16 research outputs found

    Legged locomotion over irregular terrains: State of the art of human and robot performance

    Get PDF
    Legged robotic technologies have moved out of the lab to operate in real environments, characterized by a wide variety of unpredictable irregularities and disturbances, all this in close proximity with humans. Demonstrating the ability of current robots to move robustly and reliably in these conditions is becoming essential to prove their safe operation. Here, we report an in-depth literature review aimed at verifying the existence of common or agreed protocols and metrics to test the performance of legged system in realistic environments. We primarily focused on three types of robotic technologies, i.e., hexapods, quadrupeds and bipeds. We also included a comprehensive overview on human locomotion studies, being it often considered the gold standard for performance, and one of the most important sources of bioinspiration for legged machines. We discovered that very few papers have rigorously studied robotic locomotion under irregular terrain conditions. On the contrary, numerous studies have addressed this problem on human gait, being nonetheless of highly heterogeneous nature in terms of experimental design. This lack of agreed methodology makes it challenging for the community to properly assess, compare and predict the performance of existing legged systems in real environments. On the one hand, this work provides a library of methods, metrics and experimental protocols, with a critical analysis on the limitations of the current approaches and future promising directions. On the other hand, it demonstrates the existence of an important lack of benchmarks in the literature, and the possibility of bridging different disciplines, e.g., the human and robotic, towards the definition of standardized procedure that will boost not only the scientific development of better bioinspired solutions, but also their market uptake

    Integrated Neural Adaptive Control for In-pipe Robot Locomotion

    Full text link
    The 11th International Symposium on Adaptive Motion of Animals and Machines. Kobe University, Japan. 2023-06-06/09. Adaptive Motion of Animals and Machines Organizing Committee.Poster Session P2

    Non-inertial Undulatory Locomotion Across Scales

    Get PDF
    Locomotion is crucial to behaviors such as predator avoidance, foraging, and mating. In particular, undulatory locomotion is one of the most common forms of locomotion. From microscopic flagellates to swimming fish and slithering snakes, this form of locomotion is a remarkably robust self-propulsion strategy that allows a diversity of organisms to navigate myriad environments. While often thought of as exclusive to limbless organisms, a variety of locomotors possessing few to many appendages rely on waves of undulation for locomotion. In inertial regimes, organisms can leverage the forces generated by their body and the surrounding medium's inertia to enhance their locomotion (e.g., coast or glide). On the other hand, in non-inertial regimes self-propulsion is dominated by damping (viscous or frictional), and thus the ability for organisms to generate motion is dependent on the sequence of internal shape changes. In this thesis, we study a variety of undulating systems that locomote in highly damped regimes. We perform studies on systems ranging from zero to many appendages. Specifically, we focus on four distinct undulatory systems: 1) C. elegans, 2) quadriflagellate algae (bearing four flagella), 3) centipedes on terrestrial environments, and 4) centipedes on fluid environments. For each of these systems, we study how the coordination of their many degrees of freedom leads to specific locomotive behaviors. Further, we propose hypotheses for the observed behaviors in the context of each of these system's ecology.Ph.D

    Tandem actuation of legged locomotion and grasping manipulation in soft robots using magnetic fields

    Get PDF
    Untethered soft robots have the potential to impact a variety of applications, particularly if they are capable of controllable locomotion and dexterous manipulation. Magnetic fields can provide humansafe, contactless actuation, opening the gates to applications in confined spaces - for example, in minimally invasive surgery. To translate these concepts into reality, soft robots are being developed with different capabilities, such as functional components to achieve motion and object manipulation. This paper investigates the tandem actuation of two separate functions (locomotion and grasping) through multi-legged soft robots with grippers, actuated by magnetic fields. The locomotion and grasping functions are activated separately by exploiting the difference in the response of the soft robots to the magnitude, frequency and direction of the actuating magnetic field. Two robots capable of performing controllable straight and turning motions are demonstrated: a millipede-inspired robot with legs moving in a rhythmic pattern, and a hexapod robot with six magnetic legs following an alternating tripod gait. Two types of grippers are developed: one inspired by prehensile tails and another similar to flowers or jellyfish. The various components are fabricated using a composite of silicone rubber with magnetic powder, and analyzed using quasi-static models and experimental results. Fully untethered locomotion of the robots and independent gripper actuation are illustrated through experiments. The maneuverability of the robots is proven through teleoperated steering experiments where the robots navigate through the workspace while avoiding obstacles. The ability of the robots to manipulate objects by operating in tandem with the grippers is demonstrated through multiple experiments, including pick-and-place tasks where the robots grasp and release cargo at specific locations when triggered using magnetic fields. (C) 2020 The Authors. Published by Elsevier Ltd

    Locomotion of Low-DoF Multi-legged Robots

    Full text link
    Multi-legged robots inspired by insects and other arthropods have unique advantages when compared with bipedal and quadrupedal robots. Their sprawled posture provides stability, and allows them to utilize low-DoF legs which are easier to build and control. With low-DoF legs and multiple contacts with the environment, low-DoF multi-legged robots are usually over constrained if no slipping is allowed. This makes them intrinsically different from the classic bipedal and quadrupedal robots which have high-DoF legs and fewer contacts with the environment. Here we study the unique characteristics of low-DoF multi-legged robots, in terms of design, mobility and modeling. One key observation we prove is that 1-DoF multi-legged robots must slip to be able to steer in the plane. Slipping with multiple contacts makes it difficult to model these robots and their locomotion. Therefore, instead of relying on models, our primary strategy has been careful experimental study. We designed and built our own customized robots which are easily reconfigurable to accommodate a variety of research requirements. In this dissertation we present two robot platforms, BigAnt and Multipod, which demonstrate our design and fabrication methods for low-cost rapidly fabricated modular robotic platforms. BigAnt is a hexapedal robot with 1-DoF legs, whose chassis is constructed from foam board and fiber tape, and costs less than 20 USD in total; Multipod is a highly modular multi-legged robot that can be easily assembled to have different numbers of 2-DoF legs (4 to 12 legs discussed here). We conducted a detailed analysis of steering, including proposing a formal definition of steering gaits grounded in geometric mechanics, and demonstrated the intrinsic difference between legged steering and wheeled steering. We designed gaits for walking, steering, undulating, stair climbing, turning in place, and more, and experimentally tested all these gaits on our robot platforms with detailed motion tracking. Through the theoretical analyses and the experimental tests, we proved that allowing slipping is beneficial for improving the steering in our robots. Where conventional modeling strategies struggle due to multi-contact slipping, we made a significant scientific discovery: that multi-legged locomotion with slipping is often geometric in the sense known from the study of low Reynolds number swimmers and non-holonomic wheeled snake robots which have continuous contact with the environment. We noted that motion can be geometric ``on average'', i.e. stride to stride, and can be truly instantaneously geometric. For each of these we developed a data-driven modeling approach that allowed us to analyze the degree to which a motion is geometric, and applied the analysis to BigAnt and Multipod. These models can also be used for robot motion planning. To explore the mechanism behind the geometric motion characteristics of these robots, we proposed a spring supported multi-legged model. We tested the simulation based on this model against experimental data for all the systems we studied: BigAnt, Multipod, Mechapod (a variant of 6-legged Multipod) and cockroaches. The model prediction results captures many key features of system velocity profiles, but still showed some systematic errors (which can be alleviated ad-hoc). Our work shows the promise of low-DoF multi-legged robots as a class of robotic platforms that are easy to build and simulate, and have many of the mobility advantages of legged systems without the difficulties in stability and control that appear in robots with four or fewer legs.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169985/1/danzhaoy_1.pd

    Investigation on the mobile robot navigation in an unknown environment

    Get PDF
    Mobile robots could be used to search, find, and relocate objects in many types of manufacturing operations and environments. In this scenario, the target objects might reside with equal probability at any location in the environment and, therefore, the robot must navigate and search the whole area autonomously, and be equipped with specific sensors to detect objects. Novel challenges exist in developing a control system, which helps a mobile robot achieve such tasks, including constructing enhanced systems for navigation, and vision-based object recognition. The latter is important for undertaking the exploration task that requires an optimal object recognition technique. In this thesis, these challenges, for an indoor environment, were divided into three sub-problems. In the first, the navigation task involved discovering an appropriate exploration path for the entire environment, with minimal sensing requirements. The Bug algorithm strategies were adapted for modelling the environment and implementing the exploration path. The second was a visual-search process, which consisted of employing appropriate image-processing techniques, and choosing a suitable viewpoint field for the camera. This study placed more emphasis on colour segmentation, template matching and Speeded-Up Robust Features (SURF) for object detection. The third problem was the relocating process, which involved using a robot’s gripper to grasp the detected, desired object and then move it to the assigned, final location. This also included approaching both the target and the delivery site, using a visual tracking technique. All codes were developed using C++ and C programming, and some libraries that included OpenCV and OpenSURF were utilized for image processing. Each control system function was tested both separately, and then in combination as a whole control program. The system performance was evaluated using two types of mobile robots: legged and wheeled. In this study, it was necessary to develop a wheeled search robot with a high performance processor. The experimental results demonstrated that the methodology used for the search robots was highly efficient provided the processor was adequate. It was concluded that it is possible to implement a navigation system within a minimum number of sensors if they are located and used effectively on the robot’s body. The main challenge within a visual-search process is that the environmental conditions are difficult to control, because the search robot executes its tasks in dynamic environments. The additional challenges of scaling these small robots up to useful industrial capabilities were also explored

    Configuration Recognition, Communication Fault Tolerance and Self-reassembly for the CKBot

    Get PDF
    We present and experimentally verify novel methods for increasing the generality of control, autonomy and reliability for modular robotic systems. In particular, we demonstrate configuration recognition, distributed communication fault tolerance, and the organization and control of self-reassembly with the Connector Kinetic roBot (CKBot). The primary contribution of this work is the presentation and experimental verification of these innovative methods that are general and applicable to other modular robotic systems. We describe our CKBot system and compare it to other similar, state-of-the-art modular robotic systems. Our description and comparison highlights various design developments, features, and notable achievements of these systems. We present work on isomorphic configuration recognition with CKBot. Here, we utilize basic principles from graph theory to create and implement an algorithm on CKBot that automatically recognizes modular robot configurations. In particular, we describe how comparing graph spectra of configuration matrices can be used to find a permutation matrix that maps a given configuration to a known one. If a configuration is matched to one in a library of stored gaits, a permutation mapping is applied and the corresponding coordinated control for locomotion is executed. An implementation of the matching algorithm with small configurations of CKBot configurations that can be rearranged during runtime is presented. We also present work on a distributed fault-tolerance algorithm used to control CKBot configurations. Here, we use a triple modular redundancy approach for CKBot units to collectively vote on observations and execute commands in the presence of infrared (IR) communication failures. In our implementation, we broadcast infrared signals to modules which collaboratively vote on a majority course of action. Various gait selections for a seven module caterpillar and sixteen module quadruped with faulty subsets of IR receivers have been verified to demonstrate the algorithm\u27s robustness. Lastly, we present work on the communication hierarchy and control state machine for the Self-reassembly After Explosion (SAE) robot. Here, we discuss the interaction and integration of the various sensory inputs and control outputs implemented for camera-guided self-reassembly with CKBot. This section describes the overall communication system and reassembly sequence planning after a group of CKBot clusters is kicked apart

    A Bio-inspired architecture for adaptive quadruped locomotion over irregular terrain

    Get PDF
    Tese de doutoramento Programa Doutoral em Engenharia Electrónica e de ComputadoresThis thesis presents a tentative advancement on walking control of small quadruped and humanoid position controlled robots, addressing the problem of walk generation by combining dynamical systems approach to motor control, insights from neuroethology research on vertebrate motor control and computational neuroscience. Legged locomotion is a complex dynamical process, despite the seemingly easy and natural behavior of the constantly present proficiency of legged animals. Research on locomotion and motor control in vertebrate animals from the last decades has brought to the attention of roboticists, the potential of the nature’s solutions to robot applications. Recent knowledge on the organization of complex motor generation and on mechanics and dynamics of locomotion has been successfully exploited to pursue agile robot locomotion. The work presented on this manuscript is part of an effort on the pursuit in devising a general, model free solution, for the generation of robust and adaptable walking behaviors. It strives to devise a practical solution applicable to real robots, such as the Sony’s quadruped AIBO and Robotis’ DARwIn- OP humanoid. The discussed solutions are inspired on the functional description of the vertebrate neural systems, especially on the concept of Central Pattern Generators (CPGs), their structure and organization, components and sensorimotor interactions. They use a dynamical systems approach for the implementation of the controller, especially on the use of nonlinear oscillators and exploitation of their properties. The main topics of this thesis are divided into three parts. The first part concerns quadruped locomotion, extending a previous CPG solution using nonlinear oscillators, and discussing an organization on three hierarchical levels of abstraction, sharing the purpose and knowledge of other works. It proposes a CPG solution which generates the walking motion for the whole-leg, which is then organized in a network for the production of quadrupedal gaits. The devised solution is able to produce goal-oriented locomotion and navigation as directed through highlevel commands from local planning methods. In this part, active balance on a standing quadruped is also addressed, proposing a method based on dynamical systems approach, exploring the integration of parallel postural mechanisms from several sensory modalities. The solutions are all successfully tested on the quadruped AIBO robot. In the second part, is addressed bipedal walking for humanoid robots. A CPG solution for biped walking based on the concept of motion primitives is proposed, loosely based on the idea of synergistic organization of vertebrate motor control. A set of motion primitives is shown to produce the basis of simple biped walking, and generalizable to goal-oriented walking. Using the proposed CPG, the inclusion of feedback mechanisms is investigated, for modulation and adaptation of walking, through phase transition control according to foot load information. The proposed solution is validated on the humanoid DARwIn-OP, and its application is evaluated within a whole-body control framework. The third part sidesteps a little from the other two topics. It discusses the CPG as having an alternative role to direct motor generation in locomotion, serving instead as a processor of sensory information for a feedback based motor generation. In this work a reflex based walking controller is devised for the compliant quadruped Oncilla robot, to serve as purely feedback based walking generation. The capabilities of the reflex network are shown in simulations, followed by a brief discussion on its limitations, and how they could be improved by the inclusion of a CPG.Esta tese apresenta uma tentativa de avanço no controlo de locomoção para pequenos robôs quadrúpedes e bipedes controlados por posição, endereçando o problema de geração motora através da combinação da abordagem de sistemas dinâmicos para o controlo motor, e perspectivas de investigação neuroetologia no controlo motor vertebrado e neurociência computacional. Andar é um processo dinâmico e complexo, apesar de parecer um comportamento fácil e natural devido à presença constante de animais proficientes em locomoção terrestre. Investigação na área da locomoção e controlo motor em animais vertebrados nas últimas decadas, trouxe à atenção dos roboticistas o potencial das soluções encontradas pela natureza aplicadas a aplicações robóticas. Conhecimento recente relativo à geração de comportamentos motores complexos e da mecânica da locomoção tem sido explorada com sucesso na procura de locomoção ágil na robótica. O trabalho apresentado neste documento é parte de um esforço no desenho de uma solução geral, e independente de modelos, para a geração robusta e adaptável de comportamentos locomotores. O foco é desenhar uma solução prática, aplicável a robôs reais, tal como o quadrúpede Sony AIBO e o humanóide DARwIn-OP. As soluções discutidas são inspiradas na descrição funcional do sistema nervoso vertebrado, especialmente no conceito de Central Pattern Generators (CPGs), a sua estrutura e organização, componentes e interacção sensorimotora. Estas soluções são implementadas usando uma abordagem em sistemas dinâmicos, focandos o uso de osciladores não lineares e a explorando as suas propriedades. Os tópicos principais desta tese estão divididos em três partes. A primeira parte explora o tema de locomoção quadrúpede, expandindo soluções prévias de CPGs usando osciladores não lineares, e discutindo uma organização em três níveis de abstracção, partilhando as ideias de outros trabalhos. Propõe uma solução de CPG que gera os movimentos locomotores para uma perna, que é depois organizado numa rede, para a produção de marcha quadrúpede. A solução concebida é capaz de produzir locomoção e navegação, comandada através de comandos de alto nível, produzidos por métodos de planeamento local. Nesta parte também endereçado o problema da manutenção do equilíbrio num robô quadrúpede parado, propondo um método baseado na abordagem em sistemas dinâmicos, explorando a integração de mecanismos posturais em paralelo, provenientes de várias modalidades sensoriais. As soluções são todas testadas com sucesso no robô quadrupede AIBO. Na segunda parte é endereçado o problema de locomoção bípede. É proposto um CPG baseado no conceito de motion primitives, baseadas na ideia de uma organização sinergética do controlo motor vertebrado. Um conjunto de motion primitives é usado para produzir a base de uma locomoção bípede simples e generalizável para navegação. Esta proposta de CPG é usada para de seguida se investigar a inclusão de mecanismos de feedback para modulação e adaptação da marcha, através do controlo de transições entre fases, de acordo com a informação de carga dos pés. A solução proposta é validada no robô humanóide DARwIn-OP, e a sua aplicação no contexto do framework de whole-body control é também avaliada. A terceira parte desvia um pouco dos outros dois tópicos. Discute o CPG como tendo um papel alternativo ao controlo motor directo, servindo em vez como um processador de informação sensorial para um mecanismo de locomoção puramente em feedback. Neste trabalho é desenhado um controlador baseado em reflexos para a geração da marcha de um quadrúpede compliant. As suas capacidades são demonstradas em simulação, seguidas por uma breve discussão nas suas limitações, e como estas podem ser ultrapassadas pela inclusão de um CPG.The presented work was possible thanks to the support by the Portuguese Science and Technology Foundation through the PhD grant SFRH/BD/62047/2009

    Locomotion grows up: The neuromechanical control of interlimb coordinating mechanisms in crayfish

    Get PDF
    Locomotion requires many dynamic interactions between organism and environment at several levels. It is not known how the nervous system controls all of these relationships to ultimately produce and guide locomotor behavior. Furthermore, it is not known whether the nervous system needs to recognize and control all of the possible body-environment interactions. In this study the crayfish (Procambarus clarkii) is used as a model system to test how size influences locomotor behavior and how a single, simplified neuromechanical system can accommodate these changes.;A set of behavioral experiments was conducted to characterize kinematics of freely walking juvenile crayfish to compare with adults. The purpose of these studies was to determine how crayfish adapt to a great change in size during their ontogeny. Juvenile and adult crayfish show differences in limb function and coordination. Although crayfish are decapods, the juveniles predominantly use the posterior legs and behave more like four-legged walkers. The difference in locomotor behavior can best be explained by differences in chelae size. Allometric relationships between juveniles and adults show limb and body morphologies scale proportionately. Adult chelae, or claws, are twice as long and contribute ∼20% more to the total body mass in fully mature crayfish. This increase in chelae size shifts the location of the center of mass anterior as crayfish grow. The result is a change in relative load distribution that appears to affect individual limb behavior and interlimb coordination. Shifting the center of mass in adults by amputating the chelae resulted in limb behavior and interlimb coordination more similar to that observed in juveniles. Likewise, applying load to the rostrum of juveniles altered behavior and changed limb function in the posterior legs similar to adults with large chelae. The results of these experiments suggest that crayfish of all sizes adapt to changes in load distribution by adjusting behavior of individual legs.;To test whether developmental influences have an effect on walking behavior, juveniles were induced to walk on a treadmill at various speeds. The animals showed more consistent limb coordination as walking speed increased, similar to adults. Selected legs were then amputated to test how gait was affected. Amputating legs removes sensory feedback from the distal leg to the central nervous system. The behavior of the stump is therefore more representative of the endogenous rhythmicity of the central pattern generator (CPG). Juveniles showed no differences in coordination in individual legs. Coordination between adjacent ipsilateral legs was also the same as that observed in adults following amputation. Furthermore, intact legs acquired new interlimb coordination similar to adults. These results suggested that juvenile and adult crayfish have functionally similar nervous systems controlling walking.;Finally, a 3-D virtual crayfish was built to test whether differences in walking between juveniles and adults could be due to mechanical influences alone. The model crayfish lacked direct connections between legs. The model responded to shifts in the center of mass by showing more consistent limb coordination in those legs nearest the center of mass. This was achieved through indirect mechanical coupling of the legs through the environment and body of the crayfish. This mechanism also produced realistic adaptive behavior when limbs were amputated. This showed that differences between adult and juvenile walking are due solely to mechanical influences associated with the changing center of mass as the animals grow. These results suggest further that organisms do not need high levels of control to produce coordinated behavior. Locomotor behavior arises through interactions between body, limb, and environment that are a function of the spatio-temporal dynamics of body morphology. The results may be applicable to a large number of walking systems
    corecore