11 research outputs found

    Colouring quadrangulations of projective spaces

    Full text link
    A graph embedded in a surface with all faces of size 4 is known as a quadrangulation. We extend the definition of quadrangulation to higher dimensions, and prove that any graph G which embeds as a quadrangulation in the real projective space P^n has chromatic number n+2 or higher, unless G is bipartite. For n=2 this was proved by Youngs [J. Graph Theory 21 (1996), 219-227]. The family of quadrangulations of projective spaces includes all complete graphs, all Mycielski graphs, and certain graphs homomorphic to Schrijver graphs. As a corollary, we obtain a new proof of the Lovasz-Kneser theorem

    On topological relaxations of chromatic conjectures

    Get PDF
    There are several famous unsolved conjectures about the chromatic number that were relaxed and already proven to hold for the fractional chromatic number. We discuss similar relaxations for the topological lower bound(s) of the chromatic number. In particular, we prove that such a relaxed version is true for the Behzad-Vizing conjecture and also discuss the conjectures of Hedetniemi and of Hadwiger from this point of view. For the latter, a similar statement was already proven in an earlier paper of the first author with G. Tardos, our main concern here is that the so-called odd Hadwiger conjecture looks much more difficult in this respect. We prove that the statement of the odd Hadwiger conjecture holds for large enough Kneser graphs and Schrijver graphs of any fixed chromatic number

    Homomorphism complexes, reconfiguration, and homotopy for directed graphs

    Full text link
    The neighborhood complex of a graph was introduced by Lov\'asz to provide topological lower bounds on chromatic number. More general homomorphism complexes of graphs were further studied by Babson and Kozlov. Such `Hom complexes' are also related to mixings of graph colorings and other reconfiguration problems, as well as a notion of discrete homotopy for graphs. Here we initiate the detailed study of Hom complexes for directed graphs (digraphs). For any pair of digraphs graphs GG and HH, we consider the polyhedral complex Hom(G,H)\text{Hom}(G,H) that parametrizes the directed graph homomorphisms f:G→Hf: G \rightarrow H. Hom complexes of digraphs have applications in the study of chains in graded posets and cellular resolutions of monomial ideals. We study examples of directed Hom complexes and relate their topological properties to certain graph operations including products, adjunctions, and foldings. We introduce a notion of a neighborhood complex for a digraph and prove that its homotopy type is recovered as the Hom complex of homomorphisms from a directed edge. We establish a number of results regarding the topology of directed neighborhood complexes, including the dependence on directed bipartite subgraphs, a digraph version of the Mycielski construction, as well as vanishing theorems for higher homology. The Hom complexes of digraphs provide a natural framework for reconfiguration of homomorphisms of digraphs. Inspired by notions of directed graph colorings we study the connectivity of Hom(G,Tn)\text{Hom}(G,T_n) for TnT_n a tournament. Finally, we use paths in the internal hom objects of digraphs to define various notions of homotopy, and discuss connections to the topology of Hom complexes.Comment: 34 pages, 10 figures; V2: some changes in notation, clarified statements and proofs, other corrections and minor revisions incorporating comments from referee

    Vertex cut of a graph and connectivity of its neighbourhood complex

    Full text link
    We show that if a graph GG satisfies certain conditions then the connectivity of neighbourhood complex N(G)\mathcal{N}(G) is strictly less than the vertex connectivity of GG. As an application, we give a relation between the connectivity of the neighbourhood complex and the vertex connectivity for stiff chordal graphs, and for weakly triangulated graphs satisfying certain properties. Further, we prove that for a graph GG if there exists a vertex vv satisfying the property that for any kk-subset SS of neighbours of vv, there exists a vertex vS≠vv_S \neq v such that SS is subset of neighbours of vSv_S, then N(G−{v})\mathcal{N}(G-\{v\}) is (k−1)(k-1)-connected implies that N(G)\mathcal{N}(G) is (k−1)(k-1)-connected. As a consequence of this, we show that:(i) neighbourhood complexes of queen and king graphs are simply connected and (ii) if GG is a (n+1)(n+1)-connected chordal graph which is not folded onto a clique of size n+2n+2, then N(G)\mathcal{N}(G) is nn-connected.Comment: Comments are welcome
    corecore