
Sources of Superlinearity in Davenport-Schinzel Sequences

Seth Pettie
The University of Michigan

Abstract

A generalized Davenport-Schinzel sequence is one over a finite alphabet that contains no subsequences
isomorphic to a fixed forbidden subsequence. One of the fundamental problems in this area is bounding
(asymptotically) the maximum length of such sequences. Following Klazar, let Ex(σ, n) be the maximum
length of a sequence over an alphabet of size n avoiding subsequences isomorphic to σ. It has been proved

that for every σ, Ex(σ, n) is either linear or very close to linear; in particular it is O(n2α(n)O(1)
), where

α is the inverse-Ackermann function and O(1) depends on σ. However, very little is known about the
properties of σ that induce superlinearity of Ex(σ, n).

In this paper we exhibit an infinite family of independent superlinear forbidden subsequences. To
be specific, we show that there are 17 prototypical superlinear forbidden subsequences, some of which
can be made arbitrarily long through a simple padding operation. Perhaps the most novel part of our
constructions is a new succinct code for representing superlinear forbidden subsequences.

1 Introduction

Standard Davenport-Schinzel sequences [10] (or DS sequences) are those avoiding a fixed length alternating
subsequence of the form abab · · · . The primary applications of these sequences are in bounding the complexity
of geometric objects, particularly the lower envelopes of line segments or arbitrary functions with a bounded
number of crossings; Agarwal and Sharir [2] have an excellent monograph on geometric applications of DS
sequences. It is not difficult to prove that Ex(abab, n) = Θ(n), though for longer forbidden subsequences
the problem of asymptotically bounding the length of the longest DS sequence is not easy. A celebrated
result of Hart and Sharir [12] showed that Ex(ababa, n) = Θ(nα(n)) where α is the slowly growing inverse of
Ackermann’s function. It follows that Ex((ab)k, n) and Ex((ab)ka, n) are also superlinear in n for all k ≥ 3,
though how superlinear has still not been completely resolved. Agarwal, Sharir, and Shor [3] gave nearly
tight bounds on the length of standard DS sequences:

Ex((ab)k, n) = n · 2Θ(α(n)k−2)

Ex((ab)ka, n) =

{
n · α(n)O(α(n))k−2

n · 2Ω(α(n))k−2

A natural generalization of DS sequences is to consider arbitrary forbidden subsequences, not necessarily
those of the form abab · · · .1 At the moment we have only a limited understanding of how Ex(σ, n) could
behave, and how it does behave for specific σ. By generalizing the upper bounds of Agarwal et al. [3],
Klazar [16] showed that Ex(σ, n) = n · 2α(n)O(1)

, where the O(1) depends on σ. However, there are no
commensurate lower bounds, i.e., no specific σc � ababa for which Ex(σc, n) ≥ n · 2(α(n))c

. (The notation
x ≺ y and x ⊀ y mean, respectively, that x is and isn’t isomorphic to a subsequence of y.) A more
basic question—and the subject of this paper—is to identify the features of a forbidden subsequence σ that
cause Ex(σ, n) to be superlinear. One can see that the set of all superlinear forbidden subsequences can be
characterized by a unique set of minimal such forbidden subsequences. We define Φ to be this set:

Definition 1.1 Φ is the smallest set of sequences such that:

Ex(σ, n) = ω(n) if and only if ∃σ̂ ∈ Φ : σ̂ ≺ σ

1This idea was even suggested by Davenport and Schinzel; see [18] for a discussion of this.

1
Dagstuhl Seminar Proceedings 08081
Data Structures
http://drops.dagstuhl.de/opus/volltexte/2008/1529

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

It is amazing how little we know about Φ. Hart and Sharir’s result [12] shows that ababa ∈ Φ and Adamec
et al. [1] showed that no other sequence in {a, b}∗ is in Φ. Klazar [17] showed that Φ contains at least two
elements: ababa and another which is currently unknown, but is a subsequence of abcbadadbcd. In other
words, the presence of ababa ≺ σ is not the sole cause of superlinearity in Ex(σ, n). Klazar’s result [17] is
actually more general in that he shows that any σ for which G(σ) is strongly connected has Ex(σ, n) = ω(n),
where G(σ) is a digraph derived from the syntactic structure of σ; see Figure 1. In other words, [17] raised
the possibility that strong connectivity is the sole cause of superlinearity in generalized Davenport-Schinzel
sequences.

a b

a b

c d

Figure 1: The digraph G(σ) has one vertex for each letter in the alphabet of σ. Assuming that σ is repetition-
free, an edge (u, v) appears in G(σ) if σ contains as a subsequence either vuvu or uvvu. Left: G(ababa);
Right: G(abcbadadbcd).

New Results. In this paper we introduce an infinite set Ψ of independent superlinear forbidden subse-
quences. The elements of Ψ are not fundamentally different but, in fact, naturally divide themselves into
just 17 categories. We call the simplest elements of each category the prototypes; the elements of Ψ are
ababa, the prototypes, and an infinite number of sequences that can be derived from the prototypes through
a padding operation.

Why 17? There is no particularly good explanation for this number, except that it comes from a new
compact notation we use for expressing forbidden subsequences. Whereas a forbidden subsequence is a
string over an arbitrarily large alphabet, we can express elements of Ψ as relatively short strings over the
fixed alphabet {♥,♠,♦,♣, ?, (,)}∗ that follow some grammatical rules. Grammatical strings correspond to
superlinear forbidden subsequences and there just happens to be 17 natural classes of grammatical strings.

Our result refutes the possibility that strong connectivity is the cause of superlinearity and addresses an
open question posed by Klazar [18], namely, is Φ infinite or finite? We are able to show that |Φ| ≥ 5, though
we cannot identify any particular members of Φ except ababa. In Section 6 we discuss why the infinitude of
Ψ supports the proposition that Φ is infinite.

Related Work. Davenport-Schinzel sequences are part of a class of problems concerning combinatorial
objects with forbidden substructures. Klazar [18] surveys generalizations of DS sequences to trees, permuta-
tions, hypergraphs, 0-1 matrices, ordered digraphs, and partitions. Other examples of objects with forbidden
substructures are matrices with the Monge property [6] and (partially defined) monotone matrices [4, 15, 14].

Whereas the subject of this paper is finding the causes of superlinearity in DS-sequences, Adamec et al. [1]
and Klazar and Valtr [19] looked for specific causes of linearity. In [1] it is shown that Ex(abbaab, n) = O(n),
which implies that Ex(akbkakbk, n) = O(n) as well, for any k. A corollary of this result is that ababa is the
only two-symbol sequence in Φ. Klazar and Valtr [19] demonstrated that a few rules (resembling a context
free grammar) suffice to generate a huge variety of linear forbidden subsequences. Specifically, let Φ̄ be the
set of linear forbidden subsequences, i.e., those that do not contain some element of Φ as a subsequence.
Klazar and Valtr showed that:

ak ∈ Φ̄ a any symbol
σ1a

2σ2a ∈ Φ̄ ⇒ σ1abkaσ2abk ∈ Φ̄ b a symbol not appearing in σ1a
2σ2a

σ̂, σ1a
2σ2 ∈ Φ̄ ⇒ σ1aσ̂aσ2 ∈ Φ̄ alphabet of σ̂ has no overlap with σ1a

2σ2

2
Dagstuhl Seminar Proceedings 08081
Data Structures
http://drops.dagstuhl.de/opus/volltexte/2008/1529

2 Notation

Let |σ| and ‖σ‖ be, respectively, the length of the sequence σ and the number of distinct symbols in σ. We
say that a sequence σ = (σj)1≤j≤|σ| is a subsequence of Σ = (Σj)j if there exist |σ| indices j1 < j2 < · · · < j|σ|
such that σi = Σji

. Two sequences are isomorphic if they are identical up to renaming of symbols. We write
σ≺̄Σ and σ ≺ Σ to mean, respectively, that σ is a subsequent of Σ and that σ is isomorphic to a subsequence
of Σ. A sequence Σ (or class of sequences) is σ-free if σ ⊀ Σ. A sequence σ = (σj)j is c-regular if σi = σj

implies |j − i| ≥ c. For instance, a 2-regular sequence has no immediate repetitions.

Definition 2.1 Ex(σ, n) = max {|Σ| : σ ⊀ Σ and ‖Σ‖ = n and Σ is ‖σ‖-regular}

The condition that Σ be ‖σ‖-regular simply rules out uninteresting sequences. For instance, the infinite
sequence ababababa · · · is (abc)-free, but in the least interesting way.

A symbol refers to a member of the alphabet of a sequence and is distinguished from an occurrence of a
symbol. For instance abbccbbc contains 3 symbols, with 1, 4, and 3 occurrences of a, b, and c, respectively.
In the text and figures we typically use the roman alphabet a, b, c, . . . but in the proofs it is more convenient
to use the natural numbers 1, 2, 3,

If u and v are vertices in a rooted tree, u C v means that u is a strict descendant of v, and u E v means u C
v or u = v. A generalized path compression [12] is an operation that, given a sequence (ui, ui−1, . . . , u1, u0),
where ui C ui−1 · · · C u1 C u0, makes ui, . . . , u1 the children of u0 but otherwise does not affect the
structure of the given tree. (This definition differs from a standard path compression, where u0 is the parent
of u1, which is the parent of u2, an so on.) We frequently call this operation a path compression or simply
a compression. We say the compression originates at ui and terminates at u0. The vertices ui, . . . , u1

participate in the compression and the length of the compression is the number of participating vertices.

3 Path Compression Systems

Our construction of path compression systems follows the same lines as Hart and Sharir [12, 2] and Tarjan
[25]. Given parameters i, j we construct a complete binary tree T (i, j) where nodes on each level of the tree
are assigned an integer label. Based on this labeling we construct a sequence of j · |T (i, j)| path compressions,
each with length i. The path compressions are then transcribed as a sequence Ξi,j which avoids ababa as
well as an infinite number of other forbidden subsequences. For any trees T, T ′, |T | is the number of leaves

. . .

T(i, j-1)

T(i-1, |T(i, j-1)|)

Figure 2: Composition of trees in the construction of T (i, j).

in T and T ◦ T ′ (the composition of T and T ′) is derived by replacing each leaf of T ′ with a copy of T .

3
Dagstuhl Seminar Proceedings 08081
Data Structures
http://drops.dagstuhl.de/opus/volltexte/2008/1529

Clearly |T ◦T ′| = |T | · |T ′|; see Figure 2. Let tj be a full binary tree with 2j leaves. The tree T (i, j) is defined
recursively, as follows:

T (1, j) = tj

T (i, 0) = tc {c ≥ 1 is an arbitrary constant}
T (i, j) = T (i, j − 1) ◦ T (i− 1, |T (i, j − 1)|)

In other words, T (i, j) is the composition of tc and j trees of the form T (i − 1, ·), each of which is the
composition of tc and several trees of the form T (i−2, · · ·) and so forth. The leaves of a tree T (i, ·) are called
i-nodes and are ordered from left to right. The internal nodes of any tj are 0-nodes. If u is a leaf of T (i, j),
νk(u) refers to the kth (i− 1)-node ancestor of u in T (i, j), where 1 ≤ k ≤ j. If u is the `th leaf of νk(u) in
T (i, j) then µk(u) = `. See Figure 3 for an illustration. We define a sequence of path compressions as follows.

ν (x)k

x

kth (i-1)-node
ancestor of x

μ (x)th leaf of ν (x)k k

Figure 3: Illustration of νk(x) and µk(x).

Each leaf of T (i, j) is the origin of j path compressions and the path compressions are performed in postorder
by their point of origin. Let C(x, k) be the kth path compression originating from a leaf x in T (i, j). If i = 1
let C(x, k) = (x, νk(x)). For i > 1 let C(x, k) = x · C(νk(x), µk(x)). We transcribe these path compressions
into a sequence Ξi,j as follows. Each path compression and each vertex is assigned a distinct symbol and we

write p
c
< q if compression p precedes compression q. Let ξ(x) be the path compressions that x participates

in, listed in decreasing order by
c
<. Let Ξi,j = ξ(u1) ·u2 · ξ(u2) ·u3 · ξ(u3) · · ·u2|T (i,j)|−1 · ξ(u2|T (i,j)|−1), where

uk is the kth vertex of T (i, j) in postorder. The symbol uk appearing in Ξi,j is distinct from the symbols
of all path compressions. Since its only function is to enforce a regularity condition we will generally ignore
these symbols. If i and j are understood or unimportant they will be omitted. For instance, T refers to Ti,j

and the statements σ ≺ Ξ and σ ⊀ Ξ should be interpreted as σ ≺ Ξi,j for some i, j and σ ⊀ Ξi,j for all i, j.
Lemma 3.1 just connects the length of Ξ to the usual one- and two-argument versions of the inverse-

Ackermann function. Its full proof is standard and tedious.

Lemma 3.1 Let n = ‖Ξi,j‖ and l = |T (i, j)|. Then |Ξi,j | = Ω(nα(n, l)). When j = O(1), |Ξi,j | = Ω(nα(n))

Lemma 3.2 just lets us ignore regularity issues. For instance, we might say that σ ⊀ Ξ without bothering
to explicitly mention that Ξ is ‖σ‖-regular. Recall that c is the constant from the definition of T (i, 0).

Lemma 3.2 For i > 1 or j ≥ c, Ξi,j is c-regular.

4
Dagstuhl Seminar Proceedings 08081
Data Structures
http://drops.dagstuhl.de/opus/volltexte/2008/1529

Proof: Let u, v be two vertices included in some path compression a, where v is ancestral to u. One can see
from the recursive construction of T (i, j) and its associated path compressions that u and v are not 0-nodes
and that they are at distance at least c. Therefore, there must be at least c symbols between consecutive
occurrences of a in Ξ. 2

Lemma 3.3 is invoked repeatedly in order to simplify proofs and obtain contradictions.

Lemma 3.3 For any two path compressions p
c
< q, qpqp⊀̄Ξ.

Proof: Let u, v, w, x be the vertices associated with the respective occurrences of q and p in the purported
subsequence qpqp appearing in Ξ. (I.e., ξ(u) and ξ(w) contain q, ξ(v) and ξ(x) contain p.) It follows from
the inequality p

c
< q that u E v C w E x; see Figure 4. One effect of the pth path compression is to make v

possibly equal

u

w

x

v

q

q

p

p u w

xv

q q

pp

possibly equal

after compression p

terminal of p

Figure 4: After compression p no compression can include both u and w.

and x siblings and, as a direct consequence, to destroy the ancestor-descendant relationship between u and
w. Therefore no subsequent path compression can include both u and w. Contradiction. 2

Notice that Lemma 3.3 did not rely on any of the structure of Ξ; the proof would go through if Ξ were
the transcription of any system of path compressions. One corollary of Lemma 3.3 is that Ξ is (ababa)-free,
which, by Lemma 3.1, implies that Ex(ababa, n) = Ω(nα(n)). This is one half of Hart and Sharir’s proof [12]
that Ex(ababa, n) = Θ(nα(n)).

Lemma 3.4 Let u, v, w be vertices with u C v E w and suppose that p ∈ ξ(v) and q ∈ ξ(u), ξ(w). If the
compression p originates at a descendant of u then p ∈ ξ(u).

Proof: First observe that for any compression (ui, ui−1, . . . , u0) in our system, the intermediate vertices

origin of p

u

w

v

q

q

p

origin of q

i'

i''

Figure 5: The situation that causes p to make an “implied” appearance in ξ(u).

are uniquely determined by ui and u0. In particular, ui′ is the first i′ node on the path from u0 to ui. (In
general any two vertices uniquely determine the whole compression.) Suppose that u is an i′-node and w an
i′′-node, where i′ > i′′; see Figure 5. It follows that u is the first i′-node on the path from w to the origin of

5
Dagstuhl Seminar Proceedings 08081
Data Structures
http://drops.dagstuhl.de/opus/volltexte/2008/1529

compression q. Since v E w and compression p originates below u, it also follows that u is the first i′-node
on the path from v to the origin of p. Thus p ∈ ξ(u). 2

Lemma 3.4 serves a simple purpose in our construction of forbidden subsequences. It says that aside
from the explicit presence of q ∈ ξ(u), ξ(w) and p ∈ ξ(v), there must be an implied appearance of p ∈ ξ(u).
We deliberately design forbidden subsequences that are (pqpqp)-free but nonetheless cause implied symbols
to appear in inconvenient places, leading to implied occurrences of pqpqp.

4 Encoding Forbidden Subsequences

Our most compact representation of forbidden subsequences is as strings over the alphabet {♥,♦,♣,♠, ?},
where some groups of letters may be parenthesized. Each letter (or parenthesized set of letters) represents
one symbol in the associated forbidden subsequence. The symbols corresponding to ♥,♦,♣, and ♠ are called
the binder, the guard, the trap, and the trapped. The roles of these symbols within the forbidden subsequence
will be much easier to explain after analyzing a couple examples.

Theorem 4.1 Ex(abcaccbc, n) = Ω(nα(n)).

Proof: Suppose that σ = abcaccbc were to occur in Ξ. By Lemma 3.3 we can eliminate all cases except
a

c
< b

c
< c. Let va,i be the vertex in T corresponding to the ith occurrence of a in σ. It follows from

the construction of Ξ that va,1, vb,1, vc,1 E va,2 and that vc,2 C vc,3 E vb,2 C vc,4. See Figure 6. We

va,1

va,2

vb,1

vb,2

vc,1

vc,2

vc,3

vc,4

possibly equal

possibly equal

Figure 6: The vertex vx,i ∈ T is such that ξ(vx,i) contains the symbol corresponding to the ith occurrence
of x in σ. Dashed lines connect vertices that may be the same.

apply Lemma 3.4 to the symbols b and c occurring in ξ(vc,2), ξ(vb,2), and ξ(vc,4) and conclude that b must
also appear in ξ(vc,2). In other words, if abcaccbc appears in Ξ then abcacbcbc appears as well. Since, by
Lemma 3.3, Ξ contains no subsequences isomorphic to ababa, it must also be σ-free. Therefore, Ex(σ, n) ≥
|Ξ| = Ω(nα(n)). 2

Let us analyze the functions of a, b, and c in the proof of Theorem 4.1. The symbol a did not appear in
the ultimate contradiction (the implied subsequence bcbcbc) but it did facilitate the contradiction by forcing
vb,1 and vc,1 to be descendants of vc,2, vc,3, vb,2, and vc,4. In our terminology a is the binder (symbolized by
♥) because it binds previous symbols (i.e., vertices in T) under one common ancestor. The locations of b
and c were chosen with the preconditions of Lemma 3.4 in mind. For the proof to go through we need c to
appear in ξ(vc,2) and ξ(vc,4) and b to appear in ξ(vb,2), and, crucially, that vc,2 C vb,2. This last condition
is enforced by the immediate repetition of c in σ. In our terminology c acts as a guard (making sure vb,2

is a strict ancestor of vc,2) and both b and c are trapped by c, meaning that the symbols b and c appear at
vertices that lie strictly above one occurrence of c and strictly below another occurrence of c. Guards, traps,
and trapped symbols are represented by ♦,♣, and ♠, respectively. Thus, we can represent σ as ♥♠(♦♠♣):
a acts as a binder, b as a trapped symbol, and c as a guard, a trap, and a trapped symbol. It is not true
that every string over {♥,♦,♠,♣, ?} can be realized as a new superlinear forbidden subsequence. However,
with only a few syntactic restrictions on the encoding we can show that each valid encoding corresponds to
at most a constant number of forbidden subsequences, each of which is independent of the others. Before
giving these restrictions we look at one more specific example.

6
Dagstuhl Seminar Proceedings 08081
Data Structures
http://drops.dagstuhl.de/opus/volltexte/2008/1529

Theorem 4.2 Ex(abcbdadbcd, n) = Ω(nα(n)).

Proof: As before, suppose that σ = abcbdadbcd ≺ Ξ. It follows from Lemma 3.3 that a
c
< b

c
< c

c
< d

and from the construction of Ξ that va,1, vb,2, vd,1 E va,2, that vb,1, vc,1 E vb,2, and that vd,2 C vc,2 C vd,3.
Lemma 3.4 (applied to c and d) implies that c appears in ξ(vd,2); another application of Lemma 3.4 (now

va,1

vb,2

vb,1

vb,3

vc,1

va,2

vd,2

vc,2

vd,1

vd,3

Figure 7: Dashed lines connect vertices that may be the same.

with c and b) implies that c also appears in ξ(vb,2); see Figure 7. In other words, if σ appears in Ξ then
σ′ = abcbdadcbcd appears in Ξ as well. This leads to a contradiction since bcbcbc ≺ σ′, which, by Lemma 3.3,
can never appear in Ξ. 2

In σ the appearance of c in ξ(vc,2) is trapped by d and the implicit appearance of c in ξ(vd,2) is trapped
by b. The symbol a acts as a binder to insure that vb,2 C vd,2. The third occurrence of b in σ acts as a
guard to ensure that vd,2 C vc,2 and the second occurrence of d ensures that vb,2 C vd,2. We could encode
σ succinctly as ♥(♦♣)♠(♦♣) but it turns out that when there are two traps (by d and b in this case) they
each act as guards for the other. There is no ambiguity in coding σ as ♥♣♠♣.

Notice that σ is very similar but shorter than the forbidden subsequence considered by Klazar [17] :
σ′ = abcbadadbcd. The relevant difference is that G(σ′) is strongly connected, which implies the superlinearity
of Ex(σ′, n) [17], whereas G(σ) is not. Thus, the validity of Theorem 4.2 follows from different principles.

Definition 4.3 uses the following regular expression notation: X∗ represents zero or more repetitions of
X and [X, Y, Z] represents exactly one of X, Y, and Z.

Definition 4.3 A string in {♥,♦,♠,♣, ?, (,)}∗ is a legal compact encoding if it is
(1) ♥♣♠♣ (8–10) in ?♠ ?∗ ♥[(♦♠♣), (♦♠)♣,♦♠♣]

(2–4) ♥♠[(♦♠♣), (♦♠)♣,♦♠♣] (11–12) in ?♦♠ ?∗ ♠ ?∗ ♥♣ or ♦ ?♠ ?∗ ♠ ?∗ ♥♣
(5) ♥♦♠♠♣ (13–14) in ?♦♠ ?∗ ♥♠♣ or ♦ ?♠ ?∗ ♥♠♣
(6) ♦♥♠♠♣ (15–16) in ?♠ ?∗ [(♦♠),♦ ?∗ ♠] ?∗ ♥♣
(7) in ?♣♠ ?∗ ♥♣ (17) in ?♠ ?∗ ♦ ?∗ ♥♠♣

The legal strings from Definition 4.3 could be generated from an alternative set of rules which are equally
unintuitive but may be helpful to keep in mind while reading the proofs.

Definition 4.4 A string is a legal compact encoding if it is of the form given in Definition 4.3(1,7) or if it
contains exactly one ♥, ♦, and ♣, two ♠s, possibly an unbounded number of ?s, at most one parenthesized
expression which is either (♦♠) or (♦♠♣), and is subject to the following restrictions:

(i) The final symbol must be ♣ (iv) A ? or the ♥ must precede both ♠s
(ii) The ♦ must precede at least one ♠ (v) A (♦♠) cannot precede the other ♠
(iii) All ?s must precede the ♥ (vi) The first two symbols that are either ? or ♥

must have a ♠ between them

7
Dagstuhl Seminar Proceedings 08081
Data Structures
http://drops.dagstuhl.de/opus/volltexte/2008/1529

♥♠(♦♠♣) ♥♠(♦♠)♣ ♥♣♠♣ ★♠♥(♦♠♣)

♥♦♠♠♣ ♥♠♦♠♣ ♦♥♠♠♣ ★♠(♦♠)♥♣ ★♠♥(♦♠)♣ ★♣♠♥♣

♦★♠♠♥♣

★♠♦♠♥♣ ★♠♦♥♠♣ ★♠♥♦♠♣

a b

c
cb
c a

d
cb
dc

a

d
c
db

c

d
db
d

a

a

e
dc
eb

a

e
db
ec ea

e
dc

b
a

d
ec
cb
e

c
ed
db
e

a
c
ed
db
e

a

d
eb
c
e

a
b

e
fa
dc
f

b

e
fc
db
f

a
d
fc
eb
f

d
fc
eb
f

c
fd
eb
f

c
fd
eb
f

c
fd
eb
f

a a a a a

♦★♠♥♠♣

d
fa
ec
f

b b
d
fa
ec
f

a
ba

ababa abcaccbc abcdadccbd abcbdadbcd abcadcddbd

abcdeaebdce abcdeaecdbe abcdebeadce abcdaedeccbe abcdaeceddbe abcadeceddbe abcbdaedebce

abcdebfefadcf abcdebfdfaecf abcdbefdfaecf

abcdeafefcdbf abcdeafdfcebf abcdaefdfcebf abcdeafcfdebf abcdaefcfdebf abcadefcfdebf

★♦♠♠♥♣

e
fb
dc
f

a

★♦♠♥♠♣

d
fb
ec
f

a a
d
fb
ec
f

abcdeafefbdcf abcdeafdfbecf abcdaefdfbecf

Figure 8: The 17 prototypes. Each prototype has a compact encoding (using the minimum number of ?s)
and each encoding can be realized by at most a constant number of labeled trees, each of which corresponds
to a forbidden subsequence. The vertex labels are indicated, except for the leaves. In each tree the leaves
are labeled in left-to-right order: a, b, c, d,

Most illegal strings still lead unambiguously to forbidden subsequences. We designate them illegal either
because we cannot prove that they are superlinear, or because they are trivially superlinear, e.g., if they
contain ababa or another subsequence known to be superlinear.

We describe below a two step process for converting a legal compact encoding from Definition 4.3 into a
forbidden subsequence. The first step converts a compact encoding into a labeled tree representation. There
may be more than one possible tree representation per compact encoding, though never more than four.
The second step is to map a labeled tree into a forbidden subsequence; this mapping is always unique. See
Figure 8 for a depiction of the 17 prototypes. Each is represented as a legal encoding, a set of 1 or more
trees, and for each tree a corresponding forbidden subsequence. More complex forbidden subsequences can
be derived by inserting ?s into the compact encoding.

Let λ be a legal compact encoding. An element is a symbol in {♥,♦,♠,♣, ?} or a parenthesized sequence
of symbols from that set. Let |λ| be the number of elements in λ and λ(j) be the jth element. We generate

8
Dagstuhl Seminar Proceedings 08081
Data Structures
http://drops.dagstuhl.de/opus/volltexte/2008/1529

a tree τλ from the bottom up as follows. We create |λ| leaves where the jth leaf `j is labeled j. (If λ
contains consecutive elements λ(j)λ(j + 1) = ♣♠, as in cases (1) or (7) from Definition 4.3, we create a
new node `′j labeled j that is the parent of `j and `j+1. If this is the case, substitute `′j for all references
to `j and `j+1 below.) Suppose λ(j1), . . . , λ(jl−1) are the ‘?’ elements and λ(jl) the ‘♥’ element of λ. We
create l new internal nodes y1, . . . , yl, where yi is labeled ji. We make y1 the parent of `j1 and `j2 , and in
general, yi is made the parent of yi−1 and `ji+1 . Finally, yl is made the parent of `|λ|. Figure 9 shows τλ for
λ = ?♠ ?2 ♦ ?2 ♠♥♣.

★♠★★♦★★♠♥♣
a b c d e f g h i

je

a c d f g i

j

j

hb

abcadcefdgfhigjijehbj

z , ..., z1 3
y , ..., y1 6

Figure 9: One example τλ, for λ = ?♠ ?2 ♦ ?2 ♠♥♣.

If a leaf `j′ has siblings to the left and right that are the children of a common parent yi then `j′ must
also be a child of yi. Some leaves may be able to choose between one of two parents. For instance, if
λ = ?♦♠♥♠♣ then y1 is the parent of `1 and `4, which forces `2 and `3 to be children of y1 as well. We
put y2 as the parent of y1 and `6, and have the freedom to make `5 the child of either y1 or y2. See the
last two trees on the third row of Figure 8. We create three nodes ancestral to yl named z1, z2, z3. Let j♦

be the index of the guard element of λ, j♠1 < j♠2 be the indices of the trapped elements, and j♣1 < j♣2 the
indices of the traps. (It is impossible for all these elements to be present simultaneously.) If λ contains two
traps (see cases (1) and (7) of Definition 4.3) we assign z1 label j♣2 j♣1 , z2 label j♠1 (there is no j♠2), and z3

label j♣2 . If λ contains just one trap, namely j♣1 , we assign z2 label j♠2 j♠1 , z3 label j♣1 , and z1 label j♣1 j♦,
unless j♣1 = j♦, in which case z1 is simply labeled j♣1 . See Figure 8 for the labeled tree representations of
the prototypes.

Once we settle on a particular labeled tree τ , turning it into a sequence is relatively straightforward. Let
σ(τ) be the concatenation of the labels of the nodes of τ in the (unique) postorder in which `1 precedes `2,
which precedes `3, and so on.

Definition 4.5 Ψ is the set containing ababa and all sequences that can be generated from a legal compact
encoding.

5 General Superlinear Lower Bounds

In this Section we prove our main result, that all forbidden subsequences that could be generated from a
legal compact encoding are superlinear.

Theorem 5.1 For all σ ∈ Ψ, Ex(σ, n) = Ω(nα(n))

Proof: Let λ be the legal compact encoding that generated σ. Theorems 4.1 and 4.2 cover the case of
λ ∈ {♥♠(♦♠♣),♥♣♠♣}, i.e., parts (1) and (2) of Definition 4.3. It is straightforward, given the proof
of Theorem 4.2 and what follows, to cover λ ∈ ?♣♠ ?∗ ♥♣. For notational simplicity we will omit this
case. Thus λ contains exactly one ♣,♦, and ♥, two ♠s, an unbounded number of ?s, and at most one
parenthesized element, which is either (♦♠) or (♦♠♣). (It may be helpful at this point to reread the
properties of legal encodings from Definition 4.4.) Let λ(j1), . . . , λ(jl−1) be the ? elements, λ(jl) the ♥, and

9
Dagstuhl Seminar Proceedings 08081
Data Structures
http://drops.dagstuhl.de/opus/volltexte/2008/1529

λ(j♦), λ(j♠1), λ(j♠2), and λ(j♣) the elements of type ♦,♠ and ♣, respectively. Observe that if λ contains no
parenthesized expressions, j♣ appears three times in σ and all other symbols appear exactly twice. If there
is a parenthesized expression, i.e., j♦ = j♠2 or j♦ = j♠2 = j♣, then that symbol will appear three and fours
times in σ, respectively.

Suppose that σ ≺ Ξ. Let vj,i be the vertex in T such that ξ(vj,i) contains the ith occurrence of j
in σ. In order to show that this leads to a contradiction we first need to show that the induced sub-
tree of T tree connecting {vj,i} mimics the structure of τλ. Assume inductively that vjk,2 is ancestral to
vj1,1, vj1+1,1, . . . , vjk+1,1. Following the 2nd occurrence of jk in σ we see the first occurrence of some sym-
bols that must include jk+2, followed by the second occurrence of jk+1. Since vjk+1,1 C vjk+1,2 (trivial)
and vjk+1,1 C vjk,2 (ind. hyp.), it follows from the construction of Ξ that vjk,2 C vjk+1,2. This implies, by
the inductive hypothesis, that vj1,1, . . . , vjk+2,1 are descendants of vjk+1,2. Furthermore, vj1,1, . . . , vj♣ are
descendants of vjl,2. In other words, the symbol jl (corresponding to the ♥ in λ) functions as intended: by
binding vj♠1 ,1, vj♠2 ,1, and vj♣,1 under a common ancestor. The next step is to show that j♦ functions as a
guard.

The symbols following the second occurrence of j♣ in σ are j♦, j♠2 , j♠1 , and j♣ in that order, where
j♦ is omitted if j♦ = j♣ (as in cases (2) and (8) of Definition 4.3.) First consider the case where j♦, j♣,
and j♠2 are distinct. Regardless of the compact encoding λ, it always holds that j♦j♣j♦j♣ and j♦j♠2 j♦j♠2
appear in σ; see Definition 4.4(i,ii). Thus, it follows from Lemma 3.3 that j♦

c
< j♣ and j♦

c
< j♠2 . Since

ξ(vj♣,2) appears in Ξ in decreasing order (by
c
<), it must be that vj♣,2 C vj♠2 ,2. This also implies that

vj♣,2 C vj♠1 ,2 E vj♣,3. The preconditions of Lemma 3.4 are satisfied (with respect to both of the pairs j♣, j♠1

and j♣, j♠2), implying that j♠1 and j♠2 appear in ξ(vj♣,2). Therefore, if σ≺̄Ξ then j♠1 j♠2 j♠1 j♠2 j♠1 ≺̄Ξ as well,
contradicting Lemma 3.3.

If j♦ = j♣ = j♠2 or j♦ = j♠2 (the cases where λ contains (♦♠♣) and (♦♠) respectively) the above
proof goes though with somewhat simpler arguments. if j♦ = j♠2 then vj♠2 ,2 C vj♠2 ,3 (this is trivial) and

by Lemma 3.4, j♠1 appears in ξ(vj♣,2). Thus, if σ≺̄Ξ then j♠1 j♠2 j♠1 j♠2 j♠1 ≺̄Ξ as well. The cases where
j♦ = j♣ = j♠2 are treated similarly. 2

A natural question is whether there is any redundancy in Ψ. That is, if σ, σ̂ ∈ Ψ and σ̂ is a strictly shorter
subsequence of σ, then the superlinearity of Ex(σ̂, n) (Theorem 5.1) immediately implies the superlinearity
of Ex(σ, n). If the superlinearity of Ψ could be deduced from a strict subset (perhaps even a finite subset),
this would undermine the claim that the infinitude of Ψ is evidence for the infinitude of Φ. Theorem 5.2
shows that Ψ is minimal in the sense that every strict subsequence of an element in Ψ does appear as a
subsequence of Ξ.

Theorem 5.2 For any σ ∈ Ψ, if σ̂ ≺ σ and σ̂ 6= σ then σ̂ ≺ Ξ.

Proof: There are seventeen prototypes and, unfortunately, we have no elegant way to capture all of them
with a single argument. Note, however, that prototypes (1–6) are fixed length and can be checked by hand.
Prototype (7) is an oddball; however, it is simple to handle given what follows. The bulk of the proof covers
cases (10–14, 16–17), which are the remaining ones that contain no parenthesized expressions. We sketch
how to handle prototypes (8–9, 15) at the end.

Let λ be the compact encoding for σ. Let j1, . . . , jl be the indices in λ of the ?s and the ♥; let j♦, j♠1 , j♠2 ,
and j♣ be the indices of their respective types and assume for the moment that all these indices are distinct,
i.e., assume there is no (♦♠) or (♦♠♣) in λ. Let σ̂ be a strict subsequence of σ. If σ̂ is missing a symbol
corresponding to a ?,♦,♥, or ♠ we can assume without loss of generality that the other occurrence of that
symbol is missing as well.

First consider the case where σ̂ is missing both occurrences of jh, for some 1 ≤ h ≤ l. We show that
the ♥ element no longer functions as a binder. As before, let vj,i ∈ T be the vertex corresponding to the
ith occurrence of j in the purported appearance of σ̂ ≺ Ξ. Unless explicitly contradicted, assume that (i)
vj,1 is a leaf of T , (ii) all vj,i are distinct, and (iii) vj,i C vj′,i′ only if this relation must hold, given σ̂. (For
instance, if σ̂ = abab, (iii) would require that va,2 C vb,2.) Let τ̂ be a tree on the vertices {vj,i} modeling
the necessarily the ancestor/descendant relationships of (iii). In order to prove the theorem we only need
to assign the vj,i to levels in T that is consistent with τ̂ and the construction of path compressions from
Section 3.

10
Dagstuhl Seminar Proceedings 08081
Data Structures
http://drops.dagstuhl.de/opus/volltexte/2008/1529

Let σ = σ1 jh σ2 jh−1 σ3 jh+1 σ4 jh σ5 j♦ σ6, where the j♦ refers to its second occurrence in σ. If h = l
then jh+1 refers to j♣ and if h = 1, jh−1 does not exist. Thus, σ̂ = σ1 σ2 jh−1 σ3 jh+1 σ4 σ5j

♦ σ6. A case-by-
case check of Definition 4.3 (or the more readable Definition 4.4) shows that the alphabets of the sequences
σ1 σ2 jh−1, σ3, and jh+1 σ4 σ5 are mutually disjoint. Furthermore, the first and second occurrences of j♣

appear in jh+1 σ4 σ5 and j♠1 does not. Thus, in τ̂ , the least common ancestor of vj♠1 ,1 and vj♣,2 appears at
or above vj♦,2. Figure 10 illustrates the difference between τ and τ̂ on a specific example. Suppose that

f

f

★♦♠★★★★♠♥♣
a b c d e g h i j

a
d

e

g i

jb

hc

j

a b c d e g h i j

a
d

e

g i
j

h

j

b

c

k-1

k-2

k-2

k-2

k-2

k-2

k-2

k-2

(jh by implication)

Figure 10: Left: the model tree corresponding to abcdaedfegfhigjijbhcj. Right: the model tree correspond-
ing to abcdaedeghigjijbjcj, where ‘f ’ is missing.

T = T (k, `), so all leaves (of T and τ̂) are k-nodes. Let vj♣,2 be a (k − 1)-node. For all compressions j
appearing in σ1 σ2 jh−1 σ3, let the (k−1)-node of compression j lie at the same level as vj♣,2 and lie between
vj,1 and the parent of vj,1 in τ̂ . See Figure 10 for a schematic of how nodes in τ̂ are assigned to levels in
T . For each such j, vj,2 is a (k − 2)-node and vj♣,3 is a (k − 2)-node. If j♦ and/or j♠2 appear in σ4 σ5 then
(by Lemma 3.4), j♦, j♠2 appear in ξ(vj♣,2) as well. Figure 10 gives an example of this situation: h = j♠2
appears in ξ(vj,2) = ξ(vj♣,2). In this case vj♣,2 is the (k − 1)-node of compressions j♦, j♠2 and vj♦,2 and
vj♠2 ,2 are the (k− 2)-nodes in compressions j♦ and j♠2 . For other compressions j appearing in σ4 σ5 (?s and
♥), the nodes vj,2 are (k − 1) nodes at distinct levels in T . (In Figure 10 g and i are in this category.) It
is clear, i.e., as clear as anything else in this proof, that the existence of these compressions could not cause
any contradictions since they are effectively sequestered from the others; we ignore them in the arguments
below.

Recapping the above, all compressions in σ1 σ2 jh−1 σ3, j
♦, j♠2 , j♣ have their (k − 1)-nodes at the same

level and all these nodes are distinct, except possibly for j♦ and j♠2 , whose (k−1)-nodes may be equal to that
of j♣. For any (k − 1)-node x there is exactly one compression containing this node and each (k − 2)-node
ancestor of x that lies below the first (k − 1)-node ancestor of x. Thus, so long as the (k − 1)-nodes of
compressions are distinct, any permutation of them in the sequence j♦σ6 is consistent with our construction
of path compressions. We only need to worry about the compressions that may share a common (k−1)-node.
Since j♦ < j♠2 < j♣ and these compressions appear in sorted order in j♦σ6, i.e., j♣ terminates above j♠2 ,
which terminates above j♦, these compressions are also consistent with our construction.

Consider now the case when σ̂ is missing both occurrences of j♦. Without the guard there is no contra-
diction in letting vj♠2 ,2 = vj♠1 ,2 = vj♣,2. For every compression j we let vj,2 be the (k − 1)-node of j and let
vj♣,3 be the (k−2)-node of j♣. All the (k−1)-nodes are distinct, with the exception of vj♠2 ,2 = vj♠1 ,2 = vj♣,2.
The same observation made above shows that all compressions with distinct (k−1)-nodes are consistent with
our construction, independent of the locations of their corresponding appearances in σ̂. Since j♠1 < j♠2 < j♣

It is also consistent with our construction of Ξ that ξ(vj♣,2) list j♠1 , j♠2 , and j♣ in decreasing order.
The cases where σ̂ is missing j♠1 or j♠2 are similar to the case of j♦ above. If j♠2 is missing there is no

inconsistency in letting vj♣,2 be the (k− 1)-node in compression j♠1 and vj♠1 ,2 be the (k− 2)-node in j♠1 . As
before, vj♣,3 is the (k−2)-node of j♣ and all other nodes and their labels are the same as if j♦ were missing.
Since j♠1 < j♣ there is no inconsistency in letting j♦, j♠1 , and j♣ appear in ξ(vj♣,2) in decreasing order.

11
Dagstuhl Seminar Proceedings 08081
Data Structures
http://drops.dagstuhl.de/opus/volltexte/2008/1529

Suppose that one of the three occurrences of j♣ is missing. There are now exactly two occurrences of
each symbol in σ̂. For each j let vj,1 be the k-node of compression j and vj,2 be its (k− 1)-node. We put all
the k-nodes at the same level in T whereas all of the (k−1)-nodes are at different levels. By our construction
of path compressions there exists exactly one compression that includes vj,1 and a particular (k − 1)-node
ancestor. Thus, regardless of arrangement of symbols in σ̂ it is always possible to assign, in a consistent
fashion, symbols to path compressions. (Note that the proof of this case goes through if all symbols appear
in σ̂ in at most two runs, e.g., abbcccccbbaaccc has this property.)

Extending the proof above to cases where λ may contain elements (♦♠) or (♦♠♣) is not difficult. In the
first case the symbol corresponding to (♦♠) appears three times. For instance, if λ = ♥♠(♦♠)♣ (prototype
(3)) the forbidden subsequence σ = abcdadccbd contains three occurrences of c, corresponding to the (♦♠);
see Figure 8. The first and third occurrences serve the role of a trapped element and the first and second serve
the role of a guard. If σ̂ is missing the second or third occurrence we use the same analysis as above, as if j♦

were missing. If σ̂ is missing the first occurrence then the remaining two are consecutive in σ̂; clearly their
presence could not assist in obtaining a contradiction. The other cases, where σ̂ is missing a ?,♥,♠, or ♣, are
handled in the same way as before. Turning to the case where λ contains (♦♠♣), the corresponding symbol
appears four times. For instance, the forbidden subsequence corresponding to ♥♠(♦♠♣) is σ = abcaccbc,
where the first, second, and fourth occurrences serve the role as a trap and the first and third occurrences
serve as both a guard and a trapped element. If σ̂ is missing the second or third occurrence we use the
earlier analysis as if j♦ were missing. If σ̂ is missing the first or fourth occurrence we use the analysis as if
j♣ were missing.

The arguments above cover all prototypes except (1) and (7), which are easy exercises.
2

Theorems 5.1 and 5.2 together show that there are an infinite number of superlinear forbidden subse-
quences, each of which is not a subsequence of any other. With the exception of ababa we cannot say that
any particular member of Ψ is in Φ. However, we can show that |Φ| ≥ 5 non-constructively. Recall that the
previous bound of |Φ| ≥ 2 [17] followed from the superlinearity of σ′ = ababa and σ′′ = abcbadadbcd. Clearly
σ′ is a palindrome (a sequence isomorphic to its reversal) and σ′′ is not. If σ′′ were in Φ its reversal would
be there as well. However, since σ′′ contains a palindrome as a subsequence, namely abadadbd, we can only
conclude |Φ| ≥ 2.

Theorem 5.3 |Φ| ≥ 5.

Proof: Klazar and Valtr [19] showed that any forbidden subsequence σ over three letters has Ex(σ, n) = O(n)
unless one of σ1 = ababa, σ2 = abcacbc, σ3 = abcbcac, σ4 = abacabc, σ5 = abacacb is a subsequence of
σ. Notice that σ1 is the only palindrome and that σ2 and σ3 are isomorphic to the reversals of σ4 and
σ5, respectively. Let π2 = abcaccbc and π8 = abcadcddbd be the prototypical forbidden subsequences
corresponding to Definition 4.3(2,8); see Figure 8, the second and fifth diagrams on the first row. One can
check that σ2 ≺ π2 but σ1, σ3, σ4, σ5 ⊀ π2, and that σ3 ≺ π8 but σ1, σ2, σ4, σ5 ⊀ π8. Thus, either π2 (and its
reversal) are in Φ or σ2 (and its reversal σ4) are in Φ. Similarly, some σ′ ≺ π8 (and its reversal) must be in
Φ. Notice that all palindrome subsequences of π8 are linear, e.g., abab, bccb, bdddb, bcdcb. This implies that
σ′ is not isomorphic to its reversal and that it is distinct from π2, σ2, and σ4. Thus, Φ contains at least five
elements: ababa and four distinct subsequences of π2 and π8 and their reversals. 2

6 Discussion

It is reasonable to think, for no reasons except those aesthetic, that Φ is infinite, i.e., that there are infinitely
many causes of superlinearity in generalized DS sequences.2 In this paper we have exhibited the first
candidate for Φ, namely Ψ, which seems to capture the forbidden structures of the “standard” sequence of
n path compressions with length Θ(nα(n)). There are numerous reasons to think that, even if Φ is infinite,
that it does not contain Ψ and that it may only share ababa in common with Ψ. However, as we argue below,
some of the obvious objections to the plausibility of Ψ ⊂ Φ are not as grounded as one might expect.

One immediate objection is that all σ ∈ Ψ have Ex(σ, n) = Ω(nα(n)). Even if Ψ did fully characterize
those forbidden subsequences with superlinear growth Ω(nα(n)), why assume that the superlinear spectrum

2After |Φ| = 1 is excluded no other cardinality seems quite right.

12
Dagstuhl Seminar Proceedings 08081
Data Structures
http://drops.dagstuhl.de/opus/volltexte/2008/1529

between ω(n) is o(nα(n)) is empty? There’s no good response to this objection, except that functions
o(nα(n)) are exceedingly rare. We are not aware of any natural phenomenon that induces a function
o(nα(n)), though it is possible to manufacture such functions. Loebl and Nes̆etr̆il [22] defined a specialized
sequence of path compressions whose length is roughly nε(n), where ε is the inverse of the quickly growing
function corresponding to the ordinal ε0.3

It is not farfetched to assume that Ex(σ, n) is either O(n) or Ω(nα(n)) for any forbidden subsequence σ.
Even so, the superlinearity of forbidden subsequences in Ψ was established by looking at a specific process,
namely path compressions, a specific sequence of path compressions, and a specific way of transcribing path
compressions into our ultimate sequence Ξ. Is there any reason to believe that Ξ holds a privileged position
in the world of generalized DS sequences, despite its apparently ad hoc construction? We think that Ξ is
somewhat special. This opinion is not grounded in our aesthetic judgement but historical precedent.

Since Tarjan’s discovery of the inverse-Ackermann function over 30 years ago we have seen it appear in a
wide range of problems. The union-find data structure [25, 28, 30, 11, 20, 13] is certainly the most high profile
example. Other examples include one dimensional range searching [33, 5, 9], range searching over trees [27, 29,
26, 8, 31, 24], lower envelopes [32, 2], searching monotone matrices [15, 14], low diameter spanners [7], and, of
course, Davenport-Schinzel sequences [12, 2, 18] and related problems concerning forbidden substructure [18].
The fact that the inverse-Ackermann function shows up all over the place is not surprising. (One could rattle
off a similar list for any other function.) The surprising part is that all the results above ultimately relate
back to one combinatorial object, namely path compressions on balanced trees.4 Connecting these problems
to path compressions is not always direct or simple. To take one example, Klawe’s superlinear lower bound
on searching monotone matrices [14] is identified with the complexity of the lower envelope of line segments
[32], which is identified with (ababa)-free Davenport-Schinzel sequences, and generalized postordered path
compressions [12] or, equivalently, standard path compressions on balanced trees. In the other examples
cited above it is usually easier to convert the domain-specific combinatorial structure, say, a hard instance
of one dimensional range searching [9], into a system of path compressions. Given this history it would be
truly astounding if it were possible to prove a lower bound of Ex(σ, n) = Ω(nα(n)) using some combinatorial
construction that was fundamentally unrelated to path compressions on balanced trees.

Although we see path compressions as the canonical manifestation of the inverse-Ackermann function,
we will not argue that Ξ is the only sensible transcription of path compressions. If it is possible to prove
that, say, Ex(abcacbc, n) = Ω(nα(n)), the proof would likely use (implicitly or explicitly) the same sequence
of path compressions from Section 3 or [25, 12] but a completely different transcription method.

References

[1] R. Adamec, M. Klazar, and P. Valtr. Generalized Davenport-Schinzel sequences with linear upper bound.
Discrete Math., 108(1-3):219–229, 1992.

[2] P. Agarwal and M. Sharir. Davenport-Schinzel Sequences and their Geometric Applications. Cambridge Univer-
sity Press, 1995.

[3] P. Agarwal, M. Sharir, and P. Shor. Sharp upper and lower bounds on the length of general Davenport-Schinzel
sequences. J. Combinatorial Theory, Series A, 52, 1989.

[4] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applications of a matrix-searching
algorithm. Algorithmica, 2:195–208, 1987.

[5] A. Alon and B. Schieber. Optimal preprocessing for answering on-line product queries. Technical Report TR-
71/87, Institute of Computer Science, Tel Aviv University, 1987.

[6] R. E. Burkard, B. Klinz, and R. Rudolf. Perspectives of Monge properties in optimization. Discrete Appl. Math.,
70(2):95–161, 1996.

[7] H. T.-H. Chan and A. Gupta. Small hop-diameter sparse spanners for doubling metrics. In Proc. 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 70–78, 2006.

[8] B. Chazelle. Computing on a free tree via complexity-preserving mappings. Algorithmica, 2(3):337–361, 1987.

3Here ε0 is the limit of ω, ωω , ωωω
, Although the function corresponding to ε0 shows up in various places, e.g. Goodstein

sequences, the Paris-Harrington theorem, and the Hercules-Hydra game, its slowly growing counterpart has yet to appear in a
natural way [23, 21].

4To paraphrase Tolstoy, all inverse-Ackermann bounds resemble one another, but each linear bound is linear in its own way.

13
Dagstuhl Seminar Proceedings 08081
Data Structures
http://drops.dagstuhl.de/opus/volltexte/2008/1529

[9] B. Chazelle and B. Rosenberg. The complexity of computing partial sums off-line. Internat. J. Comput. Geom.
Appl., 1(1):33–45, 1991.

[10] H. Davenport and A. Schinzel. A combinatorial problem connected with differential equations. American J.
Mathematics, 87:684–694, 1965.

[11] M. L. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In Proc. 21st annual ACM
Symposium on Theory of Computing, pages 345–354, 1989.

[12] S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of generalized path compression
schemes. Combinatorica, 6(2):151–177, 1986.

[13] H. Kaplan, N. Shafrir, and R. E. Tarjan. Meldable heaps and Boolean union-find. In Proceedings 34th Annual
ACM Symposium on Theory of Computing (STOC), pages 573–582, 2002.

[14] M. M. Klawe. Superlinear bounds for matrix searching problems. J. Algor., 13(1):55–78, 1992.

[15] M. M. Klawe and D. J. Kleitman. An almost linear time algorithm for generalized matrix searching. SIAM
J. Discr. Math., 3(1):81–97, February 1990.

[16] M. Klazar. A general upper bound in extremal theory of sequences. Comment. Math. Univ. Carolin., 33(4):737–
746, 1992.

[17] M. Klazar. Two results on a partial ordering of finite sequences. Comment. Math. Univ. Carolinae, 34:697–705,
1993.

[18] M. Klazar. Generalized Davenport-Schinzel sequences: results, problems, and applications. Integers, 2:A11, 39
pp. (electronic), 2002.

[19] M. Klazar and P. Valtr. Generalized Davenport-Schinzel sequences. Combinatorica, 14(4):463–476, 1994.

[20] H. LaPoutré. Lower bounds for the union-find and the split-find problem on pointer machines. J. Com-
put. Syst. Sci., 52:87–99, 1996.

[21] M. Loebl. Unprovable combinatorial statements. Discrete Mathematics, 108:333–342, 1992.

[22] M. Loebl and J. Nes̆etr̆il. Linearity and unprovability of set union problem strategies. In STOC, pages 360–366,
1988.

[23] M. Loebl and J. Nešetřil. Fast and slow growing (a combinatorial study of unprovability). In Surveys in
combinatorics, volume 166 of London Math. Soc. Lecture Note Ser., pages 119–160. 1991.

[24] S. Pettie. An inverse-Ackermann type lower bound for online minimum spanning tree verification. Combinatorica,
26(2):207–230, 2006.

[25] R. E. Tarjan. Efficiency of a good but not linear set merging algorithm. J. ACM, 22:215–225, 1975.

[26] R. E. Tarjan. Complexity of monotone networks for computing conjunctions. Ann. Discrete Math., 2:121–133,
1978.

[27] R. E. Tarjan. Applications of path compression on balanced trees. J. ACM, 26(4):690–715, 1979.

[28] R. E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets. J. Comput. Syst. Sci.,
18(2):110–127, 1979.

[29] R. E. Tarjan. Sensitivity analysis of minimum spanning trees and shortest path problems. Info. Proc. Lett.,
14(1):30–33, 1982. See Corrigendum, IPL 23(4):219.

[30] R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms. J. ACM, 31(2):245–281, 1984.

[31] M. Thorup. Parallel shortcutting of rooted trees. J. Algor., 23(1):139–159, 1997.

[32] A. Wiernik and M. Sharir. Planar realizations of nonlinear Davenport-Schinzel sequences by segments. Discrete
Comput. Geom., 3(1):15–47, 1988.

[33] A. C. Yao. Space-time tradeoff for answering range queries. In Proc. 14th ACM Symposium on Theory of
Computing (STOC), pages 128–136, 1982.

14
Dagstuhl Seminar Proceedings 08081
Data Structures
http://drops.dagstuhl.de/opus/volltexte/2008/1529

