
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

Fall 12-22-2009

Configuration Recognition, Communication Fault
Tolerance and Self-reassembly for the CKBot
Michael G. Park
University of Pennsylvania, parkmich@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Electro-Mechanical Systems Commons, and the Robotics Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/65
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Park, Michael G., "Configuration Recognition, Communication Fault Tolerance and Self-reassembly for the CKBot" (2009). Publicly
Accessible Penn Dissertations. 65.
http://repository.upenn.edu/edissertations/65

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/298?utm_source=repository.upenn.edu%2Fedissertations%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=repository.upenn.edu%2Fedissertations%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/65?utm_source=repository.upenn.edu%2Fedissertations%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/65
mailto:libraryrepository@pobox.upenn.edu

Configuration Recognition, Communication Fault Tolerance and Self-
reassembly for the CKBot

Abstract
We present and experimentally verify novel methods for increasing the generality of control, autonomy and
reliability for modular robotic systems. In particular, we demonstrate configuration recognition, distributed
communication fault tolerance, and the organization and control of self-reassembly with the Connector
Kinetic roBot (CKBot). The primary contribution of this work is the presentation and experimental
verification of these innovative methods that are general and applicable to other modular robotic systems. We
describe our CKBot system and compare it to other similar, state-of-the-art modular robotic systems. Our
description and comparison highlights various design developments, features, and notable achievements of
these systems. We present work on isomorphic configuration recognition with CKBot. Here, we utilize basic
principles from graph theory to create and implement an algorithm on CKBot that automatically recognizes
modular robot configurations. In particular, we describe how comparing graph spectra of configuration
matrices can be used to find a permutation matrix that maps a given configuration to a known one. If a
configuration is matched to one in a library of stored gaits, a permutation mapping is applied and the
corresponding coordinated control for locomotion is executed. An implementation of the matching algorithm
with small configurations of CKBot configurations that can be rearranged during runtime is presented. We
also present work on a distributed fault-tolerance algorithm used to control CKBot configurations. Here, we
use a triple modular redundancy approach for CKBot units to collectively vote on observations and execute
commands in the presence of infrared (IR) communication failures. In our implementation, we broadcast
infrared signals to modules which collaboratively vote on a majority course of action. Various gait selections
for a seven module caterpillar and sixteen module quadruped with faulty subsets of IR receivers have been
verified to demonstrate the algorithm's robustness. Lastly, we present work on the communication hierarchy
and control state machine for the Self-reassembly After Explosion (SAE) robot. Here, we discuss the
interaction and integration of the various sensory inputs and control outputs implemented for camera-guided
self-reassembly with CKBot. This section describes the overall communication system and reassembly
sequence planning after a group of CKBot clusters is kicked apart.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Mechanical Engineering & Applied Mechanics

First Advisor
Mark Yim

Keywords
modular robotics, reconfigurable robots, configuration recognition, fault tolerance, self-reassembly

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/65

http://repository.upenn.edu/edissertations/65?utm_source=repository.upenn.edu%2Fedissertations%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages

Subject Categories
Electro-Mechanical Systems | Robotics

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/65

http://repository.upenn.edu/edissertations/65?utm_source=repository.upenn.edu%2Fedissertations%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages

CONFIGURATION RECOGNITION, COMMUNICATION FAULT

TOLERANCE AND SELF-REASSEMBLY FOR THE CKBOT

Michael G. Park

A DISSERTATION

in

Mechanical Engineering and Applied Mechanics

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2009

Supervisor of Dissertation

Mark Yim
Associate Professor of Mechanical Engineering and Applied Mechanics

Graduate Group Chairperson

Pedro Ponte Castañeda
Professor of Mechanical Engineering and Applied Mechanics

Dissertation Committee

Vijay Kumar, Professor of Mechanical Engineering and Applied Mechanics

George Pappas, Professor of Electrical and Systems Engineering

Mark Yim, Associate Professor of Mechanical Engineering and Applied Mechanics

COPYRIGHT

Michael G. Park

2009

Acknowledgements

Thanks to my dissertation advisor Prof. Mark Yim for his insightful guidance

and steady support. Thanks to the members of ModLab at Penn: Jimmy Sas-

tra, Kevin Galloway, Paul White, Chris Thorne, Bill Mather, Matt Piccoli, Willy

Bernal-Heredia, Alex Teichman, and Sachin Chitta. Thanks to Babak Shirmoham-

madi for his various technical help, Daniel Gomez-Ibañez for his prototypes and early

instruction, and Profs. C. J. Taylor and Herbert Wilf for their helpful discussions.

Lastly, thanks to my family for their support throughout my time at Penn.

iii

ABSTRACT

CONFIGURATION RECOGNITION, COMMUNICATION FAULT

TOLERANCE AND SELF-REASSEMBLY FOR THE CKBOT

Michael G. Park

Mark Yim

We present and experimentally verify novel methods for increasing the generality

of control, autonomy and reliability for modular robotic systems. In particular, we

demonstrate configuration recognition, distributed communication fault tolerance,

and the organization and control of self-reassembly with the Connector Kinetic roBot

(CKBot). The primary contribution of this work is the presentation and experimen-

tal verification of these innovative methods that are general and applicable to other

modular robotic systems. We describe our CKBot system and compare it to other

similar, state-of-the-art modular robotic systems. Our description and comparison

highlights various design developments, features, and notable achievements of these

systems. We present work on isomorphic configuration recognition with CKBot.

Here, we utilize basic principles from graph theory to create and implement an al-

gorithm on CKBot that automatically recognizes modular robot configurations. In

particular, we describe how comparing graph spectra of configuration matrices can

be used to find a permutation matrix that maps a given configuration to a known

one. If a configuration is matched to one in a library of stored gaits, a permutation

mapping is applied and the corresponding coordinated control for locomotion is ex-

ecuted. An implementation of the matching algorithm with small configurations of

CKBot configurations that can be rearranged during runtime is presented. We also

present work on a distributed fault-tolerance algorithm used to control CKBot con-

figurations. Here, we use a triple modular redundancy approach for CKBot units to

collectively vote on observations and execute commands in the presence of infrared

(IR) communication failures. In our implementation, we broadcast infrared signals

to modules which collaboratively vote on a majority course of action. Various gait

iv

selections for a seven module caterpillar and sixteen module quadruped with faulty

subsets of IR receivers have been verified to demonstrate the algorithm’s robustness.

Lastly, we present work on the communication hierarchy and control state machine

for the Self-reassembly After Explosion (SAE) robot. Here, we discuss the interac-

tion and integration of the various sensory inputs and control outputs implemented

for camera-guided self-reassembly with CKBot. This section describes the overall

communication system and reassembly sequence planning after a group of CKBot

clusters is kicked apart.

v

Contents

Acknowledgements iii

1 Introduction 1

1.1 Comparison of CKBot to Similar Systems 2

1.2 Goals of Modular Robots . 6

1.3 Dissertation Contributions . 7

2 CKBot System 9

2.1 CKBot Hardware . 9

2.1.1 Peripheral Devices and Other Types of Modules 15

2.2 CKBot Basic Software . 18

3 Isomorphic Configuration Recognition 21

3.1 The CKBot Configuration Recognition Problem 22

3.2 Related Previous Work . 23

3.3 Algorithm Overview . 26

3.4 Configuration Data Acquisition . 27

3.5 The Port Adjacency Matrix . 28

3.6 Spectral Graph Analysis of the Port Adjacency Matrix 30

3.7 Linear Algebra of Adjacency and Permutation Matrices 32

3.8 Example of Finding the Permutation Matrix 33

3.9 Graph Symmetry and Configuration Mapping 37

vi

3.10 Complexity of the Spectral Decomposition Method 40

3.11 Results for Spectral Decomposition Method 42

3.12 Conclusions for Configuration Recognition 43

4 Distributed Communication Fault Tolerance 47

4.1 Related Work . 48

4.2 Statistical Advantage of Majority Based Decisions 51

4.3 IR Fault Tolerance Experimental System 54

4.3.1 IR Broadcaster . 54

4.4 Distributed IR Fault Tolerance . 56

4.4.1 System Gait Control . 64

4.4.2 Experiments . 65

4.5 Algorithm Design Considerations . 71

4.6 Conclusions for Modular Fault Tolerance 74

5 Self-reassembly After Explosion 76

5.1 Related Work . 79

5.2 Self-reassembly System . 82

5.3 SAE Communication Hierarchy . 84

5.4 Reassembly Control Sequence . 95

5.5 Recent Progress and Next Steps . 99

6 Conclusion 101

vii

List of Tables

1.1 Comparison of CKBot with related modular robotic systems. 4

2.1 Summary of the various peripheral devices and other types of CKBot

modules. 16

4.1 A list of all possible states and the corresponding probabilities for

three modules observing a message (observation : probability for

each module). 1s denote successful observations of the transmitted

IR message and 0s denote incorrect or missed observations. Module

reliability is assumed to be 3/4. 52

4.2 Summary of the limiting and special cases for majority decision mak-

ing with modular redundancy fault tolerance. 74

5.1 First part of the self-reassembly docking confirmation sequence via IR-

CAN relay messaging. This section of the cycle contains inter-cluster

communication initialization. 91

5.2 Second part of the self-reassembly docking confirmation sequence and

inter-cluster gait coordination via IR-CAN relay messaging. This sec-

tion of the cycle includes leg docking confirmation and self-righting

stages. 92

viii

5.3 Third part of the self-reassembly docking confirmation sequence and

inter-cluster gait coordination via IR-CAN relay messaging. This sec-

tion of the cycle includes coordination for assembled bipedal walking

between the torso and left leg. 93

ix

List of Figures

2.1 One CKBot module and an assembly of 15 modules that form the

self-reassembling robot. Photos courtesy Jimmy Sastra. 10

2.2 Layout of the principal components of the CKBot electrical system. . 12

2.3 Layout of the seven IR transmitter and receiver pairs on the four faces

of a CKBot module. 13

2.4 CKBot magnetic plates that attach to the outer surfaces of module

faces. Rare-earth permanent magnets are embedded behind the plates

and are positioned to allow modules to join in 90 ◦ rotational incre-

ments. Polymer inserts in the corners dampen the fall of modules

during the disassembly impact of the self-reassembly robot (Chapter 5). 14

2.5 Various CKBot peripheral devices. Clockwise from top left: ZigBee

wireless system, joystick, Lithium-Polymer battery board, DC Leg

Module, and Submodule controller inside an L7 module. 17

3.1 A CKBot sub-module controller alone and inside a module. 23

3.2 Configuration connectivity acquisition schematic for three modules.

In this step of the sequence, Module 2 is receiving IR signals from

Modules 1 and 3. 29

3.3 Example configuration and corresponding port adjacency matrix. . . 31

3.4 Example of cospectral graphs with the same characteristic polynomial:

−1 + 4λ + 7λ2 − 4λ3 − 7λ4 + 6λ6. 32

3.5 A possible database of known configurations. 34

x

3.6 Relabeling of AFLc
. 38

3.7 Example of symmetric configuration with two permutation matrices

that relabel modules in the same way. 38

3.8 Search times for the spectral based algorithm vs. number of modules

in a random robot configuration. 43

3.9 Standard deviation of search times for spectral based algorithm vs.

number of modules in robot configuration. 44

3.10 Mapping times for specific configurations vs. number of modules in

configuration. 45

4.1 Seven module caterpillar receiving infrared (IR) signals from broad-

casting boards. Digital camera in night vision mode captures the

illuminated IR LEDs. 55

4.2 Sixteen module quadruped receiving IR signals from broadcasting

boards. In this scenario, the robot must make decisions in the pres-

ence of an additional board which emits signals for commands that are

different from those sent by the broadcasting boards. Digital camera

in night vision mode captures the illuminated IR LEDs. 55

4.3 Three-module schematic of IR signal observation and subsequent shar-

ing of data between the modules. Modules 1 and 2 correctly receive

the message as “Walk,” where as module 3 incorrectly interprets the

message as “Turn.” All modules come to the same majority decision

to “Walk.” . 57

4.4 Schematic example of a module misinterpreting a serial IR byte due

to an analog to digital conversion error. 59

4.5 Photograph of black IR receiver flaking off of its surface-mounted

position. 60

4.6 Flow chart diagram of the processor state machine on each CKBot

module. 61

xi

4.7 Walking gait control table for the 16 module quadruped. Each mod-

ule contains this information and at runtime selects the appropriate

column according to its local position within the overall structure. . . 64

4.8 Correctly received (solid) and missed IR messages (dashed) versus an-

gular position for the “limp” command. Note that for the limp com-

mand we use the byte 0xFF (binary 0b11111111) and 0 ◦ corresponds

to the quadruped torso parallel to the two stationary broadcasting

boards. 68

4.9 Correctly received (solid) and missed IR messages (dashed) versus an-

gular position for the “stop” command. Note that for the stop com-

mand we use the byte 0xEE (binary 0b11101110) and 0 ◦ corresponds

to the quadruped torso parallel to the two stationary broadcasting

boards. 69

4.10 Correctly received (solid) and misinterpreted IR messages (dashed)

versus angular position for the “stop” command. Note that for the

stop command we use the byte 0xEE (binary 0b11101110) and 0 ◦

corresponds to the quadruped torso parallel to the two stationary

broadcasting boards. Also note the increased occurrence of misinter-

preted signals around glancing angles (45 ◦, 135 ◦, etc.) and dead-on

positions (0 ◦, 90 ◦, etc.). 70

5.1 Three piece Self-reassembly After Explosion (SAE). a) kick to mid-

section, b) resulting three clusters of modules strewn randomly, c)

clusters self-right and dock, d) system stands up, e) system resumes

walking. Photos courtesy Jimmy Sastra. 78

5.2 One self-reassembly cluster made up of four CKBot modules, smart-

camera module, submodule controller, and magnetic face attachments.

Photo courtesy Jimmy Sastra. 83

xii

5.3 A view of two CKBot clusters from a camera module. The wide

angle fisheye lens covers almost 120 degrees. Photo courtesy Babak

Shirmohammadi. 86

5.4 Diagram of the connected SAE Robot. Torso, Left and Right cluster

Modules are labeled 1− 4; Camera modules are labeled TC, LC, and

RC. Modules L4 and R4 can communicate with T4 through IR ports

3 and 5. 87

5.5 Self-reassembly communication structure schematic between the Torso

and Left leg clusters. Labels T1-T4 refer to the modules in the Torso

cluster, and TC refers to the Torso cluster camera. Designations for

modules in the Left leg cluster are analogous (L1-L4, LC). All commu-

nication within clusters is via CAN; communication between clusters

occurs with Camera (after Camera LED sighting) and IR (after phys-

ically docking). 88

5.6 Sample data of pixels versus distance used to calibrate a camera. Dots

denote pixel measurements and line denotes fitted function: P (x) =

212 ln(x) + 6.46x + 1990/x − 568. 94

5.7 State machine schematic for the torso submodule self-reassembly con-

troller. The sequence is a closed-loop cycle and this controller receives

inputs from the camera, accelerometer, and the leg controllers via the

IR connection on its end module. 96

xiii

Chapter 1

Introduction

Modular robots are autonomous reconfigurable machines that can change their shape

to adapt to new circumstances, recover from damage, or accomplish a variety of tasks

ordinarily designated for numerous specialized robots. They can reconfigure their

structure to crawl through a narrow passage, roll like a hoop, or form a complex robot

with many legs. Since they are made of units that can be rearranged, modular robots

are versatile and have the potential to be applied to a wide range of applications. For

instance, in conditions where volume for packing is a constraint (such as a mission

on a spaceship), it is advantageous to have one set of modular robots execute the

various tasks that multiple specialized robots would otherwise carry out. Also, since

modular robots can be rearranged quickly, they offer the advantage of rapid robotic

solutions in unpredictable, unforeseen conditions, such as an emergency search-and-

rescue operation kit.

To date, roughly 20 research groups have developed unique modular robotic sys-

tems. Some research milestones that have been achieved include: an introduction of

locomotion gaits [51], self-repair [28], self-reconfiguration [29], swarming modular sys-

tems [26], self-replication [60], externally actuated systems [50], and self-reassembly

[55]. Related research pertaining to work presented here will be reviewed in the

introductions of subsequent chapters.

1

With the introduction of each new system came a variety of hardware inno-

vations including common connection mechanisms [11], multiple sensor integrated

systems [53], and mechanical latching mechanisms [30], to name a few. At the

Modular Robotics Laboratory (ModLab) at the University of Pennsylvania [25], we

have developed the Connector Kinetic roBot (CKBot), which we describe in detail

in Chapter 2. In the following section, we compare the CKBot system with other

similar, state-of-the-art modular robots.

1.1 Comparison of CKBot to Similar Systems

Numerous modular robots have been created in the past 20 years; CKBot has been

in existence for the last 5 of those years. The variety is wide, with some research

groups having produced multiple generations of their modular robotic system. In this

section, we compare CKBot to related modular robotics systems. This comparison

will focus on general features and notable research achievements. More in depth

discussions on how certain research aspects relate to the work presented here will be

included in separate related works sections after the introductions of each chapter

in this dissertation.

The common feature of reconfigurability of repeated mechatronic units unites

the different types of modular robotic systems. Besides this general theme, the va-

riety of systems that fall in this category of robots are diverse. Some modules are

connected in chains and others in lattice formations. Most modules have internal

actuators while some rely on external actuation. Some are self-reconfigurable with

inter-module latching mechanisms and some require manual reconfiguration. The

majority of modules have embedded processors while some early versions have all

central computing done off-board. An inclusive, up-to-date article on the various

modular robotic systems can be found online [17]; more focused, in-depth presen-

tations on modular systems, classifications, and research directions can be found in

2

the literature [14], [56], [30].

In some respects, the CKBot system is an adaptable modular robot that overlaps

certain subdivisions. It is often connected in chains and loops, but since it has

symmetric connections on its four faces, it can also be connected in tree and lattice

formations. CKBot is usually manually reconfigurable, but is also capable of self-

reassembly with the additional magnetic faces and vision-guided locomotion as used

in the SAE robot. All modules have independent means of rotational actuation,

but the system is also tolerant to “external actuation” when considering reassembly

from unexpected, explosive events, as we will discuss in Chapter 5. Lastly, the

computation for the system is flexible with some configurations using fully embedded

processing, and some that relegate more intensive routines to an off-board PC.

Table 1.1 compares CKBot to some recent and related modular robotic systems.

These systems are all based on cubic structures with rotational degrees-of-freedom.

Numerous other novel modular robots not included in this comparison are in the

literature: [18], [50], [12], [26], [36], [7], [11]. Our comparison highlights some of the

strengths and shortcomings of the latest modular robotics system similar to CKBot.

A major strong point for CKBot is its numerous integrated sensors and peripheral

devices. We describe these features in detail in Section 2.1. These add-on items have

allowed CKBot to be more versatile than other similar systems. It is also noted for

its dynamic locomotion capabilities [41], [40]. A hardware shortcoming is its lack of

automated latching mechanism. As such, plans for a latching device is in progress

as well as a braking mechanism for added strength in high torque applications.

The primary strength of the M-TRAN systems is its motor-driven inter-module

docking mechanism. An upgrade from a permanent magnet and shape memory

alloy (SMA) latching/disconnection system, self-reconfiguration and cluster flow of

modules is a central part of the group’s research. The ATRON robot [30] also features

an integrated latching mechanism which is central to its design. From a practical

standpoint, one limitation of the M-TRAN robot is its homogeneity. In its current

3

Name CKBot M-TRAN Molecubes PolyBot SuperBot
Affiliation UPenn AIST Japan Cornell PARC USC ISI

Years Active 2005-Present 1998-Present 2005-Present 1997-2004 2005-Present
Versions 1st 3 Generations Successor: 3 Generations Predecessor:

Generation Predecessor: Open-source Predecessor: CONRO [3]
Fracta [28] Molecubes [59] Polypod [51]

Degrees of 1 180 ◦ 2 180 ◦ 1 120 ◦ 1 180 ◦ 2 180 ◦

Freedom rotational rotational swivel on rotational rotational
(111)-plane 1 270 ◦ roll

Docking manual, motorized switchable G1: manual manual
Mechanisms optional latches; magnets G2, G3:

magnetic magnetic/ on faces latches with
faces SMA release SMA release

Communi- CAN bus, CAN bus, global bus CAN bus, SPI bus, IR
cation IR, wireless IR, wireless IR

Features accelero- accelero- hardware accelero- unique
and Devices meter, meter, blueprints meter, roll

camera, camera and software ratchet degree-of-
gripper available brake freedom
module online

Research self- self- self- various distributed
Directions reassembly, reconfigu- replication locomotion, hormone

dynamic ration, reconfigu- control,
locomotion, CPG-based ration various
configura- adaptive planning locomotion
tion recog- locomotion

nition
References [55] [29] [60] [53] [37]

Picture

Table 1.1: Comparison of CKBot with related modular robotic systems.

4

state, M-TRAN is somewhat limited in the unique tasks it can perform.

Cornell’s molecubes feature unique kinematics with their 120 ◦ rotational swivel

joints on the (111)-plane. This allows for simple “picking-up” motions from “feeder

stations” using novel switchable magnets as required for its task of self-replication.

One shortcoming of this system is its over-specialization of a modular robot which

is perhaps better suited to be a versatile system. Recent developments for an open-

source system has encouraged experimentation and development of molecubes for

more general applications [59].

The three generations of PolyBot systems have pioneered the integration of elec-

trical components, including IR LEDs, Hall Effect sensors on brushless motors, SMA

undocking, accelerometers, and a ratchet brake onto a small modular robot. Com-

mon modes of locomotion for a modular robot (rolling, crawling, climbing, etc.) were

introduced on this system. PolyBot’s latch design for self-reconfigurability is not as

reliable as M-TRAN mechanism. It is a dedicated chain-type modular robot whereas

CKBot, M-TRAN, and SuperBot are hybrid systems that support both chain and

lattice configurations.

USC’s SuperBot features the some of latest in the state-of-the art modular robotic

hardware. Borrowing the two-cube design from M-TRAN and adding a third “twist-

ing” degree-of-freedom, SuperBot is kinematically less constrained than similar sys-

tems. Self-reconfiguration has not yet been achieved with SuperBot, as it currently

relies on manual assembly. Though SuperBot is a hybrid modular robot, it has not

yet demonstrated effective use of its lattice structural abilities. Computer software

for operating systems have had multi-functional and multi-tasking capabilities for

decades; robotic hardware has been slower to adopt this level of versatility. Quick

change end-effectors and automatic tool-changers were introduced for computer-

controlled machining centers in the 1970’s, though it has been modular robotics that

has pushed for more general progress of application adaptability. Thus, modular

robotics research is important for the overall advancement of versatile robots.

5

1.2 Goals of Modular Robots

Adapting modular robots for highly specialized tasks is a significant challenge. As

robots designated for dedicated, unique tasks are often designed from basic principles

and task constraints, modular robots are multipurpose and difficult to design with

lots of different specialized applications in mind. Also, modular robots may per-

haps struggle to achieve the same optimized performance as their specialized robot

counterparts, which can be designed with the best possible precision and efficiency

a priori.

Key goals of modular robotics include scaling down unit module sizes while in-

creasing the number of modules for systems. Trends in these directions would allow

modular systems to be increasingly refined and useful for application for various

tasks. For advances in smaller scale and greater number, however, autonomous con-

trol must be improved as well. In this dissertation, we present work in the areas of

modular robot autonomy in an effort toward these goals. Together, these advances

would be a significant step toward the “bucket-of-stuff” scenario, where a person

could tell a bucket full of randomly strewn modular robots to autonomously self-

assemble and do various useful tasks such as “make me dinner” or “change the oil

in my car.”

A primary feature that will be required for a more autonomous modular robotic

system is increased generality of control. A user interacting with each module in

a system directly is, of course, undesirable and unnecessary, especially when there

can be hundreds of modules, each fitted with individual sensors and communication

networks. A better scenario is perhaps one where a modular robot is aware of its

resources, environment, and is able to execute desired tasks with a minimum of

human guidance and interaction.

Another key goal that will push modular robots toward greater utility is system

robustness and fault tolerance. As modular robots rely on increasingly many units,

reliability and a method to handle failures in the system become ever more critical.

6

The biological analogy of metabolic systems that take in environmental resources to

repair cellular organisms is an appropriate one for modular robots.

1.3 Dissertation Contributions

In this dissertation, we present and experimentally verify novel methods for increas-

ing the generality of control, autonomy, and reliability for modular robotic systems.

In particular, we demonstrate configuration recognition, distributed communication

fault tolerance, and the organization and control of self-reassembly with CKBot.

These topics encompass some of the central challenges of modular robotics today,

including addressing the primary goal of robust, autonomous control for large sys-

tems of modular robots composed of many small units. As we will describe, these

methods are quite general and applicable to most current modular robotic systems.

The key contribution of this work is the presentation and experimental verification

of these innovative methods.

After this introduction, we first describe the CKBot system. Our description

and comparison will highlight various design developments, features, and notable

achievements. The next section deals with isomorphic configuration recognition. In

this chapter, we utilize basic principles from graph theory to create and implement

an algorithm on CKBot that automatically recognizes modular robot configurations.

The third section presents work on a distributed fault-tolerant algorithm used to

control CKBot configurations. The last section presents work on the communication

hierarchy and control state machine for the Self-reassembly After Explosion (SAE)

robot. Each of these sections will begin with a motivation for the problem followed

by a background on related research. The sections will also include information on

our work to date, and conclude with proposals for future work.

As we will describe in the introduction sections of the subsequent chapters, much

of the current state of modular robotic control is highly specialized and tailored

7

for particular applications. These control schemes, while effective for accomplishing

specific tasks, are frequently inflexible and sensitive to component failures. In this

dissertation, we introduce more general, robust methods for controlling adaptable

modular robots.

While the concepts we will present are applicable to various modular robots in

existence today, it is hoped that the contributions of this work are also longer-term,

with aspects of its approaches built upon and applied to new systems as they arise.

Configuration recognition, communication fault-tolerance, and self-reassembly for

CKBot captures some of the central problems of modular robots today and it is

hoped that the work here has taken modular robotic research one small step closer

to an autonomous robot composed of many small modules that can assemble itself

and perform tasks from basic, minimal user input.

8

Chapter 2

CKBot System

In this chapter, we describe the CKBot system. Designed and fabricated in our lab,

CKBot is a rotational degree-of-freedom modular robot with various communication

and sensing capabilities. It shares some features with other modular robots (as de-

scribed in the Introduction) and resembles some of its predecessors, notably PolyBot

[53] and M-TRAN [29]. The two sections of this chapter describe the hardware and

software features of CKBot.

2.1 CKBot Hardware

The basic CKBot module is essentially a cube with an axis of rotation that goes

through two opposing cube faces that allows a 180 ◦ range of motion. Figure 2.1

shows one module and an assembly of 15 modules that form the self-reassembling

robot, as we will describe in Chapter 5. A module is the basic building block of

the CKBot system. From these units, various configurations can be built to handle

a wide range of applications and modes of locomotion. This design was chosen for

its simplicity and general applicability for various locomotion tasks like crawling,

rolling, arm-like motions, etc. Each CKBot module is 6 cm x 6 cm x 6 cm and

weighs 143 grams.

9

Figure 2.1: One CKBot module and an assembly of 15 modules that form the self-
reassembling robot. Photos courtesy Jimmy Sastra.

10

Each module is equipped with:

• 1 Microchip PIC18F2680 Microcontroller for all module processing,

• 1 Airtronics 94359 Servo for actuating the 180 ◦ range of motion,

• 1 Controller Area Network (CAN) transceiver for handling inter-module mes-

saging,

• 7 Infrared (IR) LED Transmitter (TX) and Receiver (RX) Pairs distributed

on the four module faces for various IR communication, and

• 8 Identical 20-pin electrical ports distributed on the module for inter-module

CAN communication, power distribution, and interfacing to various peripheral

devices.

With these basic components, each module is an independent unit that can con-

trol its own motions, communicate to other modules on the CAN, and sense connec-

tivity or other data through its IR ports. This design allows for the modules to join

and work together intelligently in a myriad of formations. Figure 2.2 shows the basic

layout of the primary electrical hardware components. This diagram shows the how

each CKBot microcontroller is connected to the CAN bus, the 7 IR ports, and its

servo actuator. Note that since the microcontroller has only one pair of serial ports,

we use a multiplexer that allows the module to switch between ports with a binary

selector. We will describe the software for motor control and communication in the

next section of this chapter.

Figure 2.3 shows the layout of the seven IR pairs. These ports are arranged such

that the transmitters and receivers of two adjacent modules are aligned for commu-

nication. This feature allows for effective neighbor-to-neighbor communication as

implemented for configuration recognition and the self-assembly robot (Chapters 3

and 5). The IR receivers are also used for receiving messages from farther distances

11

IR
TX 1

Airtronics
Servo

PWM
Position

Analog
Feedback

IR
TX 2

IR
TX 3

TX
MUX

IR
RX 1

IR
RX 2

IR
RX 3

RX
MUX

Serial
OUT

Serial
IN

IR Port Selector
(1-7)

CAN Bus to Modules and
all peripheral devices
(e.g., PC GUI, Zigbee

Wireless, Camera,
Accelerometer, etc.)

PIC18F
CPU

Figure 2.2: Layout of the principal components of the CKBot electrical system.

12

Figure 2.3: Layout of the seven IR transmitter and receiver pairs on the four faces
of a CKBot module.

(up to 50 cms away) for the demonstration of communication fault tolerance as we

will describe in Chapter 4.

Modules are electrically connected to one another with 20-pin headers that join

corresponding sockets between adjacent faces and are held together with screws.

The electrical sockets are universal on all module faces and share power (24V, 6V,

Ground) and CAN data lines (CAN High, CAN Low). Modules can also connect

magnetically to one another with the aid special plates that attach to the faces, as

shown in Figure 2.4. These plates screw onto the four CKBot faces to allow modules

to quickly connect to one another. Rare-earth permanent magnets are embedded

behind the plates and are positioned to join modules in any of the 90 ◦ rotational

increments that modules connect with electrical headers and screws. Note the mat-

ing protrusions and indentations for guiding the connections as well as matching

openings for inter-module IR communication. These magnet faces are used in the

self-reassembly robot we will describe in Chapter 5.

13

Figure 2.4: CKBot magnetic plates that attach to the outer surfaces of module faces.
Rare-earth permanent magnets are embedded behind the plates and are positioned
to allow modules to join in 90 ◦ rotational increments. Polymer inserts in the corners
dampen the fall of modules during the disassembly impact of the self-reassembly
robot (Chapter 5).

14

2.1.1 Peripheral Devices and Other Types of Modules

Over the past five years, the CKBot system has gradually expanded from a simple,

one-module type system into a more complex, heterogeneous system with various

additional items and modules that add functionality. Some devices are required

for most general setups (e.g., batteries, voltage converters) and some are optional

and are used for more specialized applications (e.g., ZigBee wireless, magnet faces).

Variations of the original module have also been added to the system, chief among

them the L7 and Leg Modules. In this section, we will describe most of these

additional elements and their applications to the CKBot system.

Table 2.1 summarizes the peripheral devices and other types of CKBot modules.

Figure 2.5 shows some of the notable CKBot peripheral devices.

One theme for add-on development is the migration from a tethered CKBot

system to a tetherless one. This goal motivated the creation of the lithium-polymer

battery board, submodule, and ZigBee wireless chip. The advantages of tetherless

control is particularly evident in search-and-rescue type robots where configurations

must traverse unpredictable terrain and the SAE robot where clusters of modules

begin in random positions and must navigate around each other for reformation.

Another significant motivation for peripheral development is the self-reassembly

robot. As we will describe in greater detail in Chapter 5, the SAE robot integrates

almost all of the peripheral features of CKBot and, in particular, was the driving force

behind the development of the smart camera module, magnet faces, and integrated

accelerometer.

The two variations of the original CKBot module, the L7 and Leg Module, were

also introduced to address the requirements of certain applications.

The L7 module (Figure 2.5, bottom left) is a structural variation of the standard

module which is also called the UBar module (Figure 2.1, left side). As the images

show, these modules are given names according to their structural resemblances: the

L7 resembles the characters “L” and “7” side-by-side and UBar resembles the letter

15

Name Description Applications
Accelerometer Orients CKBot configurations Self-reassembly After Explosion

with respect to the ground (SAE) (Chapter 5)
Batteries Provides power to CKBot Rolling Loop [41],

configurations that require SAE, Configuration Recognition
tetherless control (Chapter 3), etc.

DC Power External power source for Planetary Contingency [52]
Supply tethered CKBot structures

DC-to-DC Converts 24V to 6V as required SAE, Dynamic Locomotion,
Converter by modules Distributed IR (Chapter 4)
Joystick Ergonomic control for CKBot Planetary Contingency,

structures; crucial for applications Distributed IR
requiring teleoperation

L7 Module Structural variation of the standard SAE, Centipede dynamics [40],
UBar module; useful for axial Arm-like appendage
twisting motions for modules

connected in a chain
Leg Module Higher torque, continuous rotational Planetary Contingency,

motion for rolling buggy-type Search-and-rescue type robots
solutions and legged explorers

Magnet Faces Magnetic inter-module docking for SAE, Dynamic Planning [47]
self-assembly during runtime

PC User Interfaces that communicate Most CKBot systems
to modules with CAN, ZigBee, IR,

FLASH; important for module
programming/debugging, robot control,
runtime monitoring, gait prototyping

Smart Camera Cameras with distance and angle SAE
Module sensing for module localization

and guided locomotion
Submodule Stand alone processor that communicates Configuration Recognition,

with modules on the CAN for embedded SAE, Rolling Loop (using IR
control and IR touch-sensing; CPU touch sensors)

fits inside module
ZigBee Wireless communication link between SAE, Distributed IR, Centipede
wireless modules and PC for controlling and dynamics

monitoring CKBot structures

Table 2.1: Summary of the various peripheral devices and other types of CKBot
modules.

16

Figure 2.5: Various CKBot peripheral devices. Clockwise from top left: ZigBee
wireless system, joystick, Lithium-Polymer battery board, DC Leg Module, and
Submodule controller inside an L7 module.

17

“U” with a bar over it. Both the UBar and L7 modules have identical electronics and

software; the only difference between them is structural: U-Bar has three module

faces that rotate with respect to the fourth; L7 has two module faces that rotate

with respect to the other two. The primary feature of the L7 module is that it

allows for twisting, axial motions when connected in chains. This allows for useful

degrees-of-freedom for certain tasks like centipede hopping [40] and the self-righting

maneuver for the SAE robot as we will describe in Chapter 5. The L7 is the same

size and approximate weight as the UBar module.

The Leg Module is equipped with a Micro-Drives MD3626B024V DC motor that

is used for powered wheel and leg configurations. Each leg module has the same

basic electrical hardware and software of the other CKBot modules. The primary

difference is that they allow continuous 360 ◦ rotation and velocity control. These

features make the leg module useful for legged and wheeled CKBot configurations.

It uses the same CAN communication protocol as the other modules, but lacks the

IR communication capabilities. The inter-module electrical connections are fully

compatible with the other CKBot modules. Each leg module weighs 271 grams and

is 6 cm x 6 cm x 7 cm making it similar in dimension to the UBar and L7 modules.

2.2 CKBot Basic Software

Each CKBot module is equipped with its own microcontroller, as described in the

previous section. While the program memory of modules is occasionally updated

and specialized software is sometimes tailored for specific applications, the basic

features remain the same. In this section we describe the key elements of the CKBot

module’s software system. Here we focus our discussion on the standard (UBar) and

L7 modules’ software.

As Figure 2.2 shows, each module’s microcontroller is at the center of its servo

18

actuation and communication to other modules and devices. The 180 ◦ servo posi-

tion range is controlled with pulse-width-modulation (PWM) from the PIC. Analog

feedback from the servo to the microcontroller tells the module its actual position:

voltage increases linearly from 1.5 V to 2.5 V as servo position increases linearly

from −90 ◦ to 90 ◦. Each CKBot’s microcontroller sends PWM signals at a rate of

60 Hz, the fastest that the servo can handle incoming messages.

Modules communicate with other modules and peripheral devices primarily with

CAN and IR. Wireless and camera communication are interfaced through the CAN,

so modules rely heavily on this bus messaging system. The CAN protocol is based

on the GRASP lab’s Robotics Bus architecture [13]. CAN messages transmit data

at 250,000 bits per second. IR messages are only a byte long and transmit data at

2400 bits per second. This slower serial rate was chosen to increase IR reliability, as

we will describe in more detail in Section 4.4.

All modules and devices on a connected CAN bus have unique node IDs that

allow them to communicate with one another and know the sources of these messages.

Since CAN messages contain information about the sender, receivers can filter which

messages to accept for processing, and which to ignore.

One important periodic message that all modules are programmed broadcast are

Heartbeat messages. Heartbeats are CAN messages broadcasted once per second

from each module specifying the sending module’s ID and are designed to allow

modules and users to know which modules are on the bus at all times. This allows all

modules, devices, and user interfaces to observe if new modules are added or removed

from the system during runtime. We use this feature to allow the configuration

recognition and distributed IR systems to automatically detect which modules are

in a configuration at any given time.

The CKBot module firmware is written in a C-language and compiled in the Mi-

crochip MPLAB Development suite. We use a special GUI developed for CKBot for

system tasks such as locomotion development, debugging, and teleoperated control.

19

The latest extensive information on this programming system and user interface for

CKBot is available on the ModLab webpage [25].

20

Chapter 3

Isomorphic Configuration

Recognition

The advantage of reconfiguration is central to modular robotic systems. With this

benefit, however, comes a complex and interesting challenge: how does a modular

robot recognize which shapes are useful or familiar? The ability for a modular robot

to determine which configurations are needed for various tasks is a fundamental

requirement for increased autonomy. For example, if a modular robot forms into a

snake-like configuration, it should recognize its current state and select the correct

corresponding slithering motions. This feature of self-discovery in a modular robot

has been proposed (as we will describe in Section 3.2), but the methods to-date

are limited in scope or have only been outlined without experimental or simulation

verification. The implementation of automatic configuration recognition in CKBot

we will present here is general and applicable to most modular robotic systems. We

will mention applicability to specific systems in the related work section (Section

3.2).

21

3.1 The CKBot Configuration Recognition Prob-

lem

In the following work, we propose a general approach to solving the configuration

recognition problem for modular robots. Our work is distinguished from previous

work in that we describe our system from the perspective of a modular robot recog-

nizing its own shape (rather than a program giving instructions on how to construct

a robot given a set of parts), we introduce a new, succinct matrix representation of

modular robots, we implement our algorithm on our CKBot system, and we show

the generality of the approach and how it extends beyond simple configuration-

dependent gaits. Furthermore, in showing our approach, we discuss how it can be

readily extended to other modular robotic systems.

The works of [35] and [39] are advantageous in that they distribute the recognition

problem amongst the modules in a configuration. However, since these approaches

rely solely on neighbor-to-neighbor IR communication relaying, the methods occa-

sionally failed through dropped packets and were relatively bandwidth intensive. In

our work, we exploit both the global CAN and local IR to solve the configuration

recognition problem. From a top-down view, we employ a standalone sub-module

chip 3.1 to orchestrate and calculate the configuration recognition algorithm se-

quence. Therefore, a single sub-module chip (per configuration) acts as a central

controller to the system as a whole.

Since the sub-module chip acts as the coordinator and central processor for our

system (with each modules’ own processors controlling the low level communication,

sensing and actuation routines independently), we frame our work from this perspec-

tive. Therefore, the first sensible step for the sub-module is to gather inter-module

connectivity data and organize it in an organized, useful manner. As mentioned

earlier, each CKBot module has a unique node identification (ID) number. Further-

more, each module has 7 IR ports that can be used to determine how modules are

22

Figure 3.1: A CKBot sub-module controller alone and inside a module.

connected to one another. Therefore, it is a matter of sensing neighbors and building

the complete topology of the system which the controller can use.

3.2 Related Previous Work

A few researchers have studied aspects of configuration recognition and proposed

solutions. Chen and Burdick [6] showed a method for enumerating the unique (non-

isomorphic) configurations of a modular system, given sets of module and connection

types. The algorithm is based on using symmetry groups to count only those states

that are unique under symmetric rotations or translations. A primary contribution

of this work is the introduction of the use of incidence matrices to describe modular

robot configurations. This algorithm is essentially the inverse of the configuration

recognition problem: it gives all possible (unique) constructions of a modular robot

given a set of modules, whereas the configuration recognition problem is concerned

with a modular robot discovering its own morphology. However, the isomorphic

recognition algorithm we will present here also identifies identical structures and

23

unveils structural symmetries associated with the automorphic group for modular

robots. A key advantage of our method over Chen and Burdick’s is that our algorithm

requires no modular input information into the system for configuration recognition,

whereas their algorithm requires a definition of the various types of modules and

port connections to create the list of unique robots.

Castano and Will [4] proposed a method for configuration representation and

recognition of CONRO robots. Using a modified Adjacency Matrix, this work shows

the connection from physical robot, to graph representation, to binary matrix form,

usable for PC or embedded processors. The paper shows simple method for creating

a configuration adjacency matrix and concludes with a suggestion as to how a com-

parison between the created matrix and stored “catalog” matrix can determine a

match. The primary contribution of this work is the presentation of a unique way to

represent modular robots; however, no actual configuration recognition implemen-

tations were conducted or proposed. Our configuration recognition method uses a

distinct type of robot representation and completes essential task of graph match-

ing of isomorphic structures. The method we will present is directly applicable to

the CONRO robot, as both CKBot and CONRO have global CAN and local (IR)

communication networks necessary for arbitrary configurations to detect their shape.

Butler et al. [1] proposed a method for determining of their 2D Crystalline modu-

lar robot is in a goal configuration. This approach uses relay message passing around

the perimeter of a Crystalline robot to determine if the shape is the goal configura-

tion decided upon, a priori. This method is useful in its simple implementation and

direct application to a modular robotic system. However, it primarily deals with

solid connected configurations and is not applicable to loop structures or lattice con-

figurations with vacancies. The configuration recognition method we will present in

this chapter has the benefit of being general and applicable to a wider variety of

shapes. Since each Crystalline module is equipped with only neighbor-to-neighbor

24

IR communication, our approach is applicable to the Crystalline robot if the data ac-

quisition and configuration detection stages of the algorithm are adapted to support

local communication only (signed message propagation, distributed computation of

graph matching, etc.).

Stoy, Shen, and Will [46] showed how a CONRO modular robot can change its

mode of locomotion based on its configuration. This method is based on modules

specifically programmed to send and receive IR packets to determine if a configu-

ration is correct for a particular gait. This method is novel in its application of

configuration to gait; however, it is specific in its mapping of gaits based on prede-

termined shapes. The approach we will present here is more general and considers

arbitrary configurations for discovering the shape of a modular robot. As mentioned

earlier, our method is directly applicable to the CONRO robot.

Park, Chitta, Teichman, and Yim [31] propose three methods for solving the

configuration recognition problem. In this work, some basic relations to graph the-

ory are discussed and the methods for configuration recognition are simulated and

compared for performance and applicability to CKBot. The methods presented are

quite general and applicable to a wide variety of reconfigurable systems. In par-

ticular, the approach by Chitta builds upon an open-source graph automorphism

software called nauty (no automorphisms yes? [24]) that maps a given configura-

tion matrix for CKBot to the automorphism group of a canonical representation of

a known configuration matrix. If the given matrix maps to a known configuration,

then a configuration match is found and the corresponding mapping is also deter-

mined. This approach has the advantage of more efficiently finding configuration

matches; however, the algorithm is too large to run on-board most modular robots.

The approach by Teichman uses a variety of heuristic filters to determine if a given

configuration is in a catalog of known configurations (such as number of modules,

number of connections per module, physical center of mass of the system). The

algorithm then chooses a particular module and, in a module-by-module sequence,

25

compares the structure of the given system with the stored configurations in the

library. During the sequence, if ever a module within the structure is different from

all of the library of configurations, then the configuration is determined to be un-

known. If a configuration matches a unique catalog configuration throughout the

sequence, then a match and corresponding mapping is found. Teichman’s method is

relatively quick and uses a simple, low program memory algorithm; however, since it

requires a three-dimensional linked list to discover configurations, it requires signifi-

cant amounts of memory (on the order of gigabytes). The approach by Park utilizes

the determinant of the square adjacency matrix to compare the structure of a given

configuration with those in the catalog of configurations. In this way, a configura-

tion match can readily be found. The corresponding eigenvector matrix is then used

to determine the permutation matrix, and hence the identification (ID) mapping,

between the given state and the match found in the library. This algorithm was

implemented on board the CKBot system and was shown to be effective for small

configurations of modules. The last method is the springboard for this section of the

dissertation. Our method of performing graph spectrum computations on incidence

matrices is quite general; applicable systems are mentioned in Section 3.2.

3.3 Algorithm Overview

After the submodule controller has acquired all of the port connections for all the

modules in a configuration and organized it into the port adjacency matrix, it is

ready to perform analysis to determine if the detected configuration is in its catalog of

stored configurations. For this work, the primary subsequent steps for configuration

recognition are graph matching and graph mapping (finding the permutation between

detected and known states). The graph matching step is essentially a comparison

of eigenvalues between given and known states, as we will describe in Section 3.6.

Once a potential configuration match has been found, the mapping step confirms

26

the match and produces the precise label ordering for detected and known states

to be the same. This is done by finding the permutation matrix that reorders the

module ID labels, as we will describe in Section 3.7. An example of the matching

and mapping procedures for configuration recognition will be presented in Section

3.8.

After a successful configuration detection, the determined label mapping can

be used to for isomorphic gait control, feedback, and/or control processing. In

essence, the configuration mapping allows the controller to recognize that the given

configuration is recognized and any control or feedback loop that is known for an

isomorphic permutation of the structure is the same as the given structure, with

the module ID permutation mapping as the key for how the detected and known

configurations relate.

3.4 Configuration Data Acquisition

To acquire the configuration topology, the sub-module controller instructs the mod-

ules to talk and listen in sequential order so that all connections are discovered. Fig.

3.2 shows a schematic of a step in the process of module connectivity data acquisi-

tion. In the step in this figure, Module 2 is instructed by the controller to “listen”

through its IR ports while Modules 1 and 3 are instructed to transmit their IDs

through their IR ports. The modules all take turns listening and talking through

all ports so that all possible connections are detected and recorded. Algorithm 1

shows the corresponding pseudo code for how the controller sub-module acquires

information about all the connections in the system. Note that the algorithm is a

double loop that tells the modules (via CAN) to wait and listen for a signal or to

blink their IR signals and talk to all modules. When talking, the modules simply

blink their own IDs in serial binary form, on all 7 ports. When listening, each of

the 7 ports is selected one at a time, to ensure that the signal is received. After all

27

modules have shared their data, they each report 1x7 array of the sighting on the

ports to the controller, which organizes all the sightings into a matrix.

Algorithm 1 Controller coordinated module connectivity connection sequence.

for i = 1 to AllModules do

for j = 1 to AllModules do

if j 6= i then

Send CAN message: “Talk on all Ports”
Send CAN message: “Listen on all Ports”

for j = 1 to AllModules do

Send CAN message: “Give me all of your neighbor data”

Combinations of port elements account for three additional port numbers, which

we define as follows: Ports 8 is when a module observes another through both ports

1 and 2, Port 9 is observation through both ports 3 and 4, and Port 10 is observation

through both ports 5 and 6. These connections are possible when adjacent faces

between modules have both IR transmitters and receivers lined up (Fig. 2.3). From

an algorithmic standpoint, these connections are no different from the other 7 types

of connections. Note that if a module sees another on ports 8, 9, or 10, then the

reciprocal module must also have an 8, 9, or 10 port connection.

3.5 The Port Adjacency Matrix

After the sub-module controller receives all neighbor sighting from all modules in

the configuration, the first logical step is to organize the data into a useful and

succinct form. Based on the usual adjacency matrix used in graph theory [15], we

introduce a port-adjacency matrix which describes both the connectivity of modules

as well as how modules are oriented in each connection. Like the standard adjacency

matrix, the port-adjacency matrix also is an nxn square matrix for n connected

modules where nonzero entries denote connections. The diagonal entries are all zero

(since we define the modules to not be connected to themselves). The key difference

between the standard adjacency matrix and the port-adjacency matrix is that the

28

Sub-module
Controller

CAN-BUS

“ Talk” “ Talk”“ Listen ”

1 2 3
“ 1” “ 3”

IR signals

Figure 3.2: Configuration connectivity acquisition schematic for three modules. In
this step of the sequence, Module 2 is receiving IR signals from Modules 1 and 3.

29

adjacency matrix elements are all either 1 or 0 and, therefore, symmetric, whereas

the port-adjacency matrix can have nonzero port elements 1− 10 to denote types of

connections between modules and is generally non-symmetric. The port-adjacency

matrix obviously reduces to the standard adjacency matrix if orientations are not

considered (relevant for perhaps other types of simpler modular robots) and only

connectivity is considered.

The port-adjacency matrix is best described with an example. Consider the

configuration shown in 3.3. The corresponding port-adjacency matrix is shown to

its right. The numbers outside the matrix correspond to the given module IDs 1,

2, and 3. The choice of IDs is, of course, arbitrary; the important thing is that the

rows and columns are ordered the same way. The row indicates a receiving module’s

connectivity to other modules in the system. The 0s indicate no connection (modules

are not connected to themselves, by definition), and all nonzero elements denote

connections to other modules. The number corresponds to the type of inter-module

connection. Note that one module does not necessarily observe a connection to the

reciprocal module through the same port.

In particular, Module 1 sees Module 2 through Port 9; Module 2 sees two modules:

Module 1 through Port 8 and Module 3 through Port 5; and Module 3 sees Module

2 through Port 7 (refer to Fig. 2.3). In this way, the port adjacency matrix contains

a complete description of the topology of a given CKBot configuration and is what

we use as a basis for configuration recognition analysis.

3.6 Spectral Graph Analysis of the Port Adja-

cency Matrix

At this point in this dissertation we digress from the physical implementation of

the configuration recognition algorithm and discuss the basis of the method in more

general terms and present some of the analysis we conduct in Matlab. We will come

30

070

508

090

3

2

1

321

Figure 3.3: Example configuration and corresponding port adjacency matrix.

back to the physical implementation after this section.

The method we use for determining configuration isomorphism is based on basic

concepts from spectral graph theory. A known method for checking for isomorphism

between two graphs is through adjacency matrix spectral decomposition [8]. That is,

if two graphs G1 and G2 are isomorphic, then the eigenvalues of the corresponding

port-adjacency matrices A1 and A2 are equal. The inverse, however, is not always

true: port-adjacency matrices with identical arrays of eigenvalues are not necessarily

isomorphic. To deal with this issue, permutations of eigenvector elements are em-

ployed as a confirmation of isomorphism and as a basis for finding the permutation

mapping of module IDs.

The other methods studied in conjunction with this work (nauty-based and

linked-list approaches in [31]) use heuristics to search for matches between two

graphs. This approach differs in its use of well-established ideas in spectral graph

theory and its applicability to generate approximate methods [58] where other tech-

niques may fail.

Cospectral graphs such as the pair shown in Figure 3.4 [16] are rare and inter-

esting cases that may arise in modular robotic configurations. The characteristic

31

Figure 3.4: Example of cospectral graphs with the same characteristic polynomial:
−1 + 4λ + 7λ2 − 4λ3 − 7λ4 + 6λ6.

polynomials for these graphs are the same despite non-isomorphism. In these sce-

narios, although the eigenvalues are the same, the structures are not isomorphic since

no relabeling of nodes maps one configuration to the other. A comparison of the

eigenvectors for these graphs is required to find that permutation does not exist and

confirm non-isomorphism.

3.7 Linear Algebra of Adjacency and Permutation

Matrices

Given two port-adjacency matrices A1 and A2 with the same graph spectrum, we

wish to find the permutation matrix P that reorders the rows and columns of A1 so

that they are identical to those of A2:

A2 = PA1P
−1. (3.1)

Note that P swaps the rows and P−1 swaps the columns of A1 so that gaits

for A1 can be mapped onto corresponding gaits for A2. The permutation matrix is

composed of only one 1 across any row and column with the remaining entries as

32

0’s. This gives the property that all permutation matrices are orthogonal, satisfying

P T = P−1. The identity matrix is a permutation matrix that maps a configuration

onto itself.

If A1 and A2 are decomposed into their spectral canonical forms

A1 = Q1ΛQ−1

1

A2 = Q2ΛQ−1

2

where Λ is the diagonal eigenvalues matrix (note that they are the same for both

since A1 and A2 correspond to isomorphic graphs as the rows and columns just

interchanged) and Q1 and Q2 are the associated eigenvector matrices. This gives

Q2ΛQ−1

2
= PQ1ΛQ−1

1
P−1

= (PQ1)Λ(PQ1)
−1

which reduces to

Q2 = PQ1. (3.2)

This shows that the permutation matrix also relates to eigenvector elements

of port-adjacency matrices of isomorphic configurations. Therefore, by matching

appropriate matrix elements in Q2 to corresponding elements in Q1, we can determine

the permutation matrix that satisfies Equation 3.1. In the following section, we

illustrate this procedure with an example.

3.8 Example of Finding the Permutation Matrix

Consider configuration FL from Figure 3.5. Recall that the port-adjacency matrix

corresponding to this configuration is given by:

33

Figure 3.5: A possible database of known configurations.

34

AFLc
=

0 0 0 0 0 7 0

0 0 0 0 0 0 7

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 0 4 6

1 0 0 7 6 0 0

0 1 7 0 4 0 0

Now, consider another configuration with a port-adjacency matrix:

A2 =

0 0 0 0 0 1 0

0 0 0 0 0 7 0

0 0 0 1 7 0 4

0 0 7 0 0 0 0

0 0 1 0 0 0 0

7 1 0 0 0 0 6

0 0 6 0 0 4 0

First, we note that AFLc
and A2 have the same characteristic polynomial:

Det(AFLc
− λI) = Det(A2 − λI) = λ7 − 76λ5 + 868λ3.

This property suggests that these configurations are likely candidates for being

isomorphic. To confirm this suggestion (and rule out that these structures are cospec-

tral), we proceed further to find a permutation matrix that satisfies the property in

Equation 3.2. We first compute the eigenvector matrices with columns ordered ac-

cording to the roots of the characteristic polynomial (eigenvalue graph spectrum):

λ =
[

7.87 3.74 −3.74 −7.87 0 0 0
]

35

Q1 =

−0.47 −0.72 0.72 −0.47 −0.97 0.32 −0.58

−0.31 0.48 −0.48 −0.31 −0.18 −0.93 0.12

−0.04 0.06 −0.69 −0.04 −0.02 0.11 −0.35

−0.06 −0.10 0.10 −0.06 0.06 −0.07 −0.42

−0.53 0 0 −0.53 0.09 0.02 0.58

−0.52 −0.38 0.38 0.52 0 0 0

−0.34 −0.25 0.25 0.34 0 0 0

Q2 =

−0.06 −0.10 0.10 −0.06 0.06 −0.07 −0.42

−0.47 0.72 −0.72 0.47 −0.91 −0.83 0.83

−0.34 −0.25 −0.25 −0.34 0 0 0

−0.31 −0.48 0.48 0.31 0.38 0.41 + 0.11i 0.41 + 0.11i

−0.04 −0.06 0.06 0.04 −0.01 −0.19 + 0.04i −0.19 + 0.04i

−0.52 0.38 0.38 −0.52 0 0 0

−0.53 0 0 0.53 −0.078 0.23 − 0.10i 0.23 − 0.10i

Note that the columns of Q1 and Q2 (the eigenvectors of AFLc
and A2) are both

ordered so that they correspond to the same eigenvalue elements. The columns have

been normalized so that the sum of the squares down any column equals one. Also,

note that the absolute value of each eigenvalue element is of interest, since eigen-

vectors, as a whole, can be scaled by a minus sign (vector pointing in the opposite

direction) with the eigenvalues and similarity properties of the matrix unchanged.

To create the permutation matrix, note that Q2ij (the element in the ith row and the

jth column of Q2) can be written as:

Q2ij = Pi1Q11j + Pi2Q12j + · · · + Pi7Q17j.

The property that P has a single 1 across any column or row (with all other

elements zero) allows us to build P simply by comparing the permutation of elements

down corresponding columns in Q1 and Q2.

36

For instance, we see that |Q111| = |Q221| = 0.47. Consequently, P21 = 1 with

all other elements in the rank and file of P21 equal to zero. Next, observe that

|Q121| = |Q241| = 0.31. This gives us P42 = 1 with all other elements in the rank and

file of P42 equal to 0. Similarly, |Q131| = |Q251| = 0.04 giving P53 = 1 with all other

elements in the rank and file of P53 equal to 0. Continuing down the first columns of

Q1 and Q2, we can construct the following P that confirms isomorphism and gives

the desired module labels:

P =

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

The mapping is given by:

π1→2 =

1 2 3 4 5 6 7

2 4 5 1 7 6 3

Generally, for a column k, when |Q1jk| = |Q2ik|, Pij = 1 with all other elements

across row i and down column j zero. The relabeled graph is shown in Figure 3.6.

3.9 Graph Symmetry and Configuration Mapping

It is evident that the choice of eigenvector for comparison is important. In the above

example, if we had chosen any of the eigenvectors associated with the degenerate

eigenvalue (zero), we would not have been able to build the permutation matrix.

This redundancy in eigenvalues can be attributed to an algebraic regularity in the

graph structure [43].

37

Figure 3.6: Relabeling of AFLc
.

Figure 3.7: Example of symmetric configuration with two permutation matrices that
relabel modules in the same way.

Structural symmetry creates interesting scenarios for this method to find the

graph isomorphism mapping. Consider the following configurations in Figure 3.7.

The two rows of labels give the adjacency matrices

A1 =

0 7 0 0

7 0 1 0

0 1 0 7

0 0 7 0

A2 =

0 1 0 7

1 0 7 0

0 7 0 0

7 0 0 0

38

with the following eigensystem:

λ =
[

−7.52 −6.52 6.52 7.52
]

Q1 =

−0.48 0.52 −0.52 0.48

0.52 −0.48 −0.48 0.52

−0.52 −0.48 0.48 0.52

0.48 0.52 0.52 0.48

Q2 =

0.52 −0.48 0.48 −0.52

−0.52 −0.48 −0.48 −0.52

0.48 0.52 −0.52 −0.48

−0.48 0.52 0.52 −0.48

Following the same approach as above, we end up with the following permutation

matrix:

P ∗ =

0 1 1 0

0 1 1 0

1 0 0 1

1 0 0 1

The multiple 1’s across the rows and columns occur because of the redundant

elements in the eigenvectors. The reason this occurs is because two distinct permu-

tation matrices both satisfy Equation 3.1, namely:

A2 =

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

0 7 0 0

7 0 1 0

0 1 0 7

0 0 7 0

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

=

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 7 0 0

7 0 1 0

0 1 0 7

0 0 7 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

39

where P ∗ is the union of P1 and P2 given by:

P1 =

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

P2 =

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

The reason two permutations occur for this configuration (and any isomorphic

labeling of this graph), is because both matrices are in the graph’s symmetry group.

Also called automorphic group, we see that the symmetry is a 180o rotation about the

center of mass of the system. For the purpose of spectral decomposition approach,

the algorithm tries valid combinations of P ∗ type unions (only one 1 in all rows and

columns) until Equation 3.1 is satisfied. Therefore, this algorithm is slightly faster

for asymmetric systems, as seen in the Figure 3.10 which shows that the time to map

random structures is, on average, less than the time of the more ordered structures

(tree, snake, plane, centipede). The general algorithm is presented in Algorithm 2.

Note that m is the size of the block redundancy in P ∗; the snake example above has

two blocks of two.

3.10 Complexity of the Spectral Decomposition

Method

The complexity of the configuration recognition algorithm is characterized by the la-

bel mapping routine (finding the permutation matrix, Algorithm 2), since it is more

computationally intensive than the configuration matching routine of finding corre-

sponding graph spectra. The complexity of finding the graph spectra (eigenvalues)

40

Algorithm 2 Configuration matching using spectral decomposition.

for i = 1 to library max do

if Det(Agiven − λI) = Det(Ai − λI), then

Compute Qgiven and sort (in increasing order of corresponding eigenvalue) to
match format of Qi.
for j = 1 to n do

Compare the elements of columns j in Qgiven with Qi.
Record w as the column that produces a P with the minimum number of
redundant ones.
if Any P satisfies Ai = PAgivenP−1, then

RETURN P .
else

Construct P ∗ using column w.
for j = 1 to m do

if Any P ∗(j) satisfies Ai = P ∗(j)AgivenP
∗−1(j), then

RETURN P = P ∗(j).

of an nxn matrix using the QR-decomposition algorithm, as used for this work, is

O(n3) [9].

Once a characteristic polynomial match is found, the complexity of determining

P or P ∗ (the first if-statement in Algorithm 2) is O(n2) since the most computation-

ally expensive loop in this step is the double loop of matching values in eigenvectors

corresponding to the same eigenvector. For completely random and asymmetric

structures (e.g., an arm-like robot, a head-to-tail snake, any linear or tree-like struc-

ture that is intended for forward and turning motion only), this determines P , and

is consequently the expected running time to find the permutation mapping between

isomorphic configurations.

For structures with at least one line of symmetry, the main if-block determines a

P ∗ that has a P embedded within it. Such structures, such as a dog with a head and

tail, a head-to-head-tail-to-tail snake (Figure 3.7), a bipedal walking robot, etc., delve

into the primary else-statement of Algorithm 2 to find the correct P amongst the

m! choices in P ∗. For the one-line-of-symmetry structures, m = 2, and it is evident

that the complexity to find P in these cases is O(2n). In general, the complexity to

41

find P is O(m!n). In most cases, m is small or at most a moderate fraction of n. In

the extreme case of each module having complete symmetry with respect to another

module (imagine a torus composed of CKBot modules, with each module having

exactly four neighbors), m = n and algorithm reduces to the näıve case of trying all

possible labels for each module. But this case is pathological; m is usually a fraction

of n. For example, a centipede structure with 4 identical 4-module segments, m = 5

(left/right symmetry plus 4 segment interchangeable symmetries) and n = 20.

It is certainly possible to divide the computation of reducing P ∗ to P amongst

parallel processors. We are currently exploring a hierarchical architecture where one

central processor supervises many others.

3.11 Results for Spectral Decomposition Method

Figure 3.8 shows the time to find a match using comparisons between graph spectra

in a library of 200 random configurations (for each data point), for up to 1000

modules. The Matlab function eigs(A) was used to find the largest eigenvalues

of the sparse matrices. In comparison with Figure 3.10, we see that the time to

find the module mapping is more time-consuming. This figure compares the times

to find the permutation matrix between two isomorphic configurations for up to

50 modules. Snake, centipede, plane, tree and random structures were tested. The

random configuration times also include a negligible matching time to find the correct

structure in a library of other random structures. Even so, the cumulative time to

find the mapping is slightly less than the other structures. This can be attributed

to the fact that there are less symmetries (on average) in random structures and

this reduces the number redundant permutation elements that the algorithm must

choose from in the method described above. For comparison, the brute-force n!

time is included for up to 12 modules. The data point itself is off the scale of the

graph. Some limiting considerations in this approach include numerical stability

42

10 100 200 500 1000
0

5

10

15

Number of Modules

T
im

e
(s

ec
)

Figure 3.8: Search times for the spectral based algorithm vs. number of modules in
a random robot configuration.

and structural symmetry of configurations. In particular, the number of elements of

each eigenvector equals the number of modules. For large matrices, these normalized

eigenvectors are composed of small numbers that have accumulated rounding errors,

attributed to the LU-decomposition approach (Matlab’s LAPACK matrix algebra

package). There are various methods that one can implement to deal with this

issue (i.e., large normalizing factors, matrix balancing) but for numbers larger than

103, the problem becomes difficult to handle. Additionally, the time to compute

eigenvectors becomes prohibitively large at that scale.

3.12 Conclusions for Configuration Recognition

The spectral decomposition method for self-discovering CKBot configurations we

have presented here is general and applicable to a wide variety of systems, as we

43

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

Number of Modules

T
im

e
(s

ec
)

Random
Snake
Centipede
Plane
Tree

Figure 3.9: Standard deviation of search times for spectral based algorithm vs.
number of modules in robot configuration.

44

0 10 20 30 40 50
0

100

200

300

400

500

Number of Modules

T
im

e
(s

ec
)

Random
Snake
Centipede
Plane
Tree
Brute Force

Figure 3.10: Mapping times for specific configurations vs. number of modules in
configuration.

45

mentioned in Section 3.2. If a modular robotic system has a global bus (CAN or SPI)

with labeled IR ports, then the approach we have described is directly applicable.

For example, CONRO modules [4] have both a global CAN and four distinct inter-

module connections that can be confirmed with IR. The configuration recognition

method as described can be applied to perform calculations and structural matches

with spectral graph comparisons.

If a modular system has only local IR communication (e.g., Crystalline [36]),

an adapted version of our method can be applied. For configuration recognition

with neighbor-to-neighbor only communication, each module in the structure must

have the same configuration information. In particular, modules in this distributed

system would asynchronously communicate with neighbors to acquire connectivity

information using a token passing method. Then, after all modules have determined

where neighbors are, modules must then propagate this information throughout the

structure until all modules know the complete configuration. Finally, each module

independently would then compute the spectral analysis as described in this chapter.

Afterward, each module would know where its particular location is within the overall

connected structure and select the appropriate control associated with that position.

46

Chapter 4

Distributed Communication Fault

Tolerance

An advantageous feature of modular robots is the applicability to system fault toler-

ance. With redundant units and parallel processing facilities, modular robots have

the capability or potential to account for certain types of failures within its system.

One type of fault tolerance is self-repair, as we will present in the following chapter

and also demonstrated on other modular robotic systems as we will describe in Sec-

tion 5.1. In these works, the fault tolerance is based on assessing structural failures

within the system and designing the system to repair itself with the original parts

or with replacements from the environment.

In this chapter, we present work on communication fault tolerance for the CKBot

[32]. Unlike the structural fault tolerance, this work is based on accounting for

sensor or processor failures (including modules with perhaps incorrect or outdated

software) where communication lines may be broken or bad data is passed through

the system. This approach exploits the parallel processors of the CKBot with a

distributed voting scheme, to override bad data or modules with faulty sensors or

somehow faulty processors.

In particular, this chapter focuses on fault tolerant distributed control through

47

collective decision making. By sharing information and making decisions as a group,

the system is more robust in the case of failures (in this work, IR communication

reception). Our basic approach is for a group of modules all observing one signal to

share the observed data and determine the best decision, even if some of the modules

have faulty IR receivers or communication failures. This method, known as triple

modular redundancy, was proposed by Von Neumann in the 1950’s and has since

been treated extensively to improve the reliability of digital systems [23].

The primary contribution of this work is a more robust, fault-tolerant modular

robot. As modular robotic systems become composed of increasingly many modules,

error handling becomes a crucial task. This chapter proposes a new way to handle

a few faulty modules with hardware or software errors within a larger group of

properly functioning modules. This method is demonstrated on a couple of CKBot

configurations and shown to be useful for accounting for the occasionally erratic IR

communication system.

We begin this chapter with an overview of related work in this area and statistical

motivation for our work, followed by a description of the experimental system and

software implementations, and conclude with experimental results, actual modes of

failure in the robot and algorithm design considerations for communication fault

tolerance.

4.1 Related Work

In the field of modular robotics, there has been a substantial amount of research on

distributed algorithms to demonstrate self-repair, self-assembly, and self-replication.

Perusing through the literature, one finds that the approaches are quite varied among

the different research groups. In this section, we set the stage for our work and

present a few of the approaches related to distributed control and fault tolerance of

modular robotic systems.

48

In 2002, researchers from the Crystalline and M-TRAN projects collaborated

on work on a distributed algorithm for a generic type of cubic modular robot [2].

This paper presents a method for modular robot control using a set of cellular au-

tomata neighbor rules. Simulations of this algorithm show how the system handles

locomotion on flat surfaces and over simple obstacles. Distributed locomotion con-

trol is a similar feature between this work and ours; a distinction we make is the

demonstration of communication fault tolerance for a subset of modules that, if not

taken into account, would render the system useless. A modified version of our fault

tolerance redundancy check could be incorporated into the cellular automata rou-

tines. For instance, if module diagnostics (e.g., computational and communication

verification checks) were shared between modules, in addition to locomotion rules, a

configuration of modules could detect and resolve critical errors.

A different type of distributed locomotion method based on local message prop-

agation was proposed and demonstrated on the CONRO modular robot [45]. Cater-

pillar, sidewinder, and rolling track gaits are achieved from neighbor-to-neighbor

synchronization commands. These messages spread and trigger individual module

motions based on locations within the overall structures. This is a similar feature

to the work we will present here where all modules in a configuration contain global

gait information but select particular motions based on positions in the structure.

Other common characteristics are gait synchronization and accountability of dropped

messages. For this CONRO robot experiment, an occasional missed message is not

critical as the next message will re-synchronize the out of phase modules. Key dis-

tinctions from this work are that modules in our experiment can handle chronically

missed messages, respond to external signals, and choose from a variety of gaits

based majority votes. Also inter-module message passing in our case is global-BUS

whereas for the CONRO work it is entirely local. A more recent publication from

the CONRO group [38] shows developments in the robot algorithm’s tolerance for

self-reconfiguration and selection of gaits based on local neighbor feedback without

49

requiring unique module labels. An improvement our fault tolerant approach could

offer to this work is a method for inter-module data verification. In particular, if

modules in a CONRO configuration could check important features like gait syn-

chronicity and configuration states with their neighbors, the overall system would be

more robust to timing problems and intermittently dropped or corrupted messages.

One feature of the fault tolerance we present here involves functional modules

overriding control of faulty ones. That is, if a module receives an incorrect command

that the majority of modules do not, the minority command is replaced with the ma-

jority decision and hence individual module commands are corrected by the majority.

With a similar philosophy, researchers at Johns Hopkins University presented a pa-

per on cooperative diagnosis of faulty modules as a first step toward repair of these

broken units [20]. In this work, an off-board computer equipped with an overhead

camera observes the trajectories of two Lego Mindstorms robots programmed to roll

along a surface in circular motions. The computer uses the camera observations to

correct the motor control of the robots to adjust the trajectories toward pre-defined

states. The off-board computer is considered a member of the modular robotic sys-

tem, so in this way, one module is diagnosing and repairing the control of another

module. Our experiments are different in that overriding control between modules is

reversible (not one way directed from PC to Lego robot) and is based on coordinated

group locomotion in the presence of communication faults instead of a convergence

toward optimized trajectories. An application of our work to this group’s approach

would be the integration of a complete inter-module check of states. This would

allow a greater level of system robustness and reduce the central dependence on the

sole observations of the off-board computer.

Yu and Nagpal at Harvard recently presented work on an environmentally adap-

tive modular robot [57]. In the experiments described, each modular unit in a

truss-like structure uses an accelerometer to adjust appendage length to keep the

horizontal truss levels parallel to the locally flat surface of the earth. Since each

50

module adjusts itself according to its accelerometer observations, the robotic system

is completely distributed. This work is closely related to ours in that each module

observes a global signal (theirs: gravity, ours: IR signal) and the overall system be-

haves in a deterministic coordinated behavior without a centralized controller. The

key difference in our work is the sharing of the locally observed signals to decide

upon a majority action and override control on the minority modules with dissent-

ing observations. In this way, our system tolerates a minority of sensory failures;

by contrast, if one module’s sensory input is faulty in the aforementioned approach,

then the system as a whole behaves in an unpredictable manner. A key improvement

to this environmentally adaptive robot would be an accelerometer redundancy check

between modules, similar to the IR redundancy check we will describe in this chapter.

That is, modules might share accelerometer readings with connected units so that

multiple observations can be taken into account for adjusting the robot tilt. The ap-

proach would be particularly relevant for situations where individual accelerometer

readings are significantly different from connected neighbors in a way that may not

be kinematically feasible; one resolution for this scenario might be to let the robot

adjust its own control based on some interpolation of the neighbor observations.

4.2 Statistical Advantage of Majority Based De-

cisions

It is intuitively understandable that when two or more processors in a modular robot

agree upon a globally observable signal this observation yields a greater confidence

than if just one processor observes the signal. It is also clear that a unanimous

decision amongst multiple modules would give the greatest confidence in an obser-

vation, but such a strict requirement becomes increasingly unlikely to obtain as the

number of modules increases, especially considering the non-negligible failure rates

of sensors and processors. In this section we present a simple model that quantifies

51

these intuitions.

Module 1 Module 2 Module 3 Overall Probability
0 : 1/4 0 : 1/4 0 : 1/4 1/64
0 : 1/4 0 : 1/4 1 : 3/4 3/64
0 : 1/4 1 : 3/4 0 : 1/4 3/64
0 : 1/4 1 : 3/4 1 : 3/4 9/64
1 : 3/4 0 : 1/4 0 : 1/4 3/64
1 : 3/4 0 : 1/4 1 : 3/4 9/64
1 : 3/4 1 : 3/4 0 : 1/4 9/64
1 : 3/4 1 : 3/4 1 : 3/4 27/64

Table 4.1: A list of all possible states and the corresponding probabilities for three
modules observing a message (observation : probability for each module). 1s denote
successful observations of the transmitted IR message and 0s denote incorrect or
missed observations. Module reliability is assumed to be 3/4.

To introduce the concept, consider any arbitrary configuration of three CKBot

modules. Also consider that each module in the system can observe external IR

signals on its receiver ports and that each module can communicate to one another

via CAN, as described in Chapter 2. Let us assume that each module has a reliability

ratio of 3/4, that is, on average, modules report a correct IR observation three-

fourths of the time (this is a conservative error ratio). Lastly, consider that the

modules receive one byte at a time and share each observation with each other via

CAN. Table 4.1 shows the possible outcomes and corresponding probabilities for the

three modules for each message received. A 1 denotes a successful observation of the

transmitted IR message and a 0 denotes an incorrect or missed observation.

Since we are only concerned with the number of correctly received messages

(not the order), Table 4.1 shows that the chance that three modules with a 3/4

reliability all incorrectly receive the wrong byte (or miss the message entirely) is

1/64. Similarly, the chance that the same modules receive one out of three messages

correctly is 3/64 + 3/64 + 3/64 = 9/64. Two out of three correct messages is more

probable with a 9/64 + 9/64 + 9/64 = 27/64 chance. The chance that all three

52

modules receive the correct byte is also 27/64.

As expected, these probabilities tell us that when modules are fairly reliable, it

is more likely that the correct message can be determined from shared observations.

In particular, if only one processor’s vote were considered (centralized system), there

is a 75% chance of correct observation, whereas if a majority decision is considered,

there is a 27/64 + 27/64 = 54/64 ⇒ 84.4% chance of at least two out of three

modules making the correct observation. In addition, the likelihood of reaching the

2/3 simple majority decision is twice as great as the 42.2% strict requirement of

unanimously correct observations.

The binomial distribution [10] encapsulates this probability rule for the general

case:

P (k; n, p) =
n!

k!(n − k)!
pk(1 − p)n−k (4.1)

where n is the total number of modules, k is the number of modules in observational

agreement, and p is the average reliability of the modules. However, since we are in-

terested in the probability of success greater than some majority (i.e., the cumulative

distribution), we get

P (n, p) =
n

∑

k=i

n!

k!(n − k)!
pk(1 − p)n−k (4.2)

for all integers i > nm, where 0 ≤ m ≤ 1 is the majority ratio.

For the 7 module snake and 16 module quadruped configurations we describe

later in this section, we get the following majority consensus probabilities (taking

m = 1/2):

P (7, 3/4) =
7

∑

k=4

7!

k!(7 − k)!
(3/4)k(1 − 3/4)7−k = 0.929 (4.3)

P (16, 3/4) =
16

∑

k=9

16!

k!(16 − k)!
(3/4)k(1 − 3/4)16−k = 0.973, (4.4)

53

respectively.

4.3 IR Fault Tolerance Experimental System

As with the other experiments in this dissertation, the CKBot modular system as

described in Chapter 2 is used for demonstration of IR fault tolerance. In particu-

lar, we use seven module caterpillar and sixteen module quadruped configurations

constructed from CKBot units. Each module relies on its own processor for position

control, inter-module CAN communication, and IR data sensing.

Key features for this experimental system include:

• IR receivers on the module faces receive externally transmitted data,

• External boards with arrays of IR transmitter LEDs broadcast serial binary

signals,

• Modules share IR signals and vote on the majority observations,

• Algorithm is distributed and each module has identical software.

A fundamental hardware feature for this work, the IR LEDs have also been

used for local (neighbor-to-neighbor) communication, ground contact detection [41],

configuration recognition (Section 3.4), and docking detection (Section 5.2). Figures

4.1 and 4.2 show the two configurations illuminated by IR broadcasting boards used

for communication.

4.3.1 IR Broadcaster

In this work, configurations of CKBot modules receive commands from arrays of

high-intensity IR LEDs that blink commands in unison. In this way, modules can

individually receive IR messages and share their observations with one another via

54

Figure 4.1: Seven module caterpillar receiving infrared (IR) signals from broadcast-
ing boards. Digital camera in night vision mode captures the illuminated IR LEDs.

Figure 4.2: Sixteen module quadruped receiving IR signals from broadcasting boards.
In this scenario, the robot must make decisions in the presence of an additional
board which emits signals for commands that are different from those sent by the
broadcasting boards. Digital camera in night vision mode captures the illuminated
IR LEDs.

55

the CAN. The particular data broadcasted from the IR transmitter boards is des-

ignated by a user at a PC which inputs commands through a simple graphical user

interface [33].

A reader familiar with IR signaling may have wondered why we chose to use

so many emitters in unison (instead of a few IR emitters similar to those used for

television remote controls). The answer is simply because the IR receivers on the

modules were designed primarily for module-to-module local communication and

very close proximity retro-reflective distance measurements. As such, large arrays

of LED emitters were used to produce the IR intensity required for the modules to

receive the transmitted data over the given range and distances.

4.4 Distributed IR Fault Tolerance

To demonstrate distributed fault tolerance, the CKBot system in this work is de-

signed so that modules in a given configuration listen to globally broadcasted IR

signals and subsequently communicate with one another to decide on actions, even

in the presence of faulty modules. Experiments consist of configurations flooded

with IR signals from the environment. The modules use received data to share and

compare with all others in a given state. If a majority of modules agree on an

interpretation of the IR signal, the system as a whole chooses the action correspond-

ing to the majority’s decision. In our work, actions are simple commands such as

“go forward,” “go backward,” “stop,” “turn,” “go limp,” etc. Experiments are per-

formed on two configurations: a seven-module caterpillar structure (Fig. 4.1) and a

sixteen-module quadruped structure (Fig. 4.2).

A majority is needed for a configuration to decide on an action; therefore, up to

half of the modules in the system can be in error. Examples of errors include bro-

ken IR receivers, misinterpreted IR signals, dropped CAN messages, or any generic

56

w a l k w a l k

w a l k

1 2

3
w a l k w a l k

w a l k w a l k

t u r n t u r n

w a l k
w a l k
w a l k

w a l k

t u r n t u r n

t u r n

w a l k
w a l k

Figure 4.3: Three-module schematic of IR signal observation and subsequent sharing
of data between the modules. Modules 1 and 2 correctly receive the message as
“Walk,” where as module 3 incorrectly interprets the message as “Turn.” All modules
come to the same majority decision to “Walk.”

software or hardware error on modules that would affect the observation and shar-

ing of IR data that does not disable global communications (including outdated or

incorrect software on some modules). We briefly discuss a couple of modes of failure

later in this section.

By accounting of the occasional error, the system as a whole is robust and tolerant

to certain hardware and software failures during the course of its runtime. Fig. 4.3

illustrates the basic idea behind this approach. Note that each module ends up with

the same list of observed votes, including each module’s own observations.

From a practical standpoint, we have found this implementation to be useful as

we have observed IR signals to be somewhat erratic. Since the IR receivers must

57

convert the analog IR packets to binary pulses according to a certain baud rate,

it is common for bytes to be occasionally misinterpreted (e.g., 0b10011100 can be

confused with 0b10011110). Figure 4.4 shows a schematic example of IR data being

misinterpreted by a module receiver. Slowing the baud rate to widen the analog

inclines/declines with respect to the overall signal packet mitigates some of these

issues but does not solve them entirely (e.g., in our system we use the relatively slow

serial baud rate of 2400 bps, and these errors still occasionally occur).

Together with simple occasional hardware issues (burned out or broken off LEDs),

this fault tolerance scheme has demonstrated a level of robustness not possible with

only one IR communication path to configurations of modules. Figure 4.5 shows a

photograph of an IR receiver flaking off of its PCB surface mount. These were the

two most common IR communication errors.

Fig. 4.6 illustrates the fault tolerance state machine on each CKBot module’s

processor. To reiterate, the system as whole requires that a majority of the modules

agree on the same observed value. If less than half of the modules receive inconsistent

IR data, the system as a whole is not affected and the structure with this algorithm

can carry out its designated task.

Basic features of the algorithm to note are that:

1. All modules create a list of all other modules in the configuration.

2. Each module continually cycles through all 7 of its IR RX ports, so the sources

of data can come from any direction.

3. When an IR signal is received, each module shares this information with all

others.

4. All modules record the sightings of all other modules.

5. From the list of sightings, all modules compute a majority.

6. The module with the lowest ID synchronizes the steps for gaits.

58

BIT: 0 1 2 43 5 6 7

OUTGOING
MESSAGE:

0x9C

SIGNAL
RECEIVED BY
COMPARATOR

INTERPRETED
INCOMING
MESSAGE:

0x9E

REFERENCE
VOLTAGE

Figure 4.4: Schematic example of a module misinterpreting a serial IR byte due to
an analog to digital conversion error.

59

Figure 4.5: Photograph of black IR receiver flaking off of its surface-mounted posi-
tion.

60

C o m p u t e M a j o r i t y

I f a n o t h e r m o d u l e ’ s
H e a r t b e a t m e s s a g e a r r i v e s

A f t e r p o p u l a t i o n g L i s t o f I D s
(a c o u p l e o f s e c o n d s)

I f I R d a t a a r r i v e s

A f t e r e n o u g h t i m e
f o r a l l v o t e s t o a r r i v e

I f c o o r d i n a t o r
(l o w e s t I D)

E l s e , w a i t f o r
" G O " m e s s a g e s

I f n e w I R
m e s s a g e a r r i v e s

B o o t u p

S t a r t b r o a d c a s t i n g m y
I D o n t h e C A N - B U S

A d d i t t o m y
L i s t o f I D s

S t a r t c y c l i n g t h r o u g h
I R p o r t s 1 - 7

B r o a d c a s t V o t e

E x e c u t e G a i t

S t a r t b r o a d c a s t i n g
" G O " m e s s a g e s

S e l e c t G a i t

Figure 4.6: Flow chart diagram of the processor state machine on each CKBot
module.

61

7. The system as a whole continues with the decided action (“walk,” “turn,”

“stop,” etc.) until a new, different signal is broadcasted and a new majority is

computed.

With this algorithm, all CKBot modules in a given configuration have complete

knowledge of other modules in the system and also the data that all modules observe

from the IR beacons. Each module building the complete list of modules is possible

through the logging and ordering of ID heartbeats (as described in Chapter 2) that

all modules broadcast on the CAN. Since the heartbeat frequency is 1 Hz, we allow

two seconds after boot up to allow time for at least one heartbeat message from each

module to be broadcasted. Each module builds a module configuration list in the

span of these two initial seconds.

In a similar manner, the observations (individual votes) are also broadcasted from

each module upon IR sightings. When a module receives an IR signal, an interrupt

is triggered and the observation is broadcast on the CAN. All modules receive the

identical CAN message and store it in a list of ordered module votes.

Since no assumptions are made about the source locations of broadcasted mes-

sages, the modules are designed to handle incoming IR signals on any of its four

faces. In particular, each module cycles through its 7 ports to ensure that broad-

casted messages from any direction are received (recall from Chapter 2 that the 7

TX and RX IR ports are multiplexed to the one pair of TX and RX USART pins on

each CKBot’s PIC processor). To allow sufficient time for guaranteed data reception,

each CKBot cyclically selects one of its seven ports for 200 ms at a time while the

broadcaster transmits 14 identical messages in series every 100 ms. In this way, each

of the IR receiver ports is selected for listening in a span of time when at least one

IR message is broadcasted.

Because the broadcasters are sending identical messages many times per second,

the modules only share their observations if a new IR signal is detected. Therefore,

the system will carry along its selected task only until a majority of new votes comes

62

in and overrides the old majority decision. In this way, decisions are made on-the-fly

and the systems is tolerant and adaptable to data and hardware glitches during the

course of its runtime.

Once an action is selected, all modules locally have the same decision and the

system is ready to carry out its task as a unit. However, since the times to reach the

final decision may be off by up to half of a second, a coordinator module whose sole

purpose is to synchronize the time-critical steps of a gait (each module’s position

updates at a rate of 60 Hz) is designated. The coordinator broadcasts synchronized

“Go” commands on the CAN which all modules (including the coordinator itself) use

for well-timed position control. We choose the lowest ID in a given system of modules

to be the coordinator; this choice is arbitrary as the particular ID and module is not

significant. If a system’s coordinator module were swapped with another, then the

next lowest would take over as coordinator and the system would carry on seamlessly.

All that is required is that there be one coordinator, and this can be designated at

any time.

Modules that simply do not receive any IR signals because they do not have

access to the broadcasted signals are handled by the algorithm and are effectively

treated as faulty modules. The two “shoulder” torso modules in the quadruped (Fig.

4.2) are examples of this. All modules that either miss messages or receive erroneous

ones are overruled by a majority decision.

The issue of how individual modules know how to behave within the overall struc-

ture is determined by each module’s position in the group. In particular, the modules

are arranged in accordance with their unique IDs. Note that particular node IDs

are not significant, rather the virtual node IDs that are simply an ordered mapping

are useful here (i.e., actual IDs 0x12, 0x15, 0x23 mapped to virtual IDs 0x01, 0x02,

0x03, respectively). Recall that virtual node IDs are also used for ordering the rows

and columns of port adjacency matrices as described in Section 3.5. Each module

63

-28 , 00 , 00 , 00 , 28 , 00 , 00 , 00 , 00 , -28 , 00 , 07 , 00 , 07 , 28 , 00 ,
-30 , 00 , 28 , -28 , 00 , 00 , 28 , 00 , 00 , -30 , 00 , 00 , -28 , 00 , 00 , 00 ,
-30 , 00 , 00 , 00 , 00 , 00 , 00 , 00 , 00 , -30 , 00 , 00 , 00 , 00 , 00 , 00 ,
 00 , 00 , -28 , 28 , 00 , 00 , -28 , 00 , 00 , 00 , 00 , 00 , 28 , 00 , 00 , 00 ,
 28 , 00 , -30 , 00 , -28 , 00 , -30 , 00 , 00 , 28 , 00 , 05 , 00 , 05 , -28 , 00 ,
 00 , 00 , -30 , 00 , 00 , 00 , -30 , 00 , 00 , 00 , 00 , 00 , 00 , 00 , 00 , 00 ,

L i s t o f O r d e r e d V i r t u a l N o d e I D s

G a i t
S t e p s

Figure 4.7: Walking gait control table for the 16 module quadruped. Each module
contains this information and at runtime selects the appropriate column according
to its local position within the overall structure.

maintains a library of gaits in their local program memory and selects individual mo-

tion primitives from these gaits depending on their virtual ID. It is possible and may

be desirable to extend this approach to be isomorphic so that reordering of module

arrangements do not affect the overall motion of a given fault tolerant system, as

described in Chapter 3. Such a system would automatically map the position specific

gaits to relax the requirement from an ordered mapping to any isomorphic mapping

for known configurations.

As a side note, since all modules for this project have identical programs, we em-

ploy a CAN-driven programming scheme which re-flashes the program memory for all

modules in a system simultaneously [25]. This is in contrast to the more traditional

approach of re-programming each module individually and having a centralized con-

troller have a distinct type of program. The network programming feature greatly

facilitated the development of the distributed fault tolerance algorithm.

4.4.1 System Gait Control

As mentioned earlier, modules select motion primitives from gait tables according to

their virtual node ID position within the system. For example, Fig. 4.7 shows the

gait control table for the walking configuration (Fig. 4.2) to move forward. Each

64

module contains this gait information. In this table, the columns are associated

with modules in order of virtual node ID, the rows correspond to gait steps, and the

elements in each table correspond to the angle in degrees of the joint for that module

in joint space. For instance, if module 0x81 was second in the list of (0x77, 0x81,

0x92, ...) then module 0x81 would select the second column in Fig. 4.7 as its choice if

the majority action was to walk forward. Without this mapping procedure, a module

would select the wrong sequence of actions and move inappropriately, even if correct

majorities are reached. For example, if module 0x81 in the above quadruped example

were to select gaits from column three instead of column two, the robot would fall

instead of walk.

A zero element in the table corresponds to a module being straight. Once a

module knows where it is in the configuration, it uses one column of this table to

perform the gait. Should the modules be reconfigured, they would use a different

column corresponding to their new position in the configuration.

4.4.2 Experiments

To demonstrate distributed IR fault tolerance, we implemented the algorithm de-

scribed in the previous section on the caterpillar and quadruped configurations. The

opposing IR broadcasting boards allow an approximately two-square-foot range in

which the caterpillar and quadruped can crawl. For monitoring the status of the

modules, we used a ZigBee wireless device that relays the various the inter-module

CAN messages to an off-board PC.

With a hand-held joystick controller, we mapped gait commands to the IR broad-

casting boards, which the modules use to decide upon actions. An external hand-

held “jammer” IR broadcasting board as shown in Fig. 4.2 is introduced for the

quadruped configuration to intentionally add erroneous commands to the system.

65

This jammer board sends commands different from those sent by the main broad-

casting boards, thereby occasionally confusing a subset of modules within the con-

figuration. With this additional device, we are able to verify and test the efficacy of

the majority function routines in the modules.

An action “weighting” system was also implemented in which the number of mod-

ules in agreement scaled the amplitude of the corresponding actions. For instance,

if only five modules in the quadruped observe the command “walk” with all others

seeing nothing, the system executes the walk gait at 5/16ths the full speed and mo-

tion amplitude of the “walk” gait. As more modules confirm the same observation,

the action is scaled upward accordingly. Note that for this experiment the majority

threshold is not rigidly locked at 1/2; rather the number of modules in agreement is

reflected in the enthusiasm in choice of action.

Videos of this work in action can be found online at the ModLab webpage [25].

As expected, the robots were sensitive to orientation with respect to the broad-

casting boards. For instance, Fig. 4.8 shows the number of correctly received and

missed IR messages versus angular position for the “limp” command. Note that for

the limp command we use the byte 0xFF (binary 0b11111111) and 0 ◦ corresponds to

the quadruped torso parallel to the two stationary broadcasting boards. The graph

shows an expected periodic pattern where 13 of the 16 modules correctly receive

the command within a roughly 30 ◦ deviation from parallel or anti-parallel to the

broadcasting boards. As mentioned earlier, the reason for the 3 modules missing

the signals is because 3 of the 4 torso modules are not exposed to the IR signals in

this configuration (refer to Fig. 4.2). The dotted line in Fig. 4.8 shows the number

of missed messages for the limp command with respect to angular position. Since

no messages are misinterpreted for this command, the number of missed messages is

simply the difference between the total number of modules in the configuration and

the subset of modules that correctly receive the messages. The couple of modules

that correctly receive the messages around the perpendicular orientations (90 ◦ and

66

270 ◦) are attributable to those end torso modules that have IR ports exposed to the

broadcasting boards in these states.

Similarly, Fig. 4.9 shows the number of correctly received and missed IR messages

versus angular position for the “stop” command. Note that for the stop command

we use the byte 0xEE (binary 0b11101110) and 0 ◦ corresponds to the quadruped

torso parallel to the two stationary broadcasting boards. The graph shows a similar

periodic pattern corresponding to the limp command (Fig. 4.8). For this stop

command, however, the IR messages are sometimes misinterpreted, especially at

glancing angles around 45 ◦ and at dead-on parallel and perpendicular positions as

shown in Figs. 4.9 and 4.10. The reason for the incidence of incorrect observations

for the 0xEE byte can be attributed to an increased sensitivity to misinterpret the

broadcasted data as something different but closely related. For instance, 0xFF is

not as likely to be confused with any other signal since all of the bits in this byte

are high; whereas, 0xEE has two 0 bits whose placement may be misinterpreted

by the CPU which may read 0b11101110 as 0b11011101 (bit shift) or 0b11101111 (0

bandwidth too narrow), or something similar, especially at glancing angles. Figure

4.4 described earlier shows a general schematic of this effect. The inverse spikes at the

precisely parallel and perpendicular orientations are similarly attributable to errors

in bit detection (likely from over-saturation due to strong IR intensity at dead-on

IR receiver positions). Ultimately, the sensitivity of the IR hardware is accountable

for the analog-to-digital conversion error; this fault tolerant method allows for a

manageable amount of hardware inaccuracy, as hoped.

Lastly, we note that the turning commands are useful for the quadruped configu-

ration, as it allows a user the ability to control the robot to stay within orientations

where the majority of modules can correctly receive the various IR messages.

67

90 180 270 360

1
2
3

7

10

Max Exposed : 13

Total : 16

Figure 4.8: Correctly received (solid) and missed IR messages (dashed) versus angu-
lar position for the “limp” command. Note that for the limp command we use the
byte 0xFF (binary 0b11111111) and 0 ◦ corresponds to the quadruped torso parallel
to the two stationary broadcasting boards.

68

90 180 270 360

1
2
3

7

10

Max Exposed : 13

Total : 16

Figure 4.9: Correctly received (solid) and missed IR messages (dashed) versus an-
gular position for the “stop” command. Note that for the stop command we use the
byte 0xEE (binary 0b11101110) and 0 ◦ corresponds to the quadruped torso parallel
to the two stationary broadcasting boards.

69

90 180 270 360

1
2
3

7

10

Max Exposed : 13

Total : 16

Figure 4.10: Correctly received (solid) and misinterpreted IR messages (dashed)
versus angular position for the “stop” command. Note that for the stop command
we use the byte 0xEE (binary 0b11101110) and 0 ◦ corresponds to the quadruped
torso parallel to the two stationary broadcasting boards. Also note the increased
occurrence of misinterpreted signals around glancing angles (45 ◦, 135 ◦, etc.) and
dead-on positions (0 ◦, 90 ◦, etc.).

70

4.5 Algorithm Design Considerations

An observer of this work may wonder why a majority decision approach is chosen

to demonstrate fault tolerance. An alternative would be for a module that fails to

receive an IR message to ask its neighbors what they saw. However, this approach

does not work in larger systems where communication lines (IR or wireless, if cho-

sen) may be out of scope in patches. That is, if one module in a section within a

system asks its neighbors what they saw, the neighbors themselves have not seen any

message. It is possible for this message querying to propagate until a module reports

an IR message, but then, what if this data is incorrect due to a noisy receiver? In

short, we believe our approach to be more general than fault handling through local

messaging. With majority certainty, within the entire system, each module makes

its decision with high confidence and simplicity.

Also, the line-of-sight requirement for this IR system is specific to demonstrate

the algorithm developed. Collective decision-making is, of course, not limited to

IR systems. One can readily incorporate the same approach for systems where

individual processors within a system all may observe the same data.

As mentioned in Section 4.1, the environmentally adaptive modular robot uses

individual accelerometers in each of its modules to detect the direction of gravity, and

consequently, adjust itself to provide flat surfaces on uneven terrain [57]. However,

if any one of the sensors is faulty, the overall robotic structure will likely be affected

in an unintended manner. If the modules in the environmentally adaptive robot are

given the capability to communicate with one another, the robot could apply our

fault tolerant method to override the occasional faulty accelerometer. In particular,

if one module in the center of other modules were to give a gravity reading that is

drastically inconsistent with its neighbors’ readings (or not physically conceivable

given the robot kinematics), the neighboring modules could interpolate its sensor

readings to overrule the inconsistent module’s control.

Similarly, camera systems as implemented on various modular robotic systems

71

(e.g., [22], [27], [55]) are well-suited for this modular redundancy fault tolerance.

Instances where modules are equipped with cameras to observe their common envi-

ronment can use redundant visual information to provide more reliable localization

information and more robust guided locomotion.

A benefit of this distributed algorithm is that both computation and number

of messages scales with the number of modules in a configuration (N-modular re-

dundancy). Though each modules sends a few messages per decision reached, the

number of messages increases only with the number of modules for larger systems.

Therefore, we believe this method is quite suitable for large systems.

A cyclic redundancy check (CRC) is a common method to help robustness in

communications. It is a method that detects errors in transmission; however, in

the case where there is no acknowledgement (as in the quadruped control example),

there is no means to ask for a resend. Our method acts as an error correction in

addition to error detection.

Generalizing this algorithm to modular systems with no IDs is possible. One

way is to use configuration topologies to distinguish modules, as no two modules

can occupy the same position at the same time in a connectivity graph. However,

distinguishing features must be used to disambiguate symmetries. For instance, if

modules with no IDs are used to find a majority over a wireless network, they might

first use neighbor connectivity to determine what kind of modules they could be;

afterward, the modules would add signatures on messages, such as “Leg module,”

“Foot module,” and so on to determine precise locations within structures.

Quantifying levels of reliability poses interesting questions. How confident should

the system be in correctness of messages? What is an optimal level of confidence

threshold for a modular robotic system? The percent majority determines the thresh-

old of a system’s fault tolerance; choosing this value most likely depends on the tasks

and environmental conditions on hand.

In the limiting case where all modules in a configuration are required to see the

72

same signal and 100% agreement is required, there is no effective fault tolerance and

the system is as delicate as a centralized controller. Just one faulty IR receiver and

the system is paralyzed. However, 100% agreement greatly boosts confidence if a

decision of action is fact reached.

In some cases, only one module in a system needs to see a signal, and this may

be sufficient. In this other limiting case, there is again no effective fault tolerance, as

the system may have numerous conflicting votes from modules and the system is at a

loss to determine which one to choose. However, the system has the added advantage

that only one module is required to communicate correctly, which is superior to the

requirement that one designated module that must communicate properly or else

the whole system fails.

So clearly the limiting cases of one or all for majority decisions are not useful

for fault tolerance. One interesting majority is the at least 2/3 majority, which

guarantees Byzantine fault tolerance [21]. This scenario gives a deeper level of fault

tolerance in that the network messages are checked to determine if a subset of mod-

ules is intentionally sending confusing data. For example, in a Byzantine system

applied to our experiment, all modules would iteratively ask one another what they

heard from all the others. If less than one third of the modules contained viruses and

were programmed to lie about their IR observations, the non-virus-infected modules

would still be able to determine what the original broadcasted message was and

choose the correct course of action. In this way, the system would still determine

a majority, even in the presence of erroneous shared messages. This approach is

quite interesting; however, it is quite computationally and bandwidth intensive as

the number of inter-module messages scales as factorial with respect to the num-

ber of modules the system. There are, however, practical methods to improve this

scaling which may be worth pursuing for modular robotic systems [5].

Table 4.2 summarizes the various advantages and disadvantages for the afore-

mentioned types of majorities used for modular redundancy fault tolerance.

73

An interesting possibility for future work on this project would be taking the

correlation of dissenting votes into account. That is, intuition tells us that a 3/5ths

majority consensus with two distinct dissenting votes gives a higher level of confi-

dence in an IR observation than if the same majority had two identical dissenting

votes. Considering the Hamming distances of the dissenting votes with respect to

each other and the majority observations may also give further insight into diagnos-

ing the type and severity of errors. Accounting for such elements would help gauge

the confidence in the majority decision making processes.

4.6 Conclusions for Modular Fault Tolerance

In this chapter we described a model for modular robotic fault tolerance and demon-

strated it on the CKBot system for caterpillar and quadruped configurations. In

this approach, we allowed modules to share observations so that they could all vote

on actions to take corresponding to the globally broadcasted IR signals. This allows

fully functional modules to override erroneous observations of the individuals to se-

lect robust actions, tolerant to chronic and intermittent errors in data. The binomial

distribution is shown to give a measure of the statistical advantage in majority de-

cisions for this approach and some common modes of IR communication failure are

Number of Type of Advantages Disadvantages
modules used Agreement
for Decision

1 Centralized Need just one correct signal If single vote faulty, whole
system fails

1/2 Simple Fairly high confidence Ad-hoc majority
Majority in agreement

2/3 Byzantine Tolerates intentionally incorrect Bandwidth intensive; not
Agreement inter-module messages required for most systems

ALL Complete Highest confidence in decision Just one broken module and
Consensus choice whole system fails

Table 4.2: Summary of the limiting and special cases for majority decision making
with modular redundancy fault tolerance.

74

identified and discussed. We have found this model of fault tolerance to be practical

and readily applicable to modular robotic systems with a global communication bus

as a method to detect and correct small errors in large configurations.

75

Chapter 5

Self-reassembly After Explosion

Two decades after the introduction of modular robotics, some of the leading re-

searchers in the field came together and reviewed the various research activities as

well as defined some of the challenges and opportunities for progress of modular

robots [54]. An overarching theme in this discussion of challenges is independence

and robustness: self-repairing, self-sustaining, self-replication, and self-extension

were cited as some of the goals. A small amount of progress in this work has been

made as of this date and work continues toward these advancements.

In this chapter, we present some of the inner workings of a self-repairing robotic

system called Self-reassembly After Explosion (SAE) with CKBot. In particular,

our discussion will focus on the integrated communication hierarchy and reassembly

sequence planning. A full, general presentation of the work can be found here [55]

and a more in-depth discussion of the camera localization work can be found here

[48].

The communication and control structure we will present is readily applicable

to many systems with similar, common hardware features such as accelerometers,

IR communication, smart cameras, and simple motors for motion. The primary

contribution of the work here is the demonstration of a model system for organizing

and controlling a complex robot that can reassemble itself after a random, destructive

76

event.

Self-reassembly after an explosive event is a phenomenon that does not occur

often in nature, as we know that statistical thermodynamics tells us that things tend

toward disorder, and once disordered, it is unlikely for the disordered system to return

to its original state. Biological systems resist this disorder while alive, and when

recoverable, require relatively high amounts of energy to return the state of order.

The more general scenario is for things to become disordered and the constituent

parts become dispersed into parts of other systems (decomposition/metabolism, mass

from star explosions and gravity).

If a system is able to reform after disassembly, sometimes it is desirable for it to

break apart during an unexpected, destructive event. The energy dissipated from

the breaking of bonds absorbs some of the energy of the destructive force. Examples

of this include car bumpers that crumple upon impact, absorbing some of the shock

of impact and ski boot bindings that come apart to avoid human injury from a fall.

In this work, we apply the concept of structured disassembly and self-reassembly

to our CKBot system to demonstrate robustness of a modular robotic system. To

demonstrate this, the CKBot is shown to recover from an interruptive, destructive

event. Figure 5.1 shows an example sequence of events. In summary, a walking

configuration is suddenly kicked into three separate pieces. The three clusters orient

themselves and find one another with cameras. The clusters then proceed to move

toward one another and reconnect at the magnetic bonding joints. Once reconnected,

the structure stands up again and continues its original task of walking.

During the sequence of events, the modules all require communication and coor-

dinated control based on various inputs from each other the environment. In this

chapter, we discuss how our system incorporates the various inputs into its control

loop as well as how the system communicates at all points in its runtime.

Achieving this work required integration of many technical aspects for CKBot,

notably the smart camera, docking magnetic faces, controller sub-modules (also used

77

a b

c

d e

Figure 5.1: Three piece Self-reassembly After Explosion (SAE). a) kick to midsection,
b) resulting three clusters of modules strewn randomly, c) clusters self-right and dock,
d) system stands up, e) system resumes walking. Photos courtesy Jimmy Sastra.

78

in the configuration recognition work as described in Chapter 3), IR communication,

as well as the CAN protocol within clusters and low-level module control. Many of

these technical features will be described. In the following section, we discuss some

related research.

5.1 Related Work

From the introduction of the first modular robots, a significant portion of modular

robotics research has been devoted to self-repair. The analogy to organism organi-

zation on the cellular level lends modular robots to be used in studies of self-repair.

In essence, various researchers have studied related aspects of self-assembly and

achieved several of the elements described in self-repair.

In 1994, researchers at AIST in Japan introduced a self-assembling and self-

repairing modular system [28]. Composed of identical triangular units equipped

with on-board processors, Fracta modules connect to one another with switchable

electromagnets and follow simple sets of instructions on how to assemble based on

local connectivity rules. Fracta modules communicate neighbor-to-neighbor with IR

signals and are able to rotate with respect to one another (on a flat surface) with

magnetic forces. Key features of this work are that the algorithm is distributed

and all modules control how to connect to one another in a system based on the

same set of rules. Fracta also demonstrates self-repair in the context of a connected

system: if a module is detected to be non-responsive (broken), it is cut off from the

connected configuration and a new Fracta module is introduced to replace it. The

work we will present here is distinct from this in that our system self-repairs after a

destructive event that disconnects the modular system. Camera-guided locomotion

and multi-step sequences for self-assembly are also distinguishing features.

One of the key features of our self-reassembly experiments is the reattachment

of modular parts after disassembly and guided navigation. In our work, the docking

79

is magnetic and the connected components confirm this connection with IR signals,

as we will discuss later in this chapter. Researchers at the University of Southern

California demonstrated IR guided docking with their CONRO robots in 2001 [42].

Using IR transmitters and receivers as guidance, CONRO was shown to be able to

successfully dock when aligned at close range. The connection is held fixed with lock-

ing pins and disconnection is made possible with shape memory alloy (SMA) wires

that release connection tabs. After docking, the connected component was shown

to recognize its new configuration and carry out a different gait, more suitable for

the larger structure. This is similar to our configuration recognition work presented

earlier, however, without the feature of configuration isomorphism. The docking

feature we use in self-reassembly is also similar in that the connected components

communicate through IR; however, the our work is different in that the docking can

be far range, started from more general initial conditions, and is guided using smart

cameras rather than IR components.

Another type of robotic system that shares the characteristics of having modules

that can move independently and also as a connected group is called Swarmbot [26].

Developed at École Polytechnique Fédérale de Lausanne in 2005, Swarmbots have

the notable abilities to roll around on surfaces and connect to one another with

special grippers. These grippers are also used to grasp objects and move them, as

shown in a video where 35 Swarmbots pull a child across a room floor. The idea

of having independent mobile modules which connect to groups of larger modules is

similar to the work we will present here; however, a key difference is that our work

is designed to be robust to disassembly after a high-energy event and focuses on

reassembly methods as a feature of self-repair.

In 2004 Støy and Nagpal presented a method for self-repair in the context of

modular robots [44]. This work shows a way for cubic modules to approximate

shapes by reconfiguring to fill the volume of a desired goal structure. Simulations

80

of modules reconfiguring to fill the volumes CAD models was shown to work fol-

lowing a gradient-based method to move modules into empty spaces. This type

of self-repair through reconfiguration is interesting in terms of its scale (both the

numbers of modules simulated and numbers of moves required were on the order of

tens-of-thousands). Our work shares the idea of converging toward a goal configu-

ration, without any gradient-based path planning but with the ability for physical

connections/disconnections after perturbation of a desired configuration.

Vision-guided locomotion is central to our approach for the self-reassembly exper-

iments. A similar method for camera-based docking in the M-TRAN modular robot

was introduced by Murata et al. in 2007 [27]. This work introduces a special module

with a pinhole camera that is integrated into a cluster of standard, non-camera M-

TRAN modules. The method for docking using cameras incorporates LED emitters

from other non-camera modules. Using observed distances between LED emitters,

the camera module determines distance and orientation with simple trigonometric

calculations. When close, the camera assembly of modules configures into a “dock-

ing” structure for positional error correction and to guide the approaching cluster

of modules into a precise location for successful docking. This work is related to

the localization feature of the work we present here; in our approach the methods

for distance and angle orientation are based on pixel size and degree off-center be-

tween cameras with unique LED blinking patterns instead of geometric scale factors

derived from LED distance measurements.

A couple of other research groups have presented work on self-replicating robots,

inspired by concepts from self-reproducing automata pioneered by Penrose [34] and

von Neumann [49] a half-century ago. The molecube robot from Cornell Univer-

sity showed self-reproduction of modular robot [60]. In this work, a pillar of four

molecube modules recreates another pillar by picking up other modules from “feed-

ing” locations and stacking them into a configuration identical to itself. In a sim-

ilar approach, a group at Johns Hopkins University used Lego Mindstorms kits to

81

demonstrate self-replication of a track-following robot with parts for duplicate as-

sembly placed at points along winding tracks [22]. This group also describes a way

to quantify the state of disorder in their self-replicating system, borrowing the con-

cept of entropy from statistical thermodynamics. The connection mechanisms for

both of these robots is attributed to permanent magnets, as is also the case in our

self-reassembly demonstrations. The related concepts of self-replication and self-

assembly place these works in a context similar to the work we will present here; a

key feature that is different in the implementation of these concepts is their use of

structured environments to introduce parts for self-replication versus our localizing

and reassembling of original robot parts exploded into random positions.

5.2 Self-reassembly System

The self-reassembly robot is built using the CKBot modular system, as described in

Chapter 2. In this section, we briefly describe additional features tailored for this

work.

The self-reassembly robot is made up of three identical clusters of modules. Fig-

ure 5.2 shows a photograph of one of these clusters. Each cluster is, in some sense,

a self-contained unit equipped with:

• Four CKBot modules (three U-Bar types and one L7 type, as described in

Chapter 2) for general locomotion and sensing inter-cluster connections;

• One sub-module controller for the central processing of the cluster and the

connected robot as a whole;

• One smart camera assembly for sensing other clusters’ relative positions;

• One LED for broadcasting the cluster position (inside the camera assembly

box);

82

Figure 5.2: One self-reassembly cluster made up of four CKBot modules, smart-
camera module, submodule controller, and magnetic face attachments. Photo cour-
tesy Jimmy Sastra.

83

• One three-axis accelerometer for detecting the cluster position with respect to

gravity (also inside the camera assembly box);

• Four magnet-faces (two for each of the end modules) to allow for docking and

inter-cluster communication via IR;

• Two 12V lithium-polymer batteries connected in series for providing power to

all components;

• One DC-to-DC converter that converts 24V to 6V power required for all the

modules.

All components within each cluster are physically connected with screws and electri-

cally connected with 20-pin headers. Therefore, all components within each cluster

communicate via the CAN-bus. The structured disassembly joints are the magnetic

face plates that connect clusters together. These bonds are strong enough for the

robot’s tasks of bi-pedal walking and reassembly sequence, but are weak enough to

disconnect upon impact from a swift kick. An important feature of these magnet

faces is that they allow magnetically connected modules from different clusters to

communicate with one another via the IR ports. This communication link allows

processors between clusters to talk with one another.

5.3 SAE Communication Hierarchy

The control structure for the self-reassembly robot is centralized with various sensor

input and output commands that employ the various communication media. This

structure is general and adaptable to other modular robots with similar communi-

cation systems, such as those described in Section 1.1. The overall design of this

communication scheme is based on interfacing of distinct global networks with IR

and smart cameras to create a connected modular robotic unit. Modular robots that

84

change their connectivity throughout runtime, such as CONRO [3] and M-TRAN

[29] can apply this communication hierarchy to their reconfigurable systems.

Figure 5.3 shows a sample image from the perspective of a camera module that

detects two other clusters. In this configuration, all three SAE clusters are disjoined

and in the process of localizing with respect to one another to plan locomotion for

reassembly. In this section, we describe the hierarchical communication system that

the robot uses throughout the reassembly sequence.

The general structure for the SAE robot is simple: three physically identical

clusters (as described in the previous section) that can move around independently

and can connect magnetically to each other at the ends to form a bipedal robot that

stands and walks. Figure 5.4 depicts the overall connected structure for the robot.

Note the cluster designations:

• Torso with modules T1-T4; Camera module TC;

• Left Leg with modules L1-L4; Camera module LC;

• Right Leg with modules R1-R4; Camera module RC;

• End Modules L4 and R4 can communicate with T4 through IR ports 3 and 5

when connected, providing the inter-cluster communication link.

There are three primary means of communication for the SAE robot. Within clus-

ters, communication is entirely through CAN, with the various components sending

messages on the global bus. Between clusters, the robot communicates with the

smart camera/LED system when disjoined, and with the IR TX/RX LEDs when

magnetically docked.

Figure 5.5 depicts the communication between the Torso and Left leg clusters.

The component labels T1-T4, TC, L1-L4, and LC correspond to those described

earlier and shown in Figure 5.4. This schematic shows how the submodule controllers

are at the center of all input and output commands within clusters.

In summary, the inputs to each controller include:

85

Figure 5.3: A view of two CKBot clusters from a camera module. The wide angle
fisheye lens covers almost 120 degrees. Photo courtesy Babak Shirmohammadi.

86

L4

LC RC

TC

L3

L2

L1

T1

T2

T3

R4

R3

R2

R1

T4

3 3 5 5

Figure 5.4: Diagram of the connected SAE Robot. Torso, Left and Right cluster
Modules are labeled 1 − 4; Camera modules are labeled TC, LC, and RC. Modules
L4 and R4 can communicate with T4 through IR ports 3 and 5.

87

Torso
Controller

T1

T2

T3 T4

TCBlinking
Pattern

Position
Commands

Distances, Angles,
Pitch, Roll,

Inter-
Cluster

Message
Relay

Left Leg
Controller

L3

L2

L1

L4

LC

Blinking
Pattern

Position
Commands

Distances, Angles,
Pitch, Roll,

Inter-
Cluster

Message
Relay

Connectivity
State, Gait StepPresent & Ready

“Torso” ”Left Leg”

Figure 5.5: Self-reassembly communication structure schematic between the Torso
and Left leg clusters. Labels T1-T4 refer to the modules in the Torso cluster, and
TC refers to the Torso cluster camera. Designations for modules in the Left leg
cluster are analogous (L1-L4, LC). All communication within clusters is via CAN;
communication between clusters occurs with Camera (after Camera LED sighting)
and IR (after physically docking).

88

• From camera: distances and angles to other clusters;

• From accelerometer in camera module: pitch and roll of cluster with respect

to gravity (for self-righting and standing up);

• From end modules (T4, L4): inter-cluster messages transmitted between end-

modules’ IR ports (for confirming connections and coordinating joined cluster

locomotion).

Outputs from the controller include:

• To LED on camera: identification blinking pattern. Each camera on each

cluster has a unique blinking pattern used for searching and guided locomotion

towards docking for clusters. Blinking pattern also changes as reassembly

sequence progresses. For instance, the Torso camera will blink a new pattern

after it has confirmed successful docking with one of the legs, indicating to the

other leg that it is partially assembled and ready for the next docking.

• To end module: requests for connection confirmation when close to docking

state; after successful docking, Torso controller sends inter-cluster relay mes-

sage to other controller in leg cluster to coordinate locomotion for sequential

docking, standing, and walking.

• To all modules: position commands for local cluster gait control.

Note the hierarchy of controller submodules. The Torso controller orchestrates

the overall control of the system with gait synchronization and update commands

to the Left and Right leg controllers. Tables 5.1, 5.2, and 5.3 show the sequence

of messages during inter-cluster docking and subsequent execution of the bipedal

standing gait. Note that the end modules in both the Torso and Leg clusters are

given the corresponding Virtual IDs 0x04 corresponding to Figure 5.4. This ID map-

ping allows the clusters to know where they are connected to each other regardless of

89

specific Node ID when communicating through IR. Also, the end modules communi-

cate which port they observe a connection to tell the controllers how (what specific

orientation) they are connected to each other. For example, when T4 receives an

IR signal 0x04 on it RX Port 0x03, it relays this information to the controller as

0x354 : 0x04 0x03 meaning “CAN ID 54, I have received the data 0x04 (an end

module connection) through my Port 3.” The CAN message prefix 0x3yy (where

yy is the specific module ID) is simply an identifier used by the modules to distin-

guish the messages as inter-cluster relay messages (as opposed to position control or

feedback messages).

Additionally, some specific commands are used by the controllers to end modules.

The CAN message 0x3yy : 0x08 (where yy is the end module’s ID) is a command

that tells the end module to blink its Virtual ID (e.g., 0x04) on all of it seven IR TX

ports to initiate and confirm an inter-cluster connection. Some other commands not

included in Tables 5.1 and 5.2 (omitted for clarity and brevity) are 0x09 (set your

Virtual ID to 1), 0x0A (set your Virtual ID to 4), 0xzz (Where zz is a hexadecimal

digit from 0x0B to 0xFF that corresponds to specific gait selection codes (i.e.,

“Stand Up”= 0x15, “Turn Right 10◦”=0x22, etc.)).

Tables 5.1, 5.2, and 5.3 contain only a segment of the complete self-reassembly

cycle. Similar control and feedback loops between the controllers and peripheral

devices (camera processor, camera LED, accelerometer) are integrated into the com-

munication structure.

Distance measurements are interpreted from number of pixels detected to be

blinking from the viewpoint of each camera. Figure 5.6 shows a sample mapping

of distance to number of pixels, used to derive a function and calibrate the cam-

era’s distance measurement. A similar method is used to calibrate cameras to angle

detection offset from the center axis.

Note that although the all the clusters are physically identical, the software within

them are specialized for the roles within the self-reassembly system. This structure

90

Robot Com-

ponent

Torso Con-

troller

Torso End

Module

Leg End Mod-

ule

Leg Controller

Example CAN

IDs

0x54 0xA1 0xB2 0x44

Corresponding

Virtual IDs

0x04 0x04

Communication

Connections

Torso CAN Torso CAN, IR
TX/RX

Leg CAN, IR
TX/RX

Leg CAN

Entering

Docking

Mode

CAN msg from
Camera: “Leg is
close enough for
docking”

Torso Search-

ing for Con-

nection

CAN msg to
End Module:
“Blink your
Virtual ID
on all Ports”
0x3A1 : 0x08

IR TX on all
ports: “I’m an
End Module” IR
TX: 0x04

Leg Receiv-

ing Search

Message

IR RX Port 5:
“Message from
an End Module”
IR RX: 0x04

Leg End Mod-

ule CAN Mes-

sage Relay

CAN msg to
Controller:
“Connected to
an End Module
through Port
3” 0x312 :
0x04 0x03

CAN msg from
End Module:
“Connected to
another Cluster
through Port 3”

Table 5.1: First part of the self-reassembly docking confirmation sequence via IR-
CAN relay messaging. This section of the cycle contains inter-cluster communication
initialization.

91

Robot Com-

ponent

Torso Con-

troller

Torso End

Module

Leg End Mod-

ule

Leg Controller

Leg End

Module Con-

firming Con-

nection

CAN msg to
End Module:
“Blink your
Virtual ID
on all Ports”
0x3B2 : 0x08

IR TX Port 3:
“I’m an End
Module” IR TX:
0x04

Torso Receiv-

ing Confirma-

tion

IR RX on Port
3: 0x04

CAN msg to
Controller:
“Confir-
mation Re-
ceived” 0x311 :
0x04 0x03

CAN msg from
End Module;
Inter-Cluster
Connection
Confirmed

Robot Assem-

bly Starts to

Stand Up

CAN msg from
Accelerometer:
“Pitch is about
0 ◦,” Select
Stand Gait
CAN msg to
End Module:
“Select Stand
Gait”
CAN msg to
all Modules in
Cluster: “Start
Stand Gait”

Table 5.2: Second part of the self-reassembly docking confirmation sequence and
inter-cluster gait coordination via IR-CAN relay messaging. This section of the
cycle includes leg docking confirmation and self-righting stages.

92

Robot Com-

ponent

Torso Con-

troller

Torso End

Module

Leg End Mod-

ule

Leg Controller

Torso End

Module Re-

lays Stand

Gait Selection

CAN msg from
Controller “Se-
lect Stand Gait”

IR TX on all
Ports: “Select
Stand Gait” IR
TX: 0x15

IR RX on Port
3: “Select Stand
Gait”
CAN msg to
Controller:
“Select Stand
Gait” 0x3B2 :
0x15 0x03

Leg Controller

Receives

Command

CAN msg from
End Module:
“Select Stand
Gait”

Leg Controller

Commands

Modules in

Cluster

CAN msg to All
Modules: “Start
Stand Gait”

Table 5.3: Third part of the self-reassembly docking confirmation sequence and
inter-cluster gait coordination via IR-CAN relay messaging. This section of the
cycle includes coordination for assembled bipedal walking between the torso and left
leg.

93

5 10 15 20 25 30 35
Centimeters

10

20

30

40

50

60

70

80

Number of Pixels

Figure 5.6: Sample data of pixels versus distance used to calibrate a camera. Dots
denote pixel measurements and line denotes fitted function: P (x) = 212 ln(x) +
6.46x + 1990/x − 568.

94

is not a requirement, and we will later discuss generalizing this system to allow

clusters to be fully interchangeable to be both hardware and software symmetric. In

the following section, we discuss in more detail how the controllers use the inputs to

control the clusters and carry out the reassembly sequence.

5.4 Reassembly Control Sequence

With the various input and output communication lines in place, as described in the

previous section, it is up to the submodule controllers to organize the data and guide

the modular system throughout the walking, explosion, orientation, and reassembly

sequence. In particular, the controllers use a state machine to direct modules in the

clusters to accomplish the various tasks required in each given situation.

The system state machine for self-reassembly is based on a synchronized guidance

of modular robotic clusters toward a goal configuration and task. This principal of

cooperative convergence of reassembly is general and applicable to numerous modular

robotic systems that may require inter-module coordination between disjoined and

connected states, such as Swarmbots [26] and Catoms [19].

Figure 5.7 shows the basic schematic for the state machine program on the torso

submodule controller. This diagram summarizes the cycle of actions that the con-

troller on the torso cluster directs during the robot runtime. In the following walk-

through of the reassembly sequence, we refer to the pictures (a-e) in Figure 5.1 to

compare with sections of the diagram in Figure 5.7. A narrated video of this sequence

is also available online [25].

First, we start with the three clusters assembled, upright, and walking (picture a).

This state corresponds the right section of the schematic where the torso controller

has confirmed both leg connections and the accelerometer in the camera module

tells it that the clusters are upright (pitch is between 45 ◦ and 135 ◦). In this state,

the controller sends walk commands to both the modules in its own cluster, and the

95

Start

Check
Connection

Start
Search

No confirmed
connection

Flip

Roll < -45°
Roll > 45°

Search

r Target = 0

Turn

r Target > r Threshold

Forward

Dock

r Target < r Threshold

Start
Walking

Stand up

Confirmed
connections

2

1 4

3

1

-45°< Pitch < 45° Play & Send one
walk cycle

45°< Pitch < 135°

2

Figure 5.7: State machine schematic for the torso submodule self-reassembly con-
troller. The sequence is a closed-loop cycle and this controller receives inputs from
the camera, accelerometer, and the leg controllers via the IR connection on its end
module.

96

controllers in the other clusters via the CAN-IR-CAN relay sequence through the end

modules. The leg controllers take care of the lower-level gait commands for modules

within their cluster; the torso controller’s main function here is to coordinate the

timing of overall motion.

After the swift kick to the robot’s midsection, the system ends up in the state

picture b, with the clusters randomly strewn apart on the ground. This brings

the controller to the left section of the state machine. Here, the controller has no

confirmed connections to other clusters and first checks to see its orientation with

respect to the ground. If the accelerometer reports that the module roll is less

than −45 ◦ or greater than 45 ◦, the controller instructs the modules to perform a

self-righting gait to be in a camera-up position to communicate with other clusters’

cameras and to be able to move about.

Next, the controller checks with the camera module to see it it has seen any

other clusters. As mentioned in the previous section, the camera reports sightings as

number of pixels and angle offset of another cluster’s LED blink pattern with respect

the camera center axis. If the camera does not report any sightings, the controller

instructs the cluster to rotate in place randomly until another cluster LED is spotted.

When another cluster has been spotted, the torso aligns itself and moves toward

the leg cluster to dock. This step corresponds to picture c and schematic step 3 in

the Start Search section. Here, the torso and leg clusters have detected each other,

and both are moving to try to dock. The distance is too far to dock (r Target > r

Threshold) so the clusters turn and move toward each other, checking and updating

their respective orientations along the way. When the cameras have reported that

they are close enough to try to dock (r Target < r Threshold), the controller directs

a delicate docking gait to try to have the magnets of the end module faces connect

(step 4 to Dock state in the diagram). This docking procedure is very sensitive to the

camera calibration and cluster body geometry and in practice occasionally required

a few tries for successful magnetic docking.

97

After successful docking, the end modules of the connected clusters send IR

signals back and forth through the IR ports to confirm the connection (as described

in the earlier section). Once this confirmation has taken place, the controller now

switches its LED signal to indicate to the other leg module that it has already

connected to one leg and is ready for the next docking. The connected leg cluster

now follows turning gait commands from the torso controller (via CAN-IR-CAN relay

signals) to align and prepare docking with the other leg. The same target/threshold

comparison and docking procedure as described is repeated between the torso/leg

combination and other leg cluster. Picture c shows the system approaching last

docking state.

When the torso controller has confirmed both leg cluster connections, it is ready

to command the system to stand upright and walk again. At first, the accelerometer

will report that the system is lying flat on the ground (pitch between −45 ◦ and

45 ◦) and the controller will command the system to carry out its standing up gait

(picture d). It continues this until the gait is complete and torso has confirmed

that it is upright (pitch between 45 ◦ and 135 ◦). The system is now in its original

configuration and reenters its original walking routine (picture e). The reassembly

cycle is complete and prepared for another explosive event.

Control for the corresponding leg controllers is similar to the above description

with the key difference that during the connected states, it receives instead of sends

gait step commands for locomotion (the torso acts as the coordinator).

For this iteration of the reassembly experiments (recent developments are de-

scribed the following section), approximately 40 trials were conducted with 7 fully

successful sequences. Each cycle took approximately 6-7 minutes from the initial ex-

plosive kick to full reassembly, standing and walking. Throughout the development of

these trials, various system parameters were adjusted incrementally to advance the

system toward greater robustness and reliability. For example, individual camera

98

distance and angle measurements were re-calibrated to improve localization infor-

mation for the position-sensitive docking phases. Various heuristic error filters were

added during development such as corrections for guided locomotion during docking

(i.e., if two clusters are trying to dock but pass each other, they will not detect one

another; in this case reverse motions until clusters are detected again). Environment

sensitive modifications were also made throughout experimental development. Ex-

amples of this include installing IR filters for the camera modules to reduce ambient

IR noise and modifying the magnet faces to absorb shock (rubber inserts), guide

accurate cluster docking (notch and groove features), and reduce inter-cluster IR

message scattering during docking (painted surfaces).

5.5 Recent Progress and Next Steps

At the time of this writing, a few technical developments have been made and a

generalizing of the reassembly algorithm is in progress. Some of the completed

upgrades to the system include:

• Integration of ZigBee wireless protocol for inter-cluster and off-board PC com-

munication;

• Centralized computation transferred from torso cluster to off-board PC;

• Cluster gait selections and synchronizations are direct from the PC to the

controllers, instead of through the IR-CAN relay between Torso and Left/Right

leg controllers (docking confirmation relay is still used);

• Integration of controller into Camera module (elimination of separate controller

submodule unit);

• Upgraded camera hardware (faster processing chip, light filters to reduce LED

noise);

99

• Inter-cluster magnet faces made from machined aluminum;

• Graphical visualization monitor of clusters.

The primary upgrade to the system is the migration of central computing to

an off-board PC. This change simplifies the inter-cluster communication scheme,

allows for effective system monitoring during runtime (helpful for software develop-

ment), and reduces the computational workload of the relatively limited embedded

processors. Other state machine and camera hardware/calibration refinements also

contributed to a more reliable system, resulting in faster and more reliable dock-

ing (the most delicate part of the reassembly procedure). These key changes have

resulted in a roughly 70% success rate for full SAE sequences.

As mentioned earlier, although the hardware of all clusters is identical, the soft-

ware is not. The next step in this work is to generalize the software to be identical

between clusters, allowing the robot clusters to reassign their roles (swapping of leg

and torso designations) during the reassembly runtime. With the ability to relabel,

more options are available for the method of cluster reassembly; labeling the clus-

ters with respect to the center of mass (with torso in the center, left and right legs

reassigned according to their positions with respect to the cluster) is a viable option.

Also, six clusters have been fully constructed, allowing for larger robot structures;

plans for a five-cluster quadruped built from these clusters is in progress.

100

Chapter 6

Conclusion

Over the past 20 years, modular robotic systems have evolved and made some impres-

sive gains toward a goal of greater autonomy and robustness. In this dissertation, we

have described our CKBot system and compared its features with the current state-

of-the-art modular robots. We have presented work on isomorphic configuration

recognition, distributed communication fault tolerance, and control and communi-

cation in self-reassembly for the CKBot in an effort to contribute to this push forward

for modular robotics.

Using basic principles for graph theory, we have been able to apply and verify a

novel method for a modular robot to recognize its shape and automatically execute

an appropriate mode of locomotion. We have presented and implemented a general

method for robust decision making with CKBot in the presence of faulty IR commu-

nications lines. This distributed approach, based on triple modular redundancy, is

quite general and applicable to other modular systems with similar communication

networks. Lastly, camera-guided self-reassembly with CKBot is a first for a modular

robotic system and we have presented some of the inner workings of its closed-loop

algorithm.

The important features of autonomy and robustness for modular robots are be-

coming increasingly relevant as mechatronic components become cheaper and smaller

101

while researchers’ access to innovative algorithms becomes more ubiquitous and

abundant. Realistically, the goal of advanced modular robotic autonomy is not

in the immediate future, but with each pioneering study, our understanding of this

vision becomes progressively tangible. Following the trend of the past few decades,

we can expect impressive and inspiring progress for these novel systems, ensuring

that modular robots will be an important focus of development and research for

many years to come.

102

Bibliography

[1] Z. Butler, R. Fitch, D. Rus, and Y. Wang. Distributed goal recognition algo-

rithms for modular robots. In P IEEE International Conference on Robotics

and Automation (ICRA), pages 110–116, Washington, D.C., May 2002.

[2] Z. Butler, K. Kotay, D. Rus, and K. Tomita. Generic decentralized control for

a class of self-reconfigurable robots. In P IEEE International Conference on

Robotics and Automation (ICRA), volume 1, pages 809–816, Washington, D.C.,

May 2002.

[3] A. Castano, W.-M. Shen, and P. Will. Conro: Towards deployable robots with

inter-robots metamorphic capabilities. Autonomous Robots, 8(3):309–324, June

2000.

[4] A. Castano and P. Will. Representing and discovering the configuration of

conro robots. In P IEEE International Conference on Robotics and Automation

(ICRA), pages 3503–3509, Seoul, Korea, May 2001.

[5] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proc. of Third

Symposium on Operating Systems Design and Implementation, pages 173–186,

New Orleans, USA, February 1999.

[6] I. M. Chen and J. Burdick. Enumerating the non-isomorphic assembly configu-

rations of a modular robotic system. INT J ROBOT RES, 17(7):702–719, July

1998.

103

[7] G. Chirikjian. Kinematics of a metamorphic robotic system. In P IEEE In-

ternational Conference on Robotics and Automation (ICRA), volume 1, pages

449–455, San Diego, CA, USA, May 1994.

[8] F. R. K. Chung. Spectral Graph Theory. AMS, Providence, 1997.

[9] J.-G. Dumas, C. Pernet, and Z. Wan. Efficient computation of the characteristic

polynomial. In Proceedings of the 2005 international symposium on Symbolic

and algebraic computation, pages 140–147, Beijing, China, 2005.

[10] W. Feller. An Introduction to Probability Theory and Its Applications, volume I.

John Wiley and Sons, Inc., New York, 1957.

[11] T. Fukuda and Y. Kawauchi. Cellular robotic system (cebot) as one of the

realization of self-organizing intelligent universal manipulator. In P IEEE In-

ternational Conference on Robotics and Automation (ICRA), volume 1, pages

662–667, Cincinnati, OH, USA, May 1990.

[12] S. C. Goldstein and T. C. Mowry. Claytronics: A scalable basis for future

robots. In RoboSphere 2004, Moffett Field, CA, November 2004.

[13] D. Gomez-Ibañez, E. A. Stump, B. P. Grocholsky, V. Kumar, and C. J. Taylor.

The robotics bus: A local communications bus for robots. In D. W. Gage,

editor, P SOC PHOTO-OPT INST, volume 5609 of Mobile Robot XVII, pages

155–163, Philadelphia, PA, December 2004.

[14] R. Groß. Self-Assembling Robots. Université Libre de Bruxelles, Bruxelles,

Belgium, 2007.

[15] F. Harary. Graph Theory. Addison-Wesley, Reading, Massachusetts, 1969.

[16] L. Hogben. Spectral graph theory and the inverse eigenvalue problem of a graph.

International Linear Algebra Society, 14:12–31, 2005.

104

[17] http://en.wikipedia.org/wiki. Self-Reconfiguring Modular Robotics. Wikipedia

Foundation, 2009.

[18] M. W. Jorgensen, E. H. Østergaard, and H. H. Lund. Modular atron: modules

for a self-reconfigurable robot. In P IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 2068–2073, October 2004.

[19] B. Kirby, J. Campbell, B. Aksak, P. Pillai, J. Hoburg, T. Mowry, and S. C.

Goldstein. Catoms: Moving robots without moving parts. In Proc. of the

National Conference on Artificial Intelligence, volume 20:4, page 1730. Menlo

Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

[20] M. D. M. Kutzer, M. Armand, D. H. Scheidt, E. Lin, and G. S. Chirikjian.

Toward cooperative team-diagnosis in multi-robot systems. INT J ROBOT

RES, 27(9):1069–1090, September 2008.

[21] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM

T PROGR LANG SYS, 4(3):382–401, July 1982.

[22] K. Lee, M. Moses, and G. Chirikjian. Robotic self-replication in structured en-

vironments: Physical demonstrations and complexity measures. INT J ROBOT

RES, 27(3-4):387–401, March/April 2008.

[23] R. E. Lyons and W. Vanderkulk. Use of triple-modular redundancy to improve

computer reliability. IBM Journal of Research and Development, 6(2):200–209,

April 1962.

[24] B. D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–

87, 1981.

[25] ModLab. http://modlab.seas.upenn.edu. University of Pennsylvania, 2009.

105

[26] F. Mondada, L. M. Gambardella, D. Floreano, S. Nolfi, J.-L. Deneuborg, and

M. Dorigo. The cooperation of swarm-bots: physical interactions in collective

robotics. IEEE Robotics and Automation Magazine, 12(2):21–28, June 2005.

[27] S. Murata, K. Kakomura, and H. Kurokawa. Docking experiments of a mod-

ular robot by visual feedback. In P IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 625–630, Beijing, China, October

2006.

[28] S. Murata, H. Kurokawa, and S. Kokaji. Self-assembling machine. In P IEEE

International Conference on Robotics and Automation (ICRA), volume 1, pages

441–448, San Diego, CA, USA, May 1994.

[29] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji.

M-tran: Self-reconfigurable modular robotic system. IEEE/ASME Transactions

on Mechatronics, 7(4):431–441, December 2002.

[30] E. Østergaard. Distributed Control of the ATRON Self-Reconfigurable Robot.

University of Southern Denmark, Odense, 2004.

[31] M. Park, S. Chitta, A. Teichman, and M. Yim. Automatic configuration recog-

nition methods in modular robots. INT J ROBOT RES, 27(3-4):403–421,

March/April 2008.

[32] M. Park and M. Yim. Distributed control and communication fault tolerance

for the ckbot. In ASME/IFToMM International Conference on Reconfigurable

Mechanisms and Robots (ReMAR 2009), pages 682–688, London, UK, June

2009.

[33] PCAN-VIEW. http://www.peak-system.com/. PEAK-System Technik GmbH,

2009.

106

[34] L. S. Penrose. Self-reproducing machines. Scientific American, 200(6):105–114,

June 1959.

[35] D. Rus and M. Vona. Self-reconfiguration planning with compressible unit mod-

ules. In P IEEE International Conference on Robotics and Automation (ICRA),

Detroit, 1999.

[36] D. Rus and M. Vona. Crystalline robots: Self-reconfiguration with compressible

unit modules. Autonomous Robots, 10(1):107–124, 2001.

[37] B. Salemi, M. Moll, and W.-M. Shen. Superbot: A deployable, multi-functional,

and modular self-reconfigurable robotic system. In P IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Beijing, China, October

2006.

[38] B. Salemi and W.-M. Shen. Distributed behavior collaboration for self-

reconfigurable robots. In P IEEE International Conference on Robotics and

Automation (ICRA), pages 4178–4183, New Orleans, USA, April/May 2004.

[39] B. Salemi, W.-M. Shen, and P. Will. Hormone-controlled metamorphic robots.

In P IEEE International Conference on Robotics and Automation (ICRA),

pages 4194–4199, 2001.

[40] J. Sastra, W. G. Bernal-Heredia, J. Clark, and M. Yim. A biologically-inspired

dynamic legged locomotion with a modular reconfigurable robot. In Proc. of

DSCC ASME Dynamic Systems and Control Conference, Ann Arbor, Michigan,

USA, October 2008.

[41] J. Sastra, S. Chitta, and M. Yim. Dynamic rolling for a modular loop robot.

In Proc. of International Symposium on Experimental Robotics, pages 421–430,

Rio de Janeiro, Brazil, 2006.

107

[42] W.-M. Shen and P. Will. Docking in self-reconfigurable robots. In P IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages

1049–1054, Maui, Hawaii, USA, October 29-November 3 2001.

[43] D. A. Spielman. Faster isomorphism testing of strongly regular graphs. STOC

96: 28th Annual ACM Symposium on Theory of Computing, pages 576–584,

1996.

[44] K. Støy and Radhika Nagpal. Self-repair through scale independent self-

reconfiguration. In P IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 2062–2067, Sendai, Japan, September 28-October

2 2004.

[45] K. Støy, W.-M. Shen, and P. Will. Global locomotion from local interaction in

self-reconfigurable robots. In Proc. of the 7th International Conference on Intel-

ligent Autonomous Systems (IAS-7), pages 309–316, Marina del Rey, California,

March 25-27 2002.

[46] K. Støy, W.-M. Shen, and P. Will. Implementing configuration dependent gaits

in a self-reconfigurable robot. In P IEEE International Conference on Robotics

and Automation (ICRA), pages 3828–3833, Taipei, Taiwan, 2003.

[47] I. A. Sucan, J. F. Kruse, M. Yim, and L. E. Kavraki. Kinodynamic motion

planning with hardware demonstrations. In P IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pages 1661–1666, September

2008.

[48] C. J. Taylor and B. Shirmohammadi. Self localizing smart camera networks

and their applications to 3d modeling. In ACM SenSys/First Workshop on

Distributed Smart Cameras (DSC 06), October 2006.

[49] J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois

Press, Urbana, IL, 1966.

108

[50] P. J. White and M. Yim. Scalable modular self-reconfigurable robots using

external actuation. In P IEEE International Conference on Robotics and Au-

tomation (ICRA), pages 2773–2778, San Diego, CA, 2007.

[51] M. Yim. Locomotion With a Unit-Modular Reconfigurable Robot. Stanford Uni-

versity, Palo Alto, CA, 1994.

[52] M. Yim. Planetary contingency: A competition educating graduate students

in reconfigurable robotics. IEEE Robotics and Automation Magazine Education

Column, 14(4):14–16, 2008.

[53] M. Yim, D. G. Duff, and K. D. Roufas. Polybot: a modular reconfigurable robot.

In P IEEE International Conference on Robotics and Automation (ICRA),

pages 514–520, San Francisco, CA, April 2000.

[54] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and

G. Chirikjian. Modular self-reconfigurable robot systems [grand challenges of

robotics]. IEEE Robotics and Automation Magazine, 4(1):43–52, March 2007.

[55] M. Yim, B. Shirmohammadi, J. Sastra, M. Park, M. Dugan, and C. J. Taylor.

Towards robotic self-reassembly after explosion. In P IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 2767–2772, San

Diego, CA, October 29-November 2 2007.

[56] M. Yim, P. J. White, M. Park, and J. Sastra. Modular self-reconfigurable robots.

In Encyclopedia of Complexity and Systems Science, pages 5618–5631. Springer

New York, 2009.

[57] C.-H. Yu and R. Nagpal. Distributed consensus and self-adapting modular

robots. In IROS-2008 workshop on Self-Reconfigurable Robots and Applications,

2008.

109

[58] M. M. Zavlanos and G. J. Pappas. A dynamical systems approach to weighted

graph matching. Automatica, 44(11):2817–2824, 2008.

[59] V. Zykov, A. Chan, and H. Lipson. Molecubes: An open-source modular

robotics kit. In International Conference on Intelligent Robots and Systems

(IROS) Workshop on Self-Reconfigurable Robots, 2007.

[60] V. Zykov, E. Mytilinaios, B. Adams, and H. Lipson. Self-reproducing machines.

Nature, 435:163–164, 2005.

110

	University of Pennsylvania
	ScholarlyCommons
	Fall 12-22-2009

	Configuration Recognition, Communication Fault Tolerance and Self-reassembly for the CKBot
	Michael G. Park
	Recommended Citation

	Configuration Recognition, Communication Fault Tolerance and Self-reassembly for the CKBot
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	C:/Documents and Settings/Administrator/Desktop/dissertation/dissertation.dvi

