1,704 research outputs found

    Sources of Superlinearity in Davenport-Schinzel Sequences

    Get PDF
    A generalized Davenport-Schinzel sequence is one over a finite alphabet that contains no subsequences isomorphic to a fixed forbidden subsequence. One of the fundamental problems in this area is bounding (asymptotically) the maximum length of such sequences. Following Klazar, let Ex(\sigma,n) be the maximum length of a sequence over an alphabet of size n avoiding subsequences isomorphic to \sigma. It has been proved that for every \sigma, Ex(\sigma,n) is either linear or very close to linear; in particular it is O(n 2^{\alpha(n)^{O(1)}}), where \alpha is the inverse-Ackermann function and O(1) depends on \sigma. However, very little is known about the properties of \sigma that induce superlinearity of \Ex(\sigma,n). In this paper we exhibit an infinite family of independent superlinear forbidden subsequences. To be specific, we show that there are 17 prototypical superlinear forbidden subsequences, some of which can be made arbitrarily long through a simple padding operation. Perhaps the most novel part of our constructions is a new succinct code for representing superlinear forbidden subsequences

    Запрещенные треки и запрещенные подтреки

    No full text
    Поняття заборонених рядків та підпослідовностей, що застосовуються до рядків, узагальнені на треки. Стаття містить розв’язок задач побудови для заданого трека множин заборонених треків та заборонених підтреківThe notions of forbidden strings and forbidden subsequences are generalized to traces. The paper presents algorithms to construct sets of minimum forbidden traces and minimum forbidden subtraces for a given trace

    Symbolic dynamics and synchronization of coupled map networks with multiple delays

    Full text link
    We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol sequences related to the characteristics of the dynamics. In particular, we show that the resulting forbidden sequences are closely related to the time delays in the system. We present two applications to coupled map lattices, namely (1) detecting synchronization and (2) determining unknown values of the transmission delays in networks with possibly directed and weighted connections and measurement noise. The method is applicable to multi-dimensional as well as set-valued maps, and to networks with time-varying delays and connection structure.Comment: 13 pages, 4 figure

    Using Regular Languages to Explore the Representational Capacity of Recurrent Neural Architectures

    Get PDF
    The presence of Long Distance Dependencies (LDDs) in sequential data poses significant challenges for computational models. Various recurrent neural architectures have been designed to mitigate this issue. In order to test these state-of-the-art architectures, there is growing need for rich benchmarking datasets. However, one of the drawbacks of existing datasets is the lack of experimental control with regards to the presence and/or degree of LDDs. This lack of control limits the analysis of model performance in relation to the specific challenge posed by LDDs. One way to address this is to use synthetic data having the properties of subregular languages. The degree of LDDs within the generated data can be controlled through the k parameter, length of the generated strings, and by choosing appropriate forbidden strings. In this paper, we explore the capacity of different RNN extensions to model LDDs, by evaluating these models on a sequence of SPk synthesized datasets, where each subsequent dataset exhibits a longer degree of LDD. Even though SPk are simple languages, the presence of LDDs does have significant impact on the performance of recurrent neural architectures, thus making them prime candidate in benchmarking tasks.Comment: International Conference of Artificial Neural Networks (ICANN) 201
    corecore