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Abstract 

Cellular automata (CA) algorithms can be used for quickly describing models of complex systems using simple 

rules. CADDIES is a new EPSRC and industry-sponsored project that aims to use the computational speed of 

CA algorithms to produce operationally useful real/near-real time pluvial urban flood models for both 1D-sewer 

and 2D-surface (dual-drainage) flows.  

In this paper, the design of a graphical software framework for the CADDIES project is presented. This is 

intended to simplify the development, testing and use of CA algorithms, and to facilitate the handling of the 

peripheral tasks of data management and display; allowing the research users to focus on the central tasks of 

optimisation of CA models and algorithms themselves 

Keywords  
Cellular automata, pluvial flooding, GUI, framework, dual drainage, computational efficiency, hydrological 

model  

1. INTRODUCTION 

The increasing frequency and severity of urban flooding events has increased the importance of pluvial flood 

modelling which uses an overland flow model to simulate the flow of water on the ground surface and a sewer 

network model to describe the flow within the drainage system. The concept of the two part model is generally 

named ‘dual-drainage’, [1] where the ground surface is represented as the ‘major drainage system’ and the sewer 

network as the ‘minor system’. 

The flow propagation on the surface is commonly simulated by two-dimensional (2D) overland models. 

However, computation of 2D models using fully hydrodynamic models at sufficiently fine resolution is very 

expensive and can easily take many hours or days to complete in modern hardware. A large amount of research 

has been done to improve the computation time for this type of model with the objective of producing a 

real/near-real time urban flood model for uncertainty/risk assessment. Some of the techniques researched to 

improve the computational time involve the simplification of the 2D terrain features into 1D surface model with 

a series of ponds/nodes and flow-path/links [2][3]. These new techniques allow the computation to be completed 

in less than an hour.  

Recently, the ability of cellular automata (CA) algorithms (with simple rules) to simulate the complexity of 

physical models has been investigated in many studies in order to improve dramatically the computation time of 

2D surface water models [4][5]. Since flood models that use CA algorithms do not compute fully hydraulic 

equations but only the non-iterative operation of the CA rules, their execution time could be in the order of 

minutes. Furthermore, CA algorithms are well suited to be executed in parallel in modern high performance 

hardware, thus obtaining a very fast speed of computation.   

CADDIES is a new project which aims to use cellular automata to improve the speed and efficiency of dual 

drainage pluvial flood modelling for both 2D urban surface flow and 1D sewer flow, in order to be used for 

real/near-real time modelling. However, since defining a complex physical model using simple CA rules is not a 

trivial process, there is a need for a software tool that allows developers to prototype algorithms rapidly and to 

compare, test, and analyse the results of new and existing algorithms, without the need to develop common code 

from scratch.. 
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In this paper, the design of a new graphical framework is presented. The idea is to provide an integrated 

environment where CA algorithms can be easily developed and run while their setup and results data can be 

inspected all within the same package. Thus the need to invest valuable time and resources by the developers on 

creation of input and output code, GIS interface and visualisation tools is reduced.  Furthermore, the ability to 

import GIS data and to use new visualisation tools will allow existing case studies to be easily expanded to 

include use of CA models. 

2. CADDIES FRAMEWORK AIMS 

The CADDIES framework addresses three main objectives: 

1. To simplify the development, testing and comparison of CA algorithms for dual drainage pluvial flood 

modelling allowing the highest flexibility possible and the complete customisation of the algorithm by 

the developer. 

2. To transparently accelerate the execution of CA algorithms using modern high performance hardware 

and techniques, i.e. the developer should write the algorithm for serial computation and then achieve 

higher performance without adding any extra effort into the development. 

3. To provide an application with a graphical user interface (GUI) which can be used to manage the 

development and the execution of the flood modelling simulations and the data produced can be 

analysed. The application should be able to manage various input output data formats, to visualise 

different information such as maps and graphs, and to launch the algorithm executions on local and 

remote machines in order to speed up computation.  

The target users of the framework are not only developers/researchers, but also end-users, since the framework 

should allow anyone to utilise the future CA flood models developed during CADDIES for real/near-real time 

urban flood modelling. 

Given the main objectives of the framework, its main design features are:  

• Highly flexible and customisable; since each flooding algorithm has different requirements in terms of 

input and output data used as well as output visualisation options, the framework should allow 

researchers and end users to try different algorithms, various data types and visualisation systems. Thus 

the framework should implement specific techniques in order to easily connect new functionalities. 

• Simple; the framework should be easy to use and deploy in order to facilitate its employment by the 

target user-base. The GUI should be simple, in order to facilitate its use, as well as flexible, in order to 

accommodate new visualization techniques.  

• Portable and fast; the framework should work on different platforms, i.e. different operating systems 

(O.S.) and different hardware architectures (CPU type). The target is to be able to easily run the 

framework, or various parts of the framework, on remote machines; and to use all the available 

processing power (CPU, GPU) in order to minimise run times. 

3. CELLULAR AUTOMATA ALGORITHM DEVELOPMENT 

Cellular automata [6] offer a versatile method for deriving reduced computational load for models of complex 

physical systems [7]. A cellular automaton is a discrete model which is composed of a regular lattice of cells 

defined by a discrete location and a set of states. The evolution of each cell’s state is governed by local transition 

rules which use the previous state of the cell and the states of the neighbouring cells of the CA. 

Various CA algorithms can be quite different between similar implementations and are defined by the transition 

rules implemented, the type of lattice, cell and neighbourhood used. Thus, it is important to provide a high-

degree of flexibility for users developing CA algorithms.  

The CADDIES framework is designed to give this flexibility. The diagram of figure 1 shows a possible 

execution of a CA algorithm using the framework. The algorithm is defined by two entities: CA function and CA 

options. The CA function contains the code of the transition rules to apply in each cell, while the options of a CA 

algorithm are: the dimensionality of the problem solved (1D, 2D or combination); the type of cell used 



(rectangular, hexagonal, triangular, etc.); the type of lattice or grid implemented (regular, rectilinear, 

unstructured, etc.); the number of neighbourhood cell used;  the type of action to execute on the border cells 

(fixed value, function, wrap-around values, etc.) and the number and type (e.g. discrete, continuous) of cell 

states. 

 

Figure 1. Execution of a CA algorithm with the CADDIES Framework 

In the CADDIES framework, the developer will need only to code the CA function and to choose the CA options 

in order to create a CA algorithm. The creation and management of the cellular lattice, the management of the 

input and output data, the updating of cell values will all be done automatically by the framework. Thus, the 

developer will be able to concentrate on implementing the best rules for the flood modelling. 

4. AUTOMATIC CA ALGORITHMS ACCELERATION 

The idea of the CADDIES framework is that once a developer has implemented the CA rules using the 

framework and tested the algorithm using sequential computation, he/she should be able to execute the same CA 

rules using acceleration techniques without changing the code or with minimum effort. There are various high 

performance techniques that can be used by the framework to speed-up CA algorithms. These techniques can be 

divided in two types: 1) parallel computation; and 2) minimisation of computation.  

Since the cellular automata computations are limited to neighbourhood cells, the local rules are identical for the 

whole lattice, and the values used in the computations are the ones of the previous step; CA algorithms have 

proved to have an inherent massively parallel computation capability. Thus, it is possible to run parallel 

computations of CA algorithms using multi-threading, vector instructions, and the large computational capacity 

of modern graphics processing units (GPUs) [8][9].  To run any of these parallel executions, the framework will 

divide the CA lattice on various sub-grids which will be distributed between the various computational units 

(CPUs or GPUs) available. However, since the various computational units (CUs) do not always have the same 

computational power, the framework will use dynamic load balancing techniques (DLB) when necessary, i.e. 

dynamically changing the amount of computations made in each CU depending on its load. There are many DLB 

techniques available [10], [11]; a common approach between them is to divide the lattice in many more sub-grids 

than CUs available, assign multiple sub-grids to each CU; and then move the sub-grids between CUs depending 

on their loads.  

Another way to speed-up the execution of a CA algorithm is to minimize the number of computations made. An 

accelerating technique is to execute pre-processing and post-processing on the lattice, in order to lower its 

resolution in different areas depending on particular static condition such as height of terrain or distance from 

river or degree of urbanisation. A more complex technique is to use adaptive mesh refinement (AMR) [12], i.e. 

dynamically increasing or decreasing the resolution of the cells during the computation depending on the status 

of the cell. Finally, a way to minimise the computation on a CA algorithm is to compute in each step only the 

wet-cells and their neighbourhood cells. 

Other than implementing these high performance techniques to speed up single CA algorithms, the framework is 

designed to use distributed computing and cloud computing, i.e. remote executions. This will allow the 

researches to run in parallel multiple CA algorithms or multiple instances of the same algorithm with different 

datasets for comparison purposes. 



 

 

5. FRAMEWORK APPLICATION 

The final objective of the CADDIES framework is to develop an application with a graphical user interface 

which is used to develop and test the CA algorithms and it is used to execute these algorithms for flood risk 

management. In order to achieve a framework that is useful for both developers and end-users while achieving 

the objectives set, the application will have two types of workflows: 1) execution-type and 2) execution-run. 

The execution-type workflow will allow the researcher to identify the characteristics of the CA algorithm to be 

executed, the types of input and the types of output that will be used in the flood modelling, and how to visualise 

the data produced. Thus a researcher, through the use of a specific GUI in the application, will be able to 

customise all the details of a flood modelling simulation. The execution-run workflow will allow the end-user to 

execute a flood model of a specific execution-type. Thus, the end-user will be able to choose the data to be used 

in the execution of the given type and visualise the results using the selected visualisation tools.  

5.1 Algorithm evaluation 

Once a CA algorithm has been developed is important to evaluate it. Thus, the idea is to provide in the 

framework a library of metrics that can be used to evaluate the performance of a given CA algorithm: e.g. mass 

conservation, deviation from real measurement of sensor data, momentum conservation, execution time, etc. The 

framework will not only provide standard metrics but it will add the option for the users to create, select and 

apply their own metrics which can be exchanged with other researchers/users.  

However, since the development of a new flood model algorithm is made of various different partial 

implementations; it is important to keep a history of the outputs produced and the metric results of these partial 

implementations in order to understand which modification is the most effective.  Furthermore, it essential to be 

able to compare the results obtained by a new developed algorithm with the results obtained by existing CA 

algorithms and existing state-of-the-art models. Thus, the CADDIES framework application is designed to keep 

a history of each execution-run made. The framework, for each flood modelling simulation executed, will store 

the input data used and the output results obtained, the details of the machine used in the execution and the 

relative computational time, and any other details of the execution in a central database.  

5.2 Internal structure 

CA algorithms for flood modelling differ between each other not only for their internal transition rules and CA 

options implemented but also for the type and quantity of data input they need and for the type and quantity of 

output results they produce. Some examples of differences between algorithms are: the use of digital elevation 

model with or without buildings, the use of ad hoc spot observation rain data (rain gauge) or dynamic-grid data 

(rain radar), producing hydrographs for few fixed points or any selected points or grid array output, etc. 

Furthermore, the input data can be retrieved from different tools in many formats and can be visualised in many 

ways. For example, various GIS systems, on-line web maps, raster or vector files, 2D maps with or without 

sewer data, 3D maps, etc. 

In order to accommodate different needs between different CA algorithms and allowing any future extension; the 

framework needs to be flexible. To achieve this flexibility, the internal structure of the framework will consist of 

three layers: visualisation management layer, I/O management layer and execution layer. Each layer contains 

different components, which can be integrated into the framework through the use of well defined plug-in 

interfaces. Thus in the future, it will be possible to extend the functionality of the framework. Figure 2 shows the 

internal structure of the framework with the three layers and their components. 



 

Figure 2. Internal structure of the framework 

The I/O layer will contain specific filter components which will be used to read the data from external tools in 

specific formats and transform the data in the type used internally by the CA algorithms; and vice-versa. The 

Visualisation management layer will contains the graphical widget components which will be used to read the 

output results produced by the CA algorithms and visualise the results in human-readable form. The execution 

layer will contain the CA algorithm components which will execute different CA algorithms in different 

machines which could be local or remote. Figure 3 shows an example of how the components are used to 

produce the data input and visualise the output data of CA algorithm of figure 1. 

 

Figure 3.Use of components to read data inputs and visualise data outputs. 

Another important design choice made in the CADDIES framework is that the application will be divided in two 

parts: a backend and a frontend.  The frontend will be responsible for the interaction of the user with the 

framework; thus it will contain the graphical user interface, the tools to read/write input/output data and the 

visualisation tools. The backend will be responsible for the execution of the various algorithms on the local 

machine or on the remote machines, thus it will contain a queue of executions. Furthermore, the backend will be 

responsible for the storage, management and movement of data between machines and the database with the 

histories of the executions. 

6. CONCLUSIONS AND FUTURE WORKS 

This work presents the design of framework for rapid development and execution of CA algorithms for dual-

drainage pluvial flood model. The design choices made will allow developers to implement, test, compare, and 

execute cellular automata algorithms for the CADDIES project using a graphical user interface application.  

The next step of this work is to start the implementation of the part of the framework that simplifies the cellular 

automata algorithm’s development.  Thus, all the CA options available need to be defined in the framework, in 

addition to the structure of the CA function and the code that creates the lattice and runs the CA rules. Following 



this, the next step will be to implement the backend of the application and the plug-in interface. Thus it will be 

possible to execute the CA algorithm locally and remotely and to create the various filters that read the various 

input data types. The third step is to design in detail the graphical user interface and to develop the application 

with the various visualisation widgets. The final step is to introduce the CA acceleration techniques into the 

framework.   
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