3,073 research outputs found

    Lifetime enhanced transport in silicon due to spin and valley blockade

    Get PDF
    We report the observation of Lifetime Enhanced Transport (LET) based on perpendicular valleys in silicon by transport spectroscopy measurements of a two-electron system in a silicon transistor. The LET is manifested as a peculiar current step in the stability diagram due to a forbidden transition between an excited state and any of the lower energy states due perpendicular valley (and spin) configurations, offering an additional current path. By employing a detailed temperature dependence study in combination with a rate equation model, we estimate the lifetime of this particular state to exceed 48 ns. The two-electron spin-valley configurations of all relevant confined quantum states in our device were obtained by a large-scale atomistic tight-binding simulation. The LET acts as a signature of the complicated valley physics in silicon; a feature that becomes increasingly important in silicon quantum devices.Comment: 4 pages, 4 figures. (The current version (v3) is the result of splitting up the previous version (v2), and has been completely rewritten

    A simplified picture for Pi electrons in conjugated polymers : from PPP Hamiltonian to an effective molecular crystal approach

    Full text link
    An excitonic method proper to study conjugated oligomers and polymers is described and its applicability tested on the ground state and first excited states of trans-polyacetylene, taken as a model. From the Pariser-Parr-Pople Hamiltonian, we derive an effective Hamiltonian based on a local description of the polymer in term of monomers; the relevant electronic configurations are build on a small number of pertinent local excitations. The intuitive and simple microscopic physical picture given by our model supplement recent results, such as the Rice and Garstein ones. Depending of the parameters, the linear absorption appears dominated by an intense excitonic peak.Comment: 41 Pages, 6 postscript figure

    Polarons as Nucleation Droplets in Non-Degenerate Polymers

    Full text link
    We present a study of the nucleation mechanism that allows the decay of the metastable phase (trans-cisoid) to the stable phase (cis-transoid) in quasi one-dimensional non-degenerate polymers within the continuum electron-phonon model. The electron-phonon configurations that lead to the decay, i.e. the critical droplets (or transition state), are identified as polarons of the metastable phase. We obtain an estimate for the decay rate via thermal activation within a range of parameters consistent with experimental values for the gap of the cis-configuration. It is pointed out that, upon doping, the activation barriers of the excited states are quite smaller and the decay rate is greatly enhanced. Typical activation energies for electron or hole polarons are 0.1\approx 0.1 eV and the typical size for a critical droplet (polaron) is about 20A˚20 \AA. Decay via quantum nucleation is also studied and it is found that the crossover temperature between quantum nucleation and thermal activation is of order Tc40oKT_c \leq 40 ^oK. Metastable configurations of non-degenerate polymers may provide examples for mesoscopic quantum tunneling.Comment: REVTEX 3.0, 28 PAGES, 3 FIGURES AVAILABLE UPON REQUEST, PITT 94-0

    Supernova Neutrino-Nucleus Physics and the r-process

    Full text link
    This talk reviews three inputs important to neutrino-induced nucleosynthesis in a supernova: 1) "standard" properties of the supernova neutrino flux, 2) effects of phenomena like neutrino oscillations on that flux, and 3) nuclear structure issues in estimating cross sections for neutrino-nucleus interactions. The resulting possibilities for neutrino-induced nucleosynthesis -- the neutrino-process -- in massive stars are discussed. This includes two relatively recent extensions of neutrino-process calculations to heavier nuclei, one focused on understanding the origin of 138La and 180Ta and the second on the effects following r-process freezeout. From calculations of the neutrino post-processing of the r-process distribution, limits can be placed on the neutrino fluence after freezeout and thus on the dynamic timescale for the expansion of the "hot bubble."Comment: 17 pages, 5 figures, talked presented at "The r-process: The Astrophysical Origin of the Heavy Elements...

    Prospects for Detecting Supernova Neutrino Flavor Oscillations

    Get PDF
    The neutrinos from a Type II supernova provide perhaps our best opportunity to probe cosmologically interesting muon and/or tauon neutrino masses. This is because matter enhanced neutrino oscillations can lead to an anomalously hot nu_e spectrum, and thus to enhanced charged current cross sections in terrestrial detectors. Two recently proposed supernova neutrino observatories, OMNIS and LAND, will detect neutrons spalled from target nuclei by neutral and charged current neutrino interactions. As this signal is not flavor specific, it is not immediately clear whether a convincing neutrino oscillation signal can be extracted from such experiments. To address this issue we examine the responses of a series of possible light and heavy mass targets, 9Be, 23Na, 35Cl, and 208Pb. We find that strategies for detecting oscillations which use only neutron count rates are problematic at best, even if cross sections are determined by ancillary experiments. Plausible uncertainties in supernova neutrino spectra tend to obscure rate enhancements due to oscillations. However, in the case of 208Pb, a signal emerges that is largely flavor specific and extraordinarily sensitive to the nu_e temperature, the emission of two neutrons. This signal and its flavor specificity are associated with the strength and location of the first-forbidden responses for neutral and charge current reactions, aspects of the 208Pb neutrino cross section that have not been discussed previously. Hadronic spin transfer experiments might be helpful in confirming some of the nuclear structure physics underlying our conclusions.Comment: 27 pages, RevTeX, 2 figure

    From Vicious Walkers to TASEP

    Get PDF
    We propose a model of semi-vicious walkers, which interpolates between the totally asymmetric simple exclusion process and the vicious walkers model, having the two as limiting cases. For this model we calculate the asymptotics of the survival probability for mm particles and obtain a scaling function, which describes the transition from one limiting case to another. Then, we use a fluctuation-dissipation relation allowing us to reinterpret the result as the particle current generating function in the totally asymmetric simple exclusion process. Thus we obtain the particle current distribution asymptotically in the large time limit as the number of particles is fixed. The results apply to the large deviation scale as well as to the diffusive scale. In the latter we obtain a new universal distribution, which has a skew non-Gaussian form. For mm particles its asymptotic behavior is shown to be ey22m2e^{-\frac{y^{2}}{2m^{2}}} as yy\to -\infty and ey22mym(m1)2e^{-\frac{y^{2}}{2m}}y^{-\frac{m(m-1)}{2}} as yy\to \infty .Comment: 37 pages, 4 figures, Corrected reference

    Symmetries in the collective excitations of an electron gas in core-shell nanowires

    Get PDF
    We study the collective excitations and inelastic light scattering cross-section of an electron gas confined in a GaAs/AlGaAs coaxial quantum well. These system can be engineered in a core-multi-shell nanowire and inherit the hexagonal symmetry of the underlying nanowire substrate. As a result, the electron gas forms both quasi 1D channels and quasi 2D channels at the quantum well bents and facets, respectively. Calculations are performed within the RPA and TDDFT approaches. We derive symmetry arguments which allow to enumerate and classify charge and spin excitations and determine whether excitations may survive to Landau damping. We also derive inelastic light scattering selection rules for different scattering geometries. Computational issues stemming from the need to use a symmetry compliant grid are also investigated systematically
    corecore