3,461 research outputs found

    Valuation of real estate investments through Fuzzy Logic

    Get PDF
    This paper aims to outline the application of Fuzzy Logic in real estate investment. In literature, there is a wide theoretical background on real estate investment decisions, but there has been a lack of empirical support in this regard. For this reason, the paper would fill the gap between theory and practice. The fuzzy logic system is adopted to evaluate the situations of a real estate market with imprecise and vague information. To highlight the applicability of the Possibility Theory, we proceeded to reconsider an example of property investment evaluation through fuzzy logic. The case study concerns the purchase of an office building. The results obtained with Fuzzy Logic have been also compared with those arising from a deterministic approach through the use of crisp numbers

    A General Spatio-Temporal Clustering-Based Non-local Formulation for Multiscale Modeling of Compartmentalized Reservoirs

    Full text link
    Representing the reservoir as a network of discrete compartments with neighbor and non-neighbor connections is a fast, yet accurate method for analyzing oil and gas reservoirs. Automatic and rapid detection of coarse-scale compartments with distinct static and dynamic properties is an integral part of such high-level reservoir analysis. In this work, we present a hybrid framework specific to reservoir analysis for an automatic detection of clusters in space using spatial and temporal field data, coupled with a physics-based multiscale modeling approach. In this work a novel hybrid approach is presented in which we couple a physics-based non-local modeling framework with data-driven clustering techniques to provide a fast and accurate multiscale modeling of compartmentalized reservoirs. This research also adds to the literature by presenting a comprehensive work on spatio-temporal clustering for reservoir studies applications that well considers the clustering complexities, the intrinsic sparse and noisy nature of the data, and the interpretability of the outcome. Keywords: Artificial Intelligence; Machine Learning; Spatio-Temporal Clustering; Physics-Based Data-Driven Formulation; Multiscale Modelin

    Active Network Management and Uncertainty Analysis in Distribution Networks

    Get PDF

    Spatio-temporal prediction of wind fields

    Get PDF
    Short-term wind and wind power forecasts are required for the reliable and economic operation of power systems with significant wind power penetration. This thesis presents new statistical techniques for producing forecasts at multiple locations using spatiotemporal information. Forecast horizons of up to 6 hours are considered for which statistical methods outperform physical models in general. Several methods for producing hourly wind speed and direction forecasts from 1 to 6 hours ahead are presented in addition to a method for producing five-minute-ahead probabilistic wind power forecasts. The former have applications in areas such as energy trading and defining reserve requirements, and the latter in power system balancing and wind farm control. Spatio-temporal information is captured by vector autoregressive (VAR) models that incorporate wind direction by modelling the wind time series using complex numbers. In a further development, the VAR coefficients are replaced with coefficient functions in order to capture the dependence of the predictor on external variables, such as the time of year or wind direction. The complex-valued approach is found to produce accurate speed predictions, and the conditional predictors offer improved performance with little additional computational cost. Two non-linear algorithms have been developed for wind forecasting. In the first, the predictor is derived from an ensemble of particle swarm optimised candidate solutions. This approach is low cost and requires very little training data but fails to capitalise on spatial information. The second approach uses kernelised forms of popular linear algorithms which are shown to produce more accurate forecasts than their linear equivalents for multi-step-ahead prediction. Finally, very-short-term wind power forecasting is considered. Five-minute-ahead parametric probabilistic forecasts are produced by modelling the predictive distribution as logit-normal and forecasting its parameters using a sparse-VAR (sVAR) approach. Development of the sVAR is motivated by the desire to produce forecasts on a large spatial scale, i.e. hundreds of locations, which is critical during periods of high instantaneous wind penetration.Short-term wind and wind power forecasts are required for the reliable and economic operation of power systems with significant wind power penetration. This thesis presents new statistical techniques for producing forecasts at multiple locations using spatiotemporal information. Forecast horizons of up to 6 hours are considered for which statistical methods outperform physical models in general. Several methods for producing hourly wind speed and direction forecasts from 1 to 6 hours ahead are presented in addition to a method for producing five-minute-ahead probabilistic wind power forecasts. The former have applications in areas such as energy trading and defining reserve requirements, and the latter in power system balancing and wind farm control. Spatio-temporal information is captured by vector autoregressive (VAR) models that incorporate wind direction by modelling the wind time series using complex numbers. In a further development, the VAR coefficients are replaced with coefficient functions in order to capture the dependence of the predictor on external variables, such as the time of year or wind direction. The complex-valued approach is found to produce accurate speed predictions, and the conditional predictors offer improved performance with little additional computational cost. Two non-linear algorithms have been developed for wind forecasting. In the first, the predictor is derived from an ensemble of particle swarm optimised candidate solutions. This approach is low cost and requires very little training data but fails to capitalise on spatial information. The second approach uses kernelised forms of popular linear algorithms which are shown to produce more accurate forecasts than their linear equivalents for multi-step-ahead prediction. Finally, very-short-term wind power forecasting is considered. Five-minute-ahead parametric probabilistic forecasts are produced by modelling the predictive distribution as logit-normal and forecasting its parameters using a sparse-VAR (sVAR) approach. Development of the sVAR is motivated by the desire to produce forecasts on a large spatial scale, i.e. hundreds of locations, which is critical during periods of high instantaneous wind penetration

    A geometrical framework for forecasting cost uncertainty in innovative high value manufacturing.

    Get PDF
    Increasing competition and regulation are raising the pressure on manufacturing organisations to innovate their products. Innovation is fraught by significant uncertainty of whole product life cycle costs and this can lead to hesitance in investing which may result in a loss of competitive advantage. Innovative products exist when the minimum information for creating accurate cost models through contemporary forecasting methods does not exist. The scientific research challenge is that there are no forecasting methods available where cost data from only one time period suffices for their application. The aim of this research study was to develop a framework for forecasting cost uncertainty using cost data from only one time period. The developed framework consists of components that prepare minimum information for conversion into a future uncertainty range, forecast a future uncertainty range, and propagate the uncertainty range over time. The uncertainty range is represented as a vector space representing the state space of actual cost variance for 3 to n reasons, the dimensionality of that space is reduced through vector addition and a series of basic operators is applied to the aggregated vector in order to create a future state space of probable cost variance. The framework was validated through three case studies drawn from the United States Department of Defense. The novelty of the framework is found in the use of geometry to increase the amount of insights drawn from the cost data from only one time period and the propagation of cost uncertainty based on the geometric shape of uncertainty ranges. In order to demonstrate its benefits to industry, the framework was implemented at an aerospace manufacturing company for identifying potentially inaccurate cost estimates in early stages of the whole product life cycle

    A review of probabilistic forecasting and prediction with machine learning

    Full text link
    Predictions and forecasts of machine learning models should take the form of probability distributions, aiming to increase the quantity of information communicated to end users. Although applications of probabilistic prediction and forecasting with machine learning models in academia and industry are becoming more frequent, related concepts and methods have not been formalized and structured under a holistic view of the entire field. Here, we review the topic of predictive uncertainty estimation with machine learning algorithms, as well as the related metrics (consistent scoring functions and proper scoring rules) for assessing probabilistic predictions. The review covers a time period spanning from the introduction of early statistical (linear regression and time series models, based on Bayesian statistics or quantile regression) to recent machine learning algorithms (including generalized additive models for location, scale and shape, random forests, boosting and deep learning algorithms) that are more flexible by nature. The review of the progress in the field, expedites our understanding on how to develop new algorithms tailored to users' needs, since the latest advancements are based on some fundamental concepts applied to more complex algorithms. We conclude by classifying the material and discussing challenges that are becoming a hot topic of research.Comment: 83 pages, 5 figure
    corecore