propagating in 
the opposite direction of traffic. We can see also that the WR184 model constitutes a fully 
deterministic system that continuously repeats itself. A characteristic of the encountered 
congestion waves is that they have an eternal life time. 
Let n0(t) and n1(t) denote the average numbers of particles per lattice site at time t, which are 
at rest (c0 = 0) and moving with the speed one (c1 = 1), respectively. Then the mean flow is 
given by q = n0c0 + n1c1 = n1, and the mean speed is v = q/n = n1/n, where n = n0 + n1 is the 
mean density of particles in the lattice. In Fig. 4, there are shown the plots of n0, n1, q and v 
as functions of n for the steady state of the WR184 model. As can be seen from the plot 
drawn in green, the mean speed remains constant at v = c1 = 1 sites per timestep, until the 
critical density nc = 0.5 particles/site is reached, at which point v will start to diminish 
towards zero where the density n = 1 particles/site is reached. Similarly, the mean flow q 
(plot drawn in red) first increases and then decreases linearly with the density, below and 
respectively above, the critical density. Here, the capacity flow qcap = 0.5 particles/timestep is 
reached. The transition from the free-flowing to the congested regime is characterised by a 
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population inversion from the particles in motion (with density n1; plot drawn in red) to the 
particles at rest (with density n0; plot drawn in blue). As is evidenced by the isosceles 
triangular shape of the fundamental diagram (q as function of n) of the WR184 traffic model, 
there are only two possible kinematic wave speeds: cw = ±1 site/timestep. Both speeds are 
also clearly visible in the first row, respectively third row, time–space diagrams of Fig. 3. 
 

   

   

   

Fig. 3. Typical time–space diagrams of the WR184 traffic model. The shown ring-geometry 
lattices each contain 500 sites, with a visible period of 465 timesteps (each vehicle is 
represented as a single coloured dot). First row: vehicles driving a free-flow regime with 
mean densities n = 0.15, 0.25 and 0.35 particles/site. Second row: a transition from the 
free-flow regime to the congested one, occurring for densities around n = 0.50 
particles/site. Third row: vehicles driving in a congested regime with n = 0.65, 0.75 and 
0.85 particles/site. The congestion waves can be seen as propagating in the opposite 
direction of traffic. 
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Fig. 4. Typical behaviour diagrams of the WR184 model, based on global measurements on 
the lattice carried out at the steady state. Green (▲): mean speed remains constant at v = 1 
site/timestep, until the critical density nc = 0.5 is reached, at which point v will start to 
diminish towards zero. Red (■): flow diagram, with its characteristic isosceles triangular 
shape. The transition between the free-flowing and the congested regimes is observed. Blue 
(●): the number of particles at rest remains null (n0 = 0) until the critical density is reached, 
at which point it starts to increase towards one (n0 = 1). The transition between the free-
flowing and the congested regimes is close related to a population inversion between 
moving particles and particles at rest (plots identified by symbols (■) and (●), respectively). 

2.2.3 The Nagel-Schreckenberg traffic model 
In 1992, Kai Nagel and Michael Schreckenberg proposed a very simple stochastic cellular 
automata traffic model (Nagel & Schreckenberg, 1992). In the NS model, space and time are 
discrete and hence also the velocities. The road, which is supposed unidirectional, is 
modelled by a 1D lattice with L sites (cells or boxes) that represent the positions of the 
vehicles. The number of sites in the lattice may be considered finite or infinite. The distance 
between adjacent lattice sites is defined as unit in this work, although it is often determined 
by the front-bumper to front-bumper distance of cars in the densest jam and is usually taken 
to be 7.5 m. Each site can either be empty or occupied by one, and only one particle (car or 
vehicle), which can be at rest (v = 0) or moving along the lattice (always in the same 
direction, hereafter assumed from left to right) with a integer speed v = 1, 2, 3, . . . , vmax. The 
evolution of the system in time (its dynamics) is defined by the following four rules, which 
must be applied to all particles (i.e. to all the non-empty lattice sites) simultaneously (Nagel 
& Schreckenberg, 1992). If at time t, there is a particle at site k (k = 1, 2, 3, ... , L), then 
R1. Acceleration: the particle´s speed v(k, t) is substituted by the smallest of v(k, t) + 1 and 

vmax. That is: v(k, t) → u(k, t) = min{ v(k, t) + 1, vmax } 
R2. Braking: if d(k,t), the number of the empty sites ahead the particle at time t, is smaller 

than u(k, t), then u(k, t) → w(k, t) = min{ d(k, t), u(k, t) } 
R3. Randomization: with probability p, the speed of the particle at time t+1 is set equal to 

the largest of w(k, t) – 1 and 0. That is:  v(k, t +1) = max{ w(k, t) − 1, 0 } 
R4. Driving: the particle moves hopping from site k to site k + v(k, t +1). 
The number of empty sites in front of a car is called headway. For vmax = 5 a calibration of 
the model showed that each timestep t → t + 1 corresponds to approximately 1 sec in real 
time (Nagel & Schreckenberg, 1992). Hereafter we will consider only a lattice with periodic 
boundary conditions, so that the number of particles is conserved. The maximum velocity 
vmax can be interpreted as a speed limit that drivers are obligated to respect, and therefore it 
will be taken to be identical for all particles. Fig. 5 shows a typical configuration. 
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Fig. 5. A possible configuration during the time evolution of the Nagel and Schreckenberg 
traffic model. The lattices sites have been drawn with different colors for evidencing the 
speeds of the vehicles.  

The four updating rules of the NS model have simple interpretations within the traffic 
jargon context (Schadschneider, 1999). The first rule (R1) means that drivers want to drive as 
fast as allowed. The rule R2 means that drivers have to brake to avoid collision with the 
vehicle ahead. The rule R3 (randomization) takes into account several effects, e.g. road 
conditions (e.g. slope, weather) or psychological effects (e.g. velocity fluctuations in free 
traffic). An important consequence of this rule is the introduction of overreactions at braking 
which are crucial for the occurrence of spontaneous jam formation (Schadschneider, 1999). 
Although this rationale is widely agreed upon, much criticism was however expressed due 
to the rule R3. In particular, Brilon and Wu believe that this rule has no theoretical 
background and is in fact introduced quite heuristically (Brilon & Wu, 1999). The last rule 
(R4) implements the displacement of the vehicles. Thus the NS model captures the features 
of gradual acceleration, deceleration and randomization in realistic traffic flows and, in 
agreement with the results of the computer simulations, it seems that all four rules, R1-R4, 
are necessary to reproduce the basic properties of real traffic; therefore this model is 
considered as a minimal model. An intuitive feeling for the NS model dynamics can be 
obtained from the nine time–space diagrams presented in Fig. 6.  
The diagrams in Fig. 6 were obtained as follows. We considered a lattice consisting of 500 
sites with periodic boundary conditions, and carried out simulations over a period of 465 
timesteps each. In the figure, we have arranged these diagrams in a 3x3 matrix, for 
illustrating several aspects of the evolution of the NS traffic model with vmax = 1. The matrix 
rows correspond to mean densities n = 0.25, 0.50 and 0.75 particles per site, and the columns 
correspond to randomization probabilities p = 0.25, 0.50 and 0.75. In the figures, the time 
and space axes are oriented from left to right, and top to bottom, respectively. As can be 
seen in the diagrams, the randomization rule (R3) gives rise to many unstable artificial 
phantom mini-jams. The downstream fronts of these jams smear out, forming unstable 
interfaces (Nagel et al., 2003). This is a direct result of the fact that the intrinsic noise (as 
embodied by p) in the NS model is too strong: a jam can always form at any density, 
meaning that breakdown will occur, even in the free-flow traffic regime. For low enough 
densities however, these jams can vanish as they are absorbed by vehicles with sufficient 
space headways or by new jams in the system (Krauß, et al., 1999). 
In Fig. 7, for the NS model with vmax = 1, and in Fig. 8, for vmax = 2 (top row) and vmax = 3 
(bottom row), there are shown steady-state simulation results for the mean flow q and the 
partial densities nv (global average numbers of the particles per site which move with the 
speed v) as functions of n, for randomization probabilities p = 0.0, 0.25 and 0.50. The 
simulations were carried out using a 860-sites lattice with periodic boundary conditions, 
and proceeding as follows: for density values increasing from 0 to 1 with steps of Δn = 0.01, 
the system was allowed to evolve for 1000 timesteps, and each simulation run was repeated 
20 times. As can be seen in Fig. 7, although the NS model with vmax = 1 and p = 0 has exactly 
the same behaviour as the WR184 model, important and growing deviations from this 
model become evident as p increases from zero. The top and bottom rows of Fig. 8 show the 
steady state behaviour of the NS model for vmax = 2 and vmax = 3, respectively, for three 
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values of the parameter p. In both cases, when p = 0 the system remains under the free-
flowing regime (all the particles moving with the maximum speed) until the mean density n, 
growing from zero, reaches the critical densities nc = 1/3 and nc = 1/4, respectively. 
 

   

   

   

Fig. 6. Time-space diagrams showing the behaviour of the Nagel and Scherckenberg traffic 
model for several values of density n and randomization parameter p. Simulations were 
carried out on a 500 sites lattice with periodic boundary conditions, for periods of 465 
timesteps. 

   

Fig. 7. Steady-state behaviour of the NS model with vmax = 1. The diagrams show the effect of 
the randomization p on the mean speed v and the partial densities nv as functions of density 
n. This model with p = 0 is exactly the same as the WR184 model. 
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Fig. 8. Steady states of the NS model with vmax = 2 (top row) and vmax = 3 (bottom row) for 
randomization probabilities p = 0.00, 0.25 and 0.50. For p = 0 the system remains under a 
free-flowing regime until density n reaches the values nc = 1/3 and nc = 1/4, respectively. 

2.2.4 The Fukui-Ishibashi traffic model 
In 1996, M. Fukui and Y. Ishibashi (Fukui & Ishibashi, 1993, 1996a; Wang et al., 1997) 
proposed another cellular automata model for traffic flow in a single lane (hereafter referred 
as FI), where the cars can move by at most vmax lattice sites in one timestep if they are not 
blocked by cars in front. In detail, if the number of empty sites h in front of a car is larger 
than vmax at time t, then it can move forward vmax (or vmax - 1) sites in the next time-step with 
probability 1 - f (or f). Here, the probability f represents the degree of stochastic delay. From 
the point of view of this model, no driver would like to slow down when far away from the 
vehicle ahead. In the high density case, the stochastic delay in this model represents the 
assurance of the avoidance of crashes. The model with f = 0 is referred to as the deterministic 
FI model with maximum speed vmax, while the case with f = 1 is the deterministic FI model 
with maximum speed vmax – 1. If h < vmax at time t, then the car can only move by h sites in 
the next time-step. The FI model differs from the NS model in that the increase in speed may 
not be gradual, and that stochastic delay only applies to the high speed cars. 
In Fig. 9, the steady state behaviour of partial densities nk(n) and traffic flow q(n) is shown 
for the FI models with vmax = 1 (first row) and vmax = 2 (second row) for stochastic delay 
values p = 0.00, 0.25 and 0.50. The diagrams were obtained by means of computer 
simulations carried out using a 860-sites lattice with periodic boundary conditions. For 
density values increasing from zero to 1 with steps of Δn = 0.01, the system was allowed to 
evolve for 1000 timesteps, and each simulation run was repeated 20 times. The results 
showed that, in both cases, vmax = 1 and vmax = 2, when p = 0 the system remained under a 
free-flowing regime (all the particles moving with the maximum speed) until density n, 
growing from zero, reached the critical densities nc = 1/2 and nc = 1/3, respectively. The 
results in the top row of Fig. 9 show that FI and NS models are equivalent to each other 
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when vmax = 1, independently of p; and they both are equivalent to WR184 model for p = 0. 
For the models with vmax = 2, comparison of the top row of Fig. 8 with the second row of Fig. 
9 show important differences between the respective simulations with the models FI and 
NS. In the limit p = 0, the behaviour of the partial densities of the FI model as functions of 
the global density n is quite similar, although different, to the respective behaviour of the 
partial densities of the NS model. However, for p > 0 these models behave quite different 
from each other. For example, while in the NS model all the partial densities n0, n1 and n2 
are, in general, greater than zero for any density value 0 < n < 1, in the FI model n0 = 0, n1 > 0 
and n2 > 0 for 0 < n < ½, but  n0 > 0, n1 > 0 and n2 =  0 when ½ < n < 1. As it is observed in Fig. 
9, the FI traffic model (with vmax = 2 and p > 0) switches between two different two-speed 
models at n = ½ : { n0 = 0, n1 > 0, n2 > 0 } ↔ { n0 > 0, n1 > 0, n2 =  0 }. 
Finally, we mention the related work of Wang et al. who studied the stochastic model of 
Fukui and Ishibashi both analytically and numerically, providing an exact result for p = 0, 
and a close approximation for the model with p ≠ 0 (Wang et al., 1998a). Based on the FI 
model, they developed a model that is subtly different. They assumed that drivers do not 
suffer from concentration lapses at high speeds, but are instead only subjected to the 
random deceleration when they are driving close enough to their direct frontal leaders 
(Wang et al., 2001). More recently, Lee et al. incorporated anticipation with respect to a 
vehicle’s changing space gap as its leader is driving away. This results in a higher capacity 
flow, as well the appearance of a synchronised traffic regime, in which vehicles have a lower 
speed, but are all moving (Lee et al., 2002). 
 

   

   

Fig. 9. The steady states of the FI models with vmax = 1 (top row) and vmax = 2 (bottom row) 
for stochastic delay values p = 0.00, 0.25, 0.50 and 0.75. The effect of the parameter p on  
the traffic flow q, the mean speed v, and the partial densities nk, as functions of n, is 
illustrated. 
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3. Equilibrium properties of the 1D traffic cellular automata 

As we have mentioned in Section 2, in the formulation of cellular automata traffic models, as it 
is the case of the WR184, NS and FI models, the interaction of the particles with each other is 
defined through some dynamical rules (deterministic and/or stochastic) which do not 
conserve the momentum and energy, and may drive the system far from equilibrium. The NS 
and FI models, in fact, have been considered as variants of the well-known asymmetric 
exclusion process (ASEP), the paradigm of the non-equilibrium systems (Schütz, 2001). As a 
consequence, notwithstanding their conceptual simplicity and easy construction, the analysis 
of the dynamics of a cellular automata traffic model is notoriously difficult in general. Big 
efforts are being made trying to apply the methods of non-equilibrium statistical physics to 
these systems, but only very few exact results have been obtained up to now. For the case of 
the NS model, the steady-state exact solution is known only if vmax = 1 (Schreckenberg et al., 
1995; Evans et al., 1999). When vmax > 1, however, only approximations exist, and most of the 
existing results have been found through computer simulations (Schreckenberg et al., 1995; 
Nagel, 1996; Schadschneider & Schreckenberg, 1993, 1997). In the case of the Fukui-Ishibashi 
model, H. Fuks has derived an expression of the average car flow as a function of time (Fuks, 
1999). For the same model, Boccara has studied a variational principle and its existence for 
other deterministic cellular automata models of traffic flow (Boccara, 2001). More recently, 
Wang et al. studied the non-deterministic FI model with arbitrary speed limit and degree of 
stochastic delay deriving a general expression for the average car speed in the steady state, 
which was found in excellent agreement with numerical data (Wang et al., 1998b). 
Furthermore, in the deterministic setting, many of the results are still on the "physical" level. In 
particular, they were not able to prove the convergence to the average velocity described by 
the fundamental diagram starting from any initial configuration of a given particle density 
even for the finite system, not speaking about infinite ones defined on the integer lattice 
(Blank, 2005, 2008). Another also open problem is the existence of invariant measures with a 
given particle density in the random setting with jumps greater than 1 (Blank, 2005, 2008). 
Some excellent reviews have been published in the last decade concerning the state of the art 
of traffic cellular automata theory (Chowdhury et al., 2000; Helbing, 2001; Nagatani, 2002; 
Nagel et al., 2003; Maerivoet & De Moor, 2005), however, up to the author´s knowledge, no 
study was reported about the equilibrium properties of the vehicle lattice gas prior to the 
paper published by Salcido in 2007 (Salcido, 2007). 
If we know what the equilibrium states of a system are, then we can certainly know when 
this system is out of equilibrium, but this may not be true in reverse sense. In the theories of 
thermodynamics and statistical thermodynamics, once the entropy function of the system is 
known, the equilibrium states of the system can be defined as all those states which 
maximize entropy under certain conditions. For the NS and FI models, however, detailed 
balance condition is not obeyed (which, otherwise, is a condition for the system can be in 
thermodynamical equilibrium) and so, ordinary statistical mechanics is not applicable to 
study them. This is what we mean when saying that the rules defining NS and FI models 
continuously are driving the system out of equilibrium, and one can never see relaxation 
towards equilibrium states. But, if we introduce constraints that prevent a system of 
reaching equilibrium states in practice, it does not mean, at all, that the system has no 
equilibrium states in theory (or better said that one cannot define equilibrium states for it). 
In the rest of this chapter, we will be considering a generic class of one-dimensional cellular 
automata models for multi-speed traffic flow with periodic boundary conditions (hereafter 
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referred as GC-1DTCA). We will assume that each model in this class has all the common 
basic features we described in Section 2.2.1, but no particular neither explicit specification of 
the dynamical updating rules of the model will be done. About these rules, we just will 
assume that they conserve the number of particles and that prevent collisions and 
overtaking by assigning the speed v to a particle if, and only if, it has, at least, a number v of 
free sites ahead. Within this framework, as we will see, an entropy function can be found for 
the models belonging to GC-1DTCA, which allows the study the properties of the 
equilibrium states (which here will be understood as the maximum entropy states) of the 
cellular automata models for multi-speed traffic flow in a single-lane.  
After description of the model system and of the variables that will describe its state, as well 
as the identification of the microcanonical entropy function, the maximum entropy principle 
will be applied to determine the equilibrium state partial densities and the thermodynamic 
properties of the system, such as temperature, pressure, specific heat, and isothermal 
compressibility. The theoretical partial densities of the allowed velocities and fundamental 
diagrams will be compared with computer simulation results we obtained with the Nagel-
Schreckenberg and Fukui-Ishibashi probabilistic cellular automata traffic models. In 
particular, as a part of this comparison, it is shown that, although the NS and FI traffic 
models behave as non-equilibrium systems, they evolve rapidly towards steady states (at 
least under periodic boundary conditions) which we have found very close to equilibrium 
under the view of our theoretical framework.  

3.1 Entropy and maximum entropy states of 1D traffic cellular automata 
Our system is a traffic cellular automaton defined on a 1D-lattice with L sites. It is assumed 

to have all the basic features cited in Section 2.2.1, but no particular or explicit specification 

of the velocity updating-rules is made here. However, concerning to these rules, we 

assumed they conserve the number of particles, and prevent collisions and overtaking by 

assigning the speed v to a particle if, and only if, it has, at least, a number v of free sites 

ahead. This means, in particular, that velocity anticipation is not considered here. 

With this background, a particle with speed v (= 0, 1, .. vmax) can be imagined as a brick of 

length v + 1 which has to be inserted in a 1D ring lattice (the brick row under question of a 

ring wall). This way, at any time t, the model system can be considered as one row of a ring 

wall, made of holes and vmax + 1 types of bricks (different in length) not overlapping each 

other. Since the dynamical rules of a particular model may change the lengths of the bricks, 

under certain conditions the system could reach states where the concentration of a 

particular type of bricks predominates over the others. The critical density is an upper 

bound of the density values for which only particles with speeds up to v (bricks with length 

v + 1) can be found in the system. 
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The macroscopic state of the system will be described by the set of velocity distribution 

functions Nv (v = 0, 1, …, vmax), each defined as the number of particles with some speed v in 

the lattice. The intensive variables defined as nv = Nv/L are global partial densities of the 

system. Then, the global density of the number of particles, n = N/L, the traffic flow (or 

momentum per site), q, and the kinetic energy per site, ε, of the system, are defined as 
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Here εv stands for the kinetic energy of a particle with unit mass and speed v. It is easy to 
show that flow q and kinetic energy ε of the system cannot exceed, respectively, the 
maximum values qmax(n) and εmax(n) given by  
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in the thermodynamic limit L→∞, where nc(vmax) is the critical density for v = vmax. Diagrams 

of qmax(n) and εmax(n) are shown in Fig. 10. In the free-flow regime, n < nc(vmax), vehicles move 
with speed vmax, and the gap between vehicles is either vmax or larger. In consequence, the 
traffic flow in this regime is qmax = nvmax. If global density is larger than the critical density, 
i.e. n > nc(vmax), only (L-N)/vmax vehicles can move with maximum speed and, in the limit 
L→∞, the maximum traffic flow is given qmax = 1 – n. Similarly, it can be obtained the 
maximum value εmax of kinetic energy for both n < nc(vmax) and n > nc(vmax). As a 
consequence, the possible macroscopic states of the system are defined by those partial 
densities nv which correspond to values of particle densities n and kinetic energies ε, ranging 
in the intervals 0 ≤ n ≤ 1 and 0 ≤ ε ≤ εmax(n), respectively.  
 

  

Fig. 10. Maximum flow qmax (left) and maximum energy εmax (right) as functions of the 

density of particles n, for models with vmax = 1, 2, 3 and 4. For each n ∈ [0, 1], the possible 

states of the system are those with energy ε ∈ [0, εmax(n)]. The transition points correspond to 
the critical densities nc = 1/2, 1/3, 1/4 and 1/5. 

Given initial and boundary conditions, the specific dynamical rules of the considered traffic 
cellular automata will define the macroscopic state of the system at any time t. 
Macroscopically, the state of the system will be characterized by the set of values of its 
partial densities nv, or by the numbers Nv = nvL, which is equivalent. Microscopically, 
however, there are many different arrangements in the lattice of given numbers (N0 , N1, ... , 
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Nvmax) of particles moving there with speeds (0, 1, 2, ..., vmax), respectively, including a 
number Λ of sites which must remain empty. For models belonging to the GC-1DTCA, with 
periodic boundary conditions, the number Ω(L, Nv) of all these different microscopic 
arrangements of moving particles is given by 
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and the number of empty sites in the lattice (i.e., the lattice sites available for speeding up 
the particles) can be expressed as 
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Negative values of Λ are forbidden because of the non-anticipation restriction that we   

imposed to the models in the class we are considering.  

We underline that Ω(L, Nv) is the number of all the possible configurations in which we can 

arrange N0 bricks with 1-site length (representing the particles at rest), N1 bricks with 2-sites 

length (representing the particles moving with speed v = 1), N2 bricks with 3-sites length 

(representing the particles moving with speed v = 2), and so on, up to Nvmax bricks with 

(vmax+1)-sites length (particles with speed vmax), by inserting them with no overlaps in a 1D 

ring-shaped lattice with L sites in total, but allowing that a number Λ of sites remain empty. 

We underline also that this result is valid for any cellular automata traffic model with all the 

common features we have specified above (Section 2.2.1). However, since particular 

dynamical rules of a model could prevent the system of reaching some microscopic states 

with particular configurations of particles, Eqn. (5) will provide, at least, for such cases, an 

upper bound to the number of them for that model. 

Starting from Ω(L, Nv), the entropy function is defined by S = ln(Ω). Then, with the help of 

Stirling’s approximation, the entropy per site, s = S/L, in the thermodynamic limit (L→∞), 

can be expressed as 

 
0

( )ln( ) ln ln
maxv

v v
v

s n n n nλ λ λ λ
=

= + + − − ∑  (7) 

where 

 
0

1 ( 1)
maxv

v
v

v n
L

λ
=

Λ
= = − +∑  (8) 

As a pretty nice consequence of existence of entropy for the cellular automata traffic models 

we are considering here, we can follow microcanonical equilibrium statistical mechanics to 

find the equilibrium states of these models as the states that maximize the entropy for given 

density and energy. These constraints seem suitable because cellular automata traffic 

models involve rules with parameters (such as randomization p in the NS-model) that 

control the kinetic energy of the particles, and drive the system towards macroscopic steady-

states with velocity distribution densities (and kinetic energies) well defined. 
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By employing the method of undetermined Lagrange multipliers, the velocity distribution 

functions (or partial densities) nv which define the equilibrium states were obtained 

 v

v

vn e
n

α βελ
λ

− −⎛ ⎞= ⎜ ⎟+⎝ ⎠
 (9) 

where  and ┚ are Lagrange multipliers whose physical meaning is discussed in Section 5.  

For vmax = 1, Eqn. (9) leads to the following expressions for the partial densities n0 and n1 as 
functions of n and a energy related parameter ┛, 

 0 1n n n= −  (10) 

 1
1 2

1
1 1 4 (1 )

1
n n n

γ

⎡ ⎤⎛ ⎞
⎢ ⎥= − − − ⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

 (11) 

Parameter ┛ was defined in terms of the Lagrange multiplier ┚ which, as we will see later, is 

the conjugated variable of the global energy density (kinetic energy per site) of the system: 

 /2eβγ ≡  (12) 

Traffic flow, in this case, is given by q = n1. Diagrams of equilibrium partial densities n0 and 

n1 are shown in Fig. 11 as functions of n for those models in GC-1DTCA with vmax = 1, and 

values γ = 0, 1/3, 1, and 3. As can be seen, the equilibrium states we have found for γ = 0 are 

equivalent to the steady states of the WR184 model (and also to the steady states of the NS-

model with randomization p = 0, and of the FI-model with stochastic delay p = 0). In fact, as 

we will see later, the equilibrium states given by the equations (10) and (11) are completely 

equivalent to the steady states of the NS-model with vmax = 1. 

 

    

Fig. 11. Equilibrium partial densities n0 and n1 as functions of n for models with vmax = 1. 

Traffic flow q is the same as n1. The effect of the parameter γ  is appreciated clearly. The 

equilibrium states of the models in GC-1DTCA with vmax = 1 and γ = 0 are equivalent to the 

steady-states of models WR184, NS (with randomization p = 0), and FI (with stochastic delay 

p = 0). 

For vmax = 2, Eqn. (9) lead to the following equations for the velocity distribution densities: 

 0 1 2n n n n= − −  (13) 
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( )( )

( )
1 2 1 2

1
1 2

1 2

1 2

n n n n n n
n

n nγ
− − − − −

=
− −

 (14) 

 
( )
( )

1 1 2
2 3

1 2

1 2

1 2

n n n n
n

n nγ
− − −

=
− −

 (15) 

Here, given n and ┛, the solution of Eqns. (14) and (15) give n1 and n2, and then Eqn. (13) 
gives n0. This system of non-linear and coupled equations can be solved with standard 
numerical methods (See, for example, Press et al., 1992). Here, ┛ is the same as in Eqn. (12), 
but now traffic flow, in according to Eqn. (2), is given by q = n1 + 2n2. Numerical solutions 
for the equilibrium partial densities n0, n1 and n2 as functions of n are shown in Fig. 12. 
 

  

Fig. 12. Equilibrium partial densities n0, n1 and n2 as functions of n for models with vmax = 2. 

Traffic flow is q = n1 + 2n2. The effect of the parameter γ  is appreciated clearly. 

For vmax > 1, a singular behaviour of entropy at n = nc(vmax) (see Eqn. (1)) becomes evident in 
the high-energy region (┚ < 0). This is shown in Fig. 13 for vmax = 2. For low energies (┚ > 0), 
the state of the system corresponds to arrangements of particles with the three possible 
speeds (n0, n1, n2 > 0) for all densities 0 < n < 1. For high energies (┚ < 0), however, the 
number of particles with speed v = 1 behaves as a decreasing function of energy and dies 
out in the high-energy limit (┚ → - ∞). Just at this point, the entropy of the system comes out 
 

   
(a) (b) (c) 

Fig. 13. Equilibrium state entropy, flow and partial densities n0, n1 and n2 as functions of n 
for models with vmax = 2. The behaviour of entropy, as energy increases towards its 

maximum εmax(1/3) = 2/3, shows a flow-regime transition at density n = nc(vmax) = 1/3, which 
becomes sharper for higher energies. 
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clearly divided in two well differentiated parts: one for densities n < 1/3, and the other one 
for densities n > 1/3. The first part corresponds to free-flow states in the system, i.e., states 
with all particles moving with the speed vmax = 2, and a number of empty sites ┣ > 0. The 
second part corresponds to congested-flow states in which the system contains only 
particles with speed vmax and particles at rest, and no empty sites (┣ = 0). This behaviour of 
entropy suggests a flow-regime transition in the system at density n = nc(vmax) = 1/3, which 

becomes sharper when energy increases towards the maximum energy (εmax(1/3) = 2/3). 

4. Comparison with the steady states of the NS and FI traffic models 

By comparing the simulation results shown in Figs. 4, 7 and 9, we can see that the NS and FI 
traffic models with vmax = 1 are identical with each other, and to the WR184 model, in the 
deterministic setting (i.e. when both the randomization in NS and the stochastic delay in FI 
are set equal to zero). As it can be observed in the first diagram of Fig. 11, the same 

behaviour is described by the equilibrium states for γ = 0, case for which our equations (10) 
and (11) are reduced to 

0 1n n n= −  

1
1 2

1 1 4 (1 )n n n⎡ ⎤= − − −⎣ ⎦  

The NS and FI models, however, behave quite different each other when their respective 
probability parameters, randomization and stochastic delay, are larger than zero. This is, of 
course, what one can observe through the comparison of Fig. 7 against the diagrams shown 
in Fig. 9 (first row). The equilibrium states in this case (vmax = 1, p ≥ 0), result expressed by 

 0 1n n n= −      1
1 2

1 1 4 (1 )(1 )n n n p⎡ ⎤= − − − −⎣ ⎦  (16) 

This result is the exact solution for the NS-model with vmax = 1 (Eqn. (5.11) in Schreckenberg 
et al, 1995). It is obtained from Eqns. (10) and (11) once probability parameter p is defined as 

 
/2

/21 1

e
p

e

β

β
γ

γ
≡ =

+ +
 (17) 

This is consistent, of course, with the meaning of the randomization probability p in the NS 
model because, as we will see later, the Lagrange multiplier ┚ is associated with the energy 
of the system in such a way that β → - ∞ (β → +∞) corresponds to the high-energy (low-
energy) limit. In fact, we see that the high (β → - ∞) and low (β → +∞) energy limits 
correspond to the randomization limits p → 0 (no braking is allowed at all, and the particles 
are driven to move with the possible highest speeds) and p → 1 (each particle is obligated to 
reduce its speed by one each timestep), respectively. In consequence, we are compelled to 
conclude that the equilibrium states given by the equations (10) and (11) are completely 
equivalent to the steady states of the NS-model with vmax = 1. 
In Fig. 14, in terms of the partial densities nv and the traffic flow q, it is shown a comparison 
of the equilibrium states (solid lines) against computer simulations of the steady states of the 
NS-model (dashed lines), considering vmax = 2 and randomizations p = 0.2 and 0.5. Here, for 
each density n we calculated the kinetic energy ε from the partial densities nv of the 
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simulated steady state. Then, for each couple (n, ε) we solved numerically the equations (14), 
(15) and (16). As it can be seen, a reasonable qualitative and quantitative agreement between 
the equilibrium states and the steady states of NS-model is found. However, growing 
differences are observed as p decreases below p = 0.5, particularly for densities n > 1/3.  
 

  

Fig. 14. Comparison between the equilibrium theory results (solid lines) and computer 
simulation results (dashed lines) carried out with the NS-model with vmax = 2, for 
randomizations p = 0.2 (left) and 0.5 (right). Although a reasonable agreement is found, 
important differences are observed. 

The observed differences are due to the rules implemented in the NS model for updating the 
speeds of the particles, which give a non-equilibrium character to the NS-model. In Fig. 15 
we have shown diagrams of the deviations of the values of flow qNS and entropy per site sNS 
of the NS-model steady states with respect to the corresponding values qES and sES of the 
equilibrium states, for p = 0.2 and p = 0.5. In both cases, the NS steady-state flow deviations 
are positive, i.e., qNS is larger than qES for any density n. For the entropy per site, however, 
also for any density, the values sNS we calculated with the partial densities of the steady 
states are lesser than the values sES we calculated from the equilibrium ones, i.e. the  
 

  

Fig. 15. Deviations of the NS steady state values of traffic flow q (top) and entropy per site s 
(bottom) with respect the corresponding equilibrium theory values, for p = 0.2 (left) and 0.5 
(right). In both cases, the NS steady-state flow is larger than that one of equilibrium. For the 
entropy, however, for any density n, the values calculated with the partial densities of the 
steady states are smaller than those calculated with the equilibrium ones. This result (we 
think) is just an expression of the non-equilibrium behaviour of the NS traffic model. 
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deviations sNS - sES are negative. This result is exactly what we expected because of the non-
equilibrium behaviour of the NS cellular automata traffic model. On another hand, as we 
see in these figures, for p = 0.2, the absolute deviations |sNS - sES| for density values n > nc 
(congested flow regime) are larger than for n < nc (free-flow regime); while for p = 0.5, on the 
contrary, the absolute deviations for n < nc are larger than for n > nc. Furthermore, for p = 0.5 
the system behaviour in the NS-model is very close to equilibrium when n > nc. This is due, 
of course, to the braking effect of the randomization parameter, which forces a better 
spreading of the particles among their possible speed values. 

5. Equilibrium thermodynamic properties of 1D traffic cellular automata 

In order to get some insight about the physical meaning of the Lagrange multipliers α and β, 
we note that, using Eqn. (9), the entropy can be written as 

 ( ln ) ln
n

s n
λα λ βε
λ
+⎛ ⎞= + + + ⎜ ⎟

⎝ ⎠
 (18) 

Now, a formal comparison of this equation with the well-known Euler equation of 
thermodynamics for a gas of particles, 

 
n P

s
T T T

μ ε
= − + +  (19) 

where s is the entropy per unit volume, n is the density of the number of particles, T is the 
temperature, µ is the chemical potential, ε is the internal energy per unit volume, and P is 
the pressure, suggests the following thermodynamics interpretation 

 ln
T

μα λ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 (20) 

 
1

T
β =  (21) 

 ln
P n

T

λ
λ
+⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (22) 

Strictly speaking, Eqns. (20) and (21) just define the new parameters T and µ in terms of the 

Lagrange multipliers α and β, and equation (22) defines P. However, the use of these 
properties, which we will call traffic temperature (T), traffic chemical potential (µ), and 
traffic pressure (P), could open an innovative framework for the physical analysis and 
interpretation of traffic flow phenomena. 
Traffic temperature (T = 1/β) may assume positive and negative values, with a discontinuity 

at the kinetic energy εc where entropy reaches its maximum (Fig. 16), and splits the energy 
spectrum in a low (T > 0) and a high (T < 0) energy regions. This feature of temperature 
(also inherited by the traffic pressure and chemical potential) is a typical consequence of the 
upper bound imposed on the kinetic energy of the lattice gas particles (Salcido & Rechtman, 
1991; Bagnoli & Rechtman, 2009), and it points out the existence of a population inversion of 
the particles between the low and high kinetic energies. In fact, as it is suggested by Fig. 16, 
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as n → nc(vmax) = 1/3, entropy is zero when all the particles are at rest (n0 = n); reaches its 
maximum value when the numbers of particles at rest and particles in motion are equal: n0 = 
n1 + n2; and becomes null again when all particles are moving with speed vmax (n2 = n). 
 

  

Fig. 16. (Left): The entropy per site (s), flow (q) and partial densities nv are shown as 

functions of energy per site (ε) for the critical density n = nc(vmax) = 1/3. Observe the typical 
behaviour of entropy for systems with an upper bound in energy. (Right): Temperature, 

defined as the slope of entropy as function of energy, has positive values for energies ε < εc, 

and negative values for ε > εc, being εc the energy at which entropy reaches its maximum. 

It is interesting the behaviour of traffic pressure in the limits n → 0, n → 1, and n → nc(vmax). 
For the first two limits, respectively, the Eqn. (22) gives  

 
P

n
T
≈     

1
ln

1

P

T n

⎛ ⎞≈ ⎜ ⎟−⎝ ⎠
 (23) 

The result of the first limit (n → 0) resembles the well-known equation of state of an ideal 
gas. In the second one (n → 1), depending on the s of temperature, P→±∞; this result 
resembles the behaviour of pressure-density relation in a condensed phase. For high 
energies (β → - ∞), the same as with entropy, traffic pressure and chemical potential have a 
peculiar behaviour in the limit n → nc(vmax). This is shown in Fig. 17 for speed limit vmax = 2. 
In both cases, this behaviour is a result of the singularity these properties have at β = 0. In 
the high-energy limit, the density of empty sites dies out (λ → 0) when density n increases 
 

  

Fig. 17.  Properties P/T and ┤/T as functions of density n for several values of β. These plots 
suggest a critical behaviour of traffic flow near n = nc(vmax) = 1/3 in the limit of high energy 
(β → -∞) of the system with vmax = 2. 
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towards nc(vmax), and so P/T and μ/T diverge to infinity as ln(1/λ). Because λ remains null for 

densities larger than nc(vmax) (see Fig. 13c), P/T and μ/T will remain undefined there. 

Other thermodynamic properties, such as the specific heat Cv, isothermal compressibility κT, 

and isobaric expansivity αP, can be calculated easily from the velocity distribution densities. 
The expressions we have obtained for these thermodynamic properties are shown in the 
equations (24), (25) and (26). The behaviour of these properties is shown in Fig. 18. 

 
max 2

2 2 2

0

( )v

v v
v

e
C n

n
ν

ν

βεβ β ε
β =

⎛ ⎞∂
≡ − = −⎜ ⎟∂⎝ ⎠

∑  (24) 

 1
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( 1)( 1 )

P

T P P

n e
P

P e e n

β

β β
β

ν βせ β
ν

∂⎛ ⎞≡ − = −⎜ ⎟∂ − − −⎝ ⎠
 (25) 

 2 1
( , ) ( , )P T

P

P P P
να β β β せ β

ν β
⎛ ⎞∂

≡ − =⎜ ⎟∂⎝ ⎠
 (26) 

with  1 1
1P

n

eβ
ν そ≡ − = −

−
 (27) 

 

In this figure, we can observe the effect on the thermodynamic properties due to a sharp 
transition between the free- and congested-flow regimes. In particular, it is observed that 
compressibility and expansivity go to zero as n is increased towards 1/3. This means that for 
n > 1/3, in the high-energy limit, no empty sites will be available in the lattice in order to set 
in motion the particles at rest (i.e., the system of particles cannot be expanded), and any 
particle will be found at rest or moving with the speed vmax. This behaviour of particles in 
the high-energy limit is observed also in the Fig. 13. 

6. Conclusions and future work 

The cellular automata traffic models of Nagel-Schreckenberg (NS) and Fukui-Ishibashi (FI) 
include velocity updating-rules which define a dynamics that do not obey a detailed 
balance. These rules continuously drive the system to states out of equilibrium. This is the 
reason why these models and their variants cannot be studied within the framework of 
equilibrium statistical mechanics. Nevertheless, as we have shown here, thermodynamic 
entropy exists for the 1DTCA models with no velocity anticipation, which we have found 
through an isomorphic system where a lattice gas particle which moves with speed v is 
modelled as a brick, (v+1)-sites length, that is inserted in a 1D lattice with no overlapping. 
This allowed us to study the equilibrium (or maximum entropy) states of these systems and 
their thermodynamic properties. As it could be expected, the maximum entropy states do 
not agree in general with the steady states of the NS model, particularly for high energies 
(i.e. small values of the randomization parameter p); however, in the low energies domain 
the equilibrium states resemble very strongly the steady states of the NS model, and the 
fundamental diagrams are reproduced quit well. For vmax = 2, the behaviour of entropy, as a 
function of the density of particles, allowed a clear identification of different flow-regimes in 
the 1DTCA models, displaying a sharp transition between the free- and congested-flow 
regimes in the high-energy limit. The presence of this transition was observed also in other 
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properties of the system, such as the specific heat, the isothermal compressibility, and the 
isobaric expansivity, which were calculated using the velocity distribution densities of the 
equilibrium states. Therefore, we presume that the knowledge of thermodynamic properties 
within the context of modelling traffic flow by means of cellular automata is quite relevant 
for improving and speeding up the computer simulation of traffic flow, but also may help 
us to improve the physical understanding of traffic flow phenomena. So, we hope this work 
may contribute in advancing some modest steps in the establishment of the traffic cellular 
automata theory.  
 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
 

Fig. 18. Behaviour diagrams of the thermodynamic properties of the 1DTCA models with 

vmax = 2, for β < 0 (left column) and β > 0 (right column). First row: Specific heat Cv. Second 

row:  Isothermal compressibility κT. Third row: Isobaric expansivity αP. All the properties 

were plotted as functions of the density of particles n. For β < 0 these diagrams show the 
occurrence a flow-regime transition at density n = nc(vmax) = 1/3. 
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In the near future, we would like to be able of extending this equilibrium theory to the 
cellular automata models for multi-lane traffic flow and 2D traffic networks, which we hope 
would be setting us in the way towards the application of these models within the context of 
the urban air pollution problems. 
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