
DESIGN OF A GRAPHICAL FRAMEWORK FOR EASY

PROTOTYPING OF PLUVIAL FLOODING CELLULAR AUTOMATA

ALGORITHMS

 Michele Guidolin
1
, Andrew Duncan

1
, Edward C. Keedwell

1
, Slobodan Djordjevic

1
 and

Dragan A. Savic
1

1
Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences , University of Exeter,

North Park Road, Exeter, EX4 4QF, United Kingdom
1
{M.Guidolin, apd209, E.C.Keedwell, S.Djordjevic, D.Savic}@exeter.ac.uk

Abstract

Cellular automata (CA) algorithms can be used for quickly describing models of complex systems using simple

rules. CADDIES is a new EPSRC and industry-sponsored project that aims to use the computational speed of

CA algorithms to produce operationally useful real/near-real time pluvial urban flood models for both 1D-sewer

and 2D-surface (dual-drainage) flows.

In this paper, the design of a graphical software framework for the CADDIES project is presented. This is

intended to simplify the development, testing and use of CA algorithms, and to facilitate the handling of the

peripheral tasks of data management and display; allowing the research users to focus on the central tasks of

optimisation of CA models and algorithms themselves

Keywords
Cellular automata, pluvial flooding, GUI, framework, dual drainage, computational efficiency, hydrological

model

1. INTRODUCTION

The increasing frequency and severity of urban flooding events has increased the importance of pluvial flood

modelling which uses an overland flow model to simulate the flow of water on the ground surface and a sewer

network model to describe the flow within the drainage system. The concept of the two part model is generally

named ‘dual-drainage’, [1] where the ground surface is represented as the ‘major drainage system’ and the sewer

network as the ‘minor system’.

The flow propagation on the surface is commonly simulated by two-dimensional (2D) overland models.

However, computation of 2D models using fully hydrodynamic models at sufficiently fine resolution is very

expensive and can easily take many hours or days to complete in modern hardware. A large amount of research

has been done to improve the computation time for this type of model with the objective of producing a

real/near-real time urban flood model for uncertainty/risk assessment. Some of the techniques researched to

improve the computational time involve the simplification of the 2D terrain features into 1D surface model with

a series of ponds/nodes and flow-path/links [2][3]. These new techniques allow the computation to be completed

in less than an hour.

Recently, the ability of cellular automata (CA) algorithms (with simple rules) to simulate the complexity of

physical models has been investigated in many studies in order to improve dramatically the computation time of

2D surface water models [4][5]. Since flood models that use CA algorithms do not compute fully hydraulic

equations but only the non-iterative operation of the CA rules, their execution time could be in the order of

minutes. Furthermore, CA algorithms are well suited to be executed in parallel in modern high performance

hardware, thus obtaining a very fast speed of computation.

CADDIES is a new project which aims to use cellular automata to improve the speed and efficiency of dual

drainage pluvial flood modelling for both 2D urban surface flow and 1D sewer flow, in order to be used for

real/near-real time modelling. However, since defining a complex physical model using simple CA rules is not a

trivial process, there is a need for a software tool that allows developers to prototype algorithms rapidly and to

compare, test, and analyse the results of new and existing algorithms, without the need to develop common code

from scratch..

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/12824744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, the design of a new graphical framework is presented. The idea is to provide an integrated

environment where CA algorithms can be easily developed and run while their setup and results data can be

inspected all within the same package. Thus the need to invest valuable time and resources by the developers on

creation of input and output code, GIS interface and visualisation tools is reduced. Furthermore, the ability to

import GIS data and to use new visualisation tools will allow existing case studies to be easily expanded to

include use of CA models.

2. CADDIES FRAMEWORK AIMS

The CADDIES framework addresses three main objectives:

1. To simplify the development, testing and comparison of CA algorithms for dual drainage pluvial flood

modelling allowing the highest flexibility possible and the complete customisation of the algorithm by

the developer.

2. To transparently accelerate the execution of CA algorithms using modern high performance hardware

and techniques, i.e. the developer should write the algorithm for serial computation and then achieve

higher performance without adding any extra effort into the development.

3. To provide an application with a graphical user interface (GUI) which can be used to manage the

development and the execution of the flood modelling simulations and the data produced can be

analysed. The application should be able to manage various input output data formats, to visualise

different information such as maps and graphs, and to launch the algorithm executions on local and

remote machines in order to speed up computation.

The target users of the framework are not only developers/researchers, but also end-users, since the framework

should allow anyone to utilise the future CA flood models developed during CADDIES for real/near-real time

urban flood modelling.

Given the main objectives of the framework, its main design features are:

• Highly flexible and customisable; since each flooding algorithm has different requirements in terms of

input and output data used as well as output visualisation options, the framework should allow

researchers and end users to try different algorithms, various data types and visualisation systems. Thus

the framework should implement specific techniques in order to easily connect new functionalities.

• Simple; the framework should be easy to use and deploy in order to facilitate its employment by the

target user-base. The GUI should be simple, in order to facilitate its use, as well as flexible, in order to

accommodate new visualization techniques.

• Portable and fast; the framework should work on different platforms, i.e. different operating systems

(O.S.) and different hardware architectures (CPU type). The target is to be able to easily run the

framework, or various parts of the framework, on remote machines; and to use all the available

processing power (CPU, GPU) in order to minimise run times.

3. CELLULAR AUTOMATA ALGORITHM DEVELOPMENT

Cellular automata [6] offer a versatile method for deriving reduced computational load for models of complex

physical systems [7]. A cellular automaton is a discrete model which is composed of a regular lattice of cells

defined by a discrete location and a set of states. The evolution of each cell’s state is governed by local transition

rules which use the previous state of the cell and the states of the neighbouring cells of the CA.

Various CA algorithms can be quite different between similar implementations and are defined by the transition

rules implemented, the type of lattice, cell and neighbourhood used. Thus, it is important to provide a high-

degree of flexibility for users developing CA algorithms.

The CADDIES framework is designed to give this flexibility. The diagram of figure 1 shows a possible

execution of a CA algorithm using the framework. The algorithm is defined by two entities: CA function and CA

options. The CA function contains the code of the transition rules to apply in each cell, while the options of a CA

algorithm are: the dimensionality of the problem solved (1D, 2D or combination); the type of cell used

(rectangular, hexagonal, triangular, etc.); the type of lattice or grid implemented (regular, rectilinear,

unstructured, etc.); the number of neighbourhood cell used; the type of action to execute on the border cells

(fixed value, function, wrap-around values, etc.) and the number and type (e.g. discrete, continuous) of cell

states.

Figure 1. Execution of a CA algorithm with the CADDIES Framework

In the CADDIES framework, the developer will need only to code the CA function and to choose the CA options

in order to create a CA algorithm. The creation and management of the cellular lattice, the management of the

input and output data, the updating of cell values will all be done automatically by the framework. Thus, the

developer will be able to concentrate on implementing the best rules for the flood modelling.

4. AUTOMATIC CA ALGORITHMS ACCELERATION

The idea of the CADDIES framework is that once a developer has implemented the CA rules using the

framework and tested the algorithm using sequential computation, he/she should be able to execute the same CA

rules using acceleration techniques without changing the code or with minimum effort. There are various high

performance techniques that can be used by the framework to speed-up CA algorithms. These techniques can be

divided in two types: 1) parallel computation; and 2) minimisation of computation.

Since the cellular automata computations are limited to neighbourhood cells, the local rules are identical for the

whole lattice, and the values used in the computations are the ones of the previous step; CA algorithms have

proved to have an inherent massively parallel computation capability. Thus, it is possible to run parallel

computations of CA algorithms using multi-threading, vector instructions, and the large computational capacity

of modern graphics processing units (GPUs) [8][9]. To run any of these parallel executions, the framework will

divide the CA lattice on various sub-grids which will be distributed between the various computational units

(CPUs or GPUs) available. However, since the various computational units (CUs) do not always have the same

computational power, the framework will use dynamic load balancing techniques (DLB) when necessary, i.e.

dynamically changing the amount of computations made in each CU depending on its load. There are many DLB

techniques available [10], [11]; a common approach between them is to divide the lattice in many more sub-grids

than CUs available, assign multiple sub-grids to each CU; and then move the sub-grids between CUs depending

on their loads.

Another way to speed-up the execution of a CA algorithm is to minimize the number of computations made. An

accelerating technique is to execute pre-processing and post-processing on the lattice, in order to lower its

resolution in different areas depending on particular static condition such as height of terrain or distance from

river or degree of urbanisation. A more complex technique is to use adaptive mesh refinement (AMR) [12], i.e.

dynamically increasing or decreasing the resolution of the cells during the computation depending on the status

of the cell. Finally, a way to minimise the computation on a CA algorithm is to compute in each step only the

wet-cells and their neighbourhood cells.

Other than implementing these high performance techniques to speed up single CA algorithms, the framework is

designed to use distributed computing and cloud computing, i.e. remote executions. This will allow the

researches to run in parallel multiple CA algorithms or multiple instances of the same algorithm with different

datasets for comparison purposes.

5. FRAMEWORK APPLICATION

The final objective of the CADDIES framework is to develop an application with a graphical user interface

which is used to develop and test the CA algorithms and it is used to execute these algorithms for flood risk

management. In order to achieve a framework that is useful for both developers and end-users while achieving

the objectives set, the application will have two types of workflows: 1) execution-type and 2) execution-run.

The execution-type workflow will allow the researcher to identify the characteristics of the CA algorithm to be

executed, the types of input and the types of output that will be used in the flood modelling, and how to visualise

the data produced. Thus a researcher, through the use of a specific GUI in the application, will be able to

customise all the details of a flood modelling simulation. The execution-run workflow will allow the end-user to

execute a flood model of a specific execution-type. Thus, the end-user will be able to choose the data to be used

in the execution of the given type and visualise the results using the selected visualisation tools.

5.1 Algorithm evaluation

Once a CA algorithm has been developed is important to evaluate it. Thus, the idea is to provide in the

framework a library of metrics that can be used to evaluate the performance of a given CA algorithm: e.g. mass

conservation, deviation from real measurement of sensor data, momentum conservation, execution time, etc. The

framework will not only provide standard metrics but it will add the option for the users to create, select and

apply their own metrics which can be exchanged with other researchers/users.

However, since the development of a new flood model algorithm is made of various different partial

implementations; it is important to keep a history of the outputs produced and the metric results of these partial

implementations in order to understand which modification is the most effective. Furthermore, it essential to be

able to compare the results obtained by a new developed algorithm with the results obtained by existing CA

algorithms and existing state-of-the-art models. Thus, the CADDIES framework application is designed to keep

a history of each execution-run made. The framework, for each flood modelling simulation executed, will store

the input data used and the output results obtained, the details of the machine used in the execution and the

relative computational time, and any other details of the execution in a central database.

5.2 Internal structure

CA algorithms for flood modelling differ between each other not only for their internal transition rules and CA

options implemented but also for the type and quantity of data input they need and for the type and quantity of

output results they produce. Some examples of differences between algorithms are: the use of digital elevation

model with or without buildings, the use of ad hoc spot observation rain data (rain gauge) or dynamic-grid data

(rain radar), producing hydrographs for few fixed points or any selected points or grid array output, etc.

Furthermore, the input data can be retrieved from different tools in many formats and can be visualised in many

ways. For example, various GIS systems, on-line web maps, raster or vector files, 2D maps with or without

sewer data, 3D maps, etc.

In order to accommodate different needs between different CA algorithms and allowing any future extension; the

framework needs to be flexible. To achieve this flexibility, the internal structure of the framework will consist of

three layers: visualisation management layer, I/O management layer and execution layer. Each layer contains

different components, which can be integrated into the framework through the use of well defined plug-in

interfaces. Thus in the future, it will be possible to extend the functionality of the framework. Figure 2 shows the

internal structure of the framework with the three layers and their components.

Figure 2. Internal structure of the framework

The I/O layer will contain specific filter components which will be used to read the data from external tools in

specific formats and transform the data in the type used internally by the CA algorithms; and vice-versa. The

Visualisation management layer will contains the graphical widget components which will be used to read the

output results produced by the CA algorithms and visualise the results in human-readable form. The execution

layer will contain the CA algorithm components which will execute different CA algorithms in different

machines which could be local or remote. Figure 3 shows an example of how the components are used to

produce the data input and visualise the output data of CA algorithm of figure 1.

Figure 3.Use of components to read data inputs and visualise data outputs.

Another important design choice made in the CADDIES framework is that the application will be divided in two

parts: a backend and a frontend. The frontend will be responsible for the interaction of the user with the

framework; thus it will contain the graphical user interface, the tools to read/write input/output data and the

visualisation tools. The backend will be responsible for the execution of the various algorithms on the local

machine or on the remote machines, thus it will contain a queue of executions. Furthermore, the backend will be

responsible for the storage, management and movement of data between machines and the database with the

histories of the executions.

6. CONCLUSIONS AND FUTURE WORKS

This work presents the design of framework for rapid development and execution of CA algorithms for dual-

drainage pluvial flood model. The design choices made will allow developers to implement, test, compare, and

execute cellular automata algorithms for the CADDIES project using a graphical user interface application.

The next step of this work is to start the implementation of the part of the framework that simplifies the cellular

automata algorithm’s development. Thus, all the CA options available need to be defined in the framework, in

addition to the structure of the CA function and the code that creates the lattice and runs the CA rules. Following

this, the next step will be to implement the backend of the application and the plug-in interface. Thus it will be

possible to execute the CA algorithm locally and remotely and to create the various filters that read the various

input data types. The third step is to design in detail the graphical user interface and to develop the application

with the various visualisation widgets. The final step is to introduce the CA acceleration techniques into the

framework.

References

[1] Djordjevic S., Prodanovic D., and Maksimovic C., “An approach to simulation of dual drainage,” Water

Science and Technology, vol. 39, pp. 95-103, 1999.

[2] J. Leandro, S. Djordjevic, A. Chen, D. A. Savic, and M. Stanić, “Calibration of a 1D/1D urban flood model

using 1D/2D model results in the absence of field data,” Journal of Water Science and Technology, in press.

[3] J. P. Leitão et al., “Real-time forecasting urban drainage models: full or simplified networks?,” Water

Science and Technology: A Journal of the International Association on Water Pollution Research, vol. 62,

no. 9, pp. 2106-2114, 2010.

[4] Y. Liu and G. Pender, “A New Rapid Flood Inundation Model,” Journal of Flood Risk Management, to

appear.

[5] T. J. Coulthard, D. M. Hicks, and M. J. Van De Wiel, “Cellular modelling of river catchments and reaches:

Advantages, limitations and prospects,” Geomorphology, vol. 90, no. 3-4, pp. 192-207, Oct. 2007.

[6] A. Ilachinski, Cellular automata: a discrete universe. World Scientific Pub Co Inc, 2001.

[7] S. Wolfram, “Cellular automata as models of complexity,” Nature, vol. 311, pp. 419-424, Oct. 1984.

[8] J. Tran, D. Jordan, and D. Luebke, “New challenges for cellular automata simulation on the GPU,”

SIGGRAPH, Los Angeles. ACM. Poster, 2004.

[9] S. F. Judice, B. Barcellos, and G. A. Giraldi, “A cellular automata framework for real time fluid

animation,” in Proceedings of the Brazilian Symposium on Computer Games and Digital Entertainment,

2008, pp. 169–176.

[10] M. H. Willebeek-LeMair and A. P. Reeves, “Strategies for dynamic load balancing on highly parallel

computers,” Parallel and Distributed Systems, IEEE Transactions on, vol. 4, no. 9, pp. 979–993, 1993.

[11] D. Cederman and P. Tsigas, “On dynamic load balancing on graphics processors,” in Proceedings of the

23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, 2008, pp. 57–64.

[12] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential equations,”

Journal of computational Physics, vol. 53, no. 3, pp. 484–512, 1984.

