116 research outputs found

    Adaptive super-twisting observer for fault reconstruction in electro-hydraulic systems

    Full text link
    An adaptive-gain super-twisting sliding mode observer is proposed for fault reconstruction in electro-hydraulic servo systems (EHSS) receiving bounded perturbations with unknown bounds. The objective is to address challenging problems in classic sliding mode observers: chattering effect, conservatism of observer gains, strong condition on the distribution of faults and uncertainties. In this paper, the proposed super-twisting sliding mode observer relaxes the condition on the distribution of uncertainties and faults, and the gain adaptation law leads to eliminate observer gain overestimation and attenuate chattering effects. After using the equivalent output-error-injection feature of sliding mode techniques, a fault reconstruction strategy is proposed. The experimental results are presented, confirming the effectiveness of the proposed adaptive super-twisting observer for precise fault reconstruction in electro-hydraulic servo systems.Comment: Final versio

    Robust Control of Industrial Hydraulic Cylinder Drives - with Special Reference to Sliding Mode- & Finite-Time Control

    Get PDF

    Control of an IPMC soft actuator using adaptive full-order recursive terminal sliding mode

    Get PDF
    The ionic polymer metal composite (IPMC) actuator is a kind of soft actuator that can work for underwater applications. However, IPMC actuator control suffers from high nonlinearity due to the existence of inherent creep and hysteresis phenomena. Furthermore, for underwater applications, they are highly exposed to parametric uncertainties and external disturbances due to the inherent characteristics and working environment. Those factors significantly affect the positioning accuracy and reliability of IPMC actuators. Hence, feedback control techniques are vital in the control of IPMC actuators for suppressing the system uncertainty and external disturbance. In this paper, for the first time an adaptive full-order recursive terminal sliding-mode (AFORTSM) controller is proposed for the IPMC actuator to enhance the positioning accuracy and robustness against parametric uncertainties and external disturbances. The proposed controller incorporates an adaptive algorithm with terminal sliding mode method to release the need for any prerequisite bound of the disturbance. In addition, stability analysis proves that it can guarantee the tracking error to converge to zero in finite time in the presence of uncertainty and disturbance. Experiments are carried out on the IPMC actuator to verify the practical effectiveness of the AFORTSM controller in comparison with a conventional nonsingular terminal sliding mode (NTSM) controller in terms of smaller tracking error and faster disturbance rejection

    Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Robust Hybrid Position-Force Control for Robotic Surface Polishing

    Full text link
    [EN] This work presents a hybrid position-force control of robots for surface polishing using task priority. The robot force control is designed using sliding mode ideas in order to benefit from its inherent robustness and low computational cost. In order to avoid the chattering drawback typically present in sliding mode control, several chattering-free controllers are evaluated and tested. A distinctive feature of the method is that the sliding mode force task is defined using not only equality constraints but also inequality constraints, which are satisfied using conventional and nonconventional sliding mode control, respectively. Moreover, a lower priority tracking controller is defined to follow the desired reference trajectory on the surface being polished. The applicability and the effectiveness of the proposed approach considering the mentioned chattering-free controllers are substantiated by experimental results using a redundant 7R manipulator.Spanish Government, Agencia Estatal de Investigacion (DPI2017-87656-C2-1-R). Generalitat Valenciana, Conselleria d'Educacion, Investigacion, Cultura i Esport (VALi+d APOSTD/2016/044).Solanes Galbis, JE.; Gracia Calandin, LI.; Muñoz-Benavent, P.; Valls Miro, J.; Perez-Vidal, C.; Tornero Montserrat, J. (2019). Robust Hybrid Position-Force Control for Robotic Surface Polishing. Journal of Manufacturing Science and Engineering. 141(1):1-14. https://doi.org/10.1115/1.4041836S114141

    Compliant, Large-Strain, and Self-Sensing Twisted String Actuators with Applications to Soft Robots

    Get PDF
    The twisted string actuator (TSA) is a rotary-to-linear transmission system that has been implemented in robots for high force output and efficiency. The basic components of a TSA are a motor, strings, and a load (to keep the strings in tension). The twisting of the strings shortens their length to generate linear contraction. Due to their high force output, energy efficiency, and compact form factor, TSAs hold the potential to improve the performance of soft robots. Currently, it is challenging to realize high-performance soft robots because many existing soft or compliant actuators exhibit limitations such as fabrication complexity, high power consumption, slow actuation, or low force generation. The applications of TSAs in soft robots have hitherto been limited, mainly for two reasons. Firstly, the conventional strings of TSAs are stiff and strong, but not compliant. Secondly, precise control of TSAs predominantly relies on external position or force sensors. For these reasons, TSA-driven robots are often rigid or bulky.To make TSAs more suitable for actuating soft robots, compliant, large-strain, and self-sensing TSAs are developed and applied to various soft robots in this work. The design was realized by replacing conventional inelastic strings with compliant, thermally-activated, and conductive supercoiled polymer (SCP) strings. Self-sensing was realized by correlating the electrical resistance of the strings with their length. Large strains are realized by heating the strings in addition to twisting them. The quasi-static actuation and self-sensing properties are accurately captured by Preisach hysteresis operators. Next, a data-driven mathematical model was proposed and experimentally validated to capture the transient decay, creep, and hysteretic effects in the electrical resistance. This model was then used to predict the length of the TSA, given its resistance. Furthermore, three TSA-driven soft robots were designed and fabricated: a three-fingered gripper, a soft manipulator, and an anthropomorphic gripper. For the three-fingered gripper, its fingers were compliant and designed to exploit the Fin Ray Effect for improved grasping. The soft manipulator was driven by three TSAs that allowed it to bend with arbitrary magnitude and direction. A physics-based modeling strategy was developed to predict this multi-degree-of-freedom motion. The proposed modeling approaches were experimentally verified to be effective. For example, the proposed model predicted bending angle and bending velocity with mean errors of 1.58 degrees (2.63%) and 0.405 degrees/sec (4.31%), respectively. The anthropomorphic gripper contained 11 TSAs; two TSAs were embedded in each of the four fingers and three TSAs were embedded in the thumb. Furthermore, the anthropomorphic gripper achieved tunable stiffness and a wide range of grasps

    Experimental Validation of a Sliding Mode Control for a Stewart Platform Used in Aerospace Inspection Applications

    Get PDF
    The authors introduce a new controller, aimed at industrial domains, that improves the performance and accuracy of positioning systems based on Stewart platforms. More specifically, this paper presents, and validates experimentally, a sliding mode control for precisely positioning a Stewart platform used as a mobile platform in non-destructive inspection (NDI) applications. The NDI application involves exploring the specimen surface of aeronautical coupons at different heights. In order to avoid defocusing and blurred images, the platform must be positioned accurately to keep a uniform distance between the camera and the surface of the specimen. This operation requires the coordinated control of the six electro mechanic actuators (EMAs). The platform trajectory and the EMA lengths can be calculated by means of the forward and inverse kinematics of the Stewart platform. Typically, a proportional integral (PI) control approach is used for this purpose but unfortunately this control scheme is unable to position the platform accurately enough. For this reason, a sliding mode control (SMC) strategy is proposed. The SMC requires: (1) a priori knowledge of the bounds on system uncertainties, and (2) the analysis of the system stability in order to ensure that the strategy executes adequately. The results of this work show a higher performance of the SMC when compared with the PI control strategy: the average absolute error is reduced from 3.45 mm in PI to 0.78 mm in the SMC. Additionally, the duty cycle analysis shows that although PI control demands a smoother actuator response, the power consumption is similar.This research was funded by the Basque Government through the project SMAR3NAK (ELKARTEK KK-2019/00051), by the Ministerio de Economía y Competitividad (RTI2018-094669-B-C31) and by Aernnova and the Diputación Foral de Álava (DFA) through the project CONAVAUTIN 2 (Collaboration Agreement)

    A Robust Maximum Power Point Tracking Control Method for a PEM Fuel Cell Power System

    Get PDF
    Taking into account the limited capability of proton exchange membrane fuel cells (PEMFCs) to produce energy, it is mandatory to provide solutions, in which an efficient power produced by PEMFCs can be attained. The maximum power point tracker (MPPT) plays a considerable role in the performance improvement of the PEMFCs. Conventional MPPT algorithms showed good performances due to their simplicity and easy implementation. However, oscillations around the maximum power point and inefficiency in the case of rapid change in operating conditions are their main drawbacks. To this end, a new MPPT scheme based on a current reference estimator is presented. The main goal of this work is to keep the PEMFCs functioning at an efficient power point. This goal is achieved using the backstepping technique, which drives the DC-DC boost converter inserted between the PEMFC and the load. The stability of the proposed algorithm is demonstrated by means of Lyapunov analysis. To verify the ability of the proposed method, an extensive simulation test is executed in a Matlab-Simulink (TM) environment. Compared with the well-known proportional-integral (PI) controller, results indicate that the proposed backstepping technique offers rapid and adequate converging to the operating power point.The authors are very grateful to the UPV/EHU for its support through the projects PPGA18/04 and to the Basque Government for its support through the project ETORTEK KK-2017/00033. The authors would also like to thank the Tunisian Government for its support through the research unit UR11ES82
    corecore