6 research outputs found

    An Analytic Real-Time Framework for IoT based Home Automation System

    Get PDF
    The Internet of Things or IoT means the ability to connect billions of physical devices around the world that are now linking to the internet for collecting and sharing data. Internet of Things (IoT) technologies is used to sense the real-time primordial manufacture data and included the energy alliance data and the provision circumstance data. The Internet of Things (IoT) will approve any contents to be sensed or monitored remotely wherever there any remaining network infrastructure, making amenities for the integration of the actual world into computer-based systems. Real-time narrates the path of flowing media is processing. In the real-time procedure, anyone can entrance information barring to narrate for it and save our time. In our proposed system, we build a system where we calculate real-time. To compute real-time, we need an IoT based automated system. And here we use an IoT based home automation system. We are passing data through the system for collecting data with the help of Cisco Packet Tracer simulator. For calculating real-time performance, we use six performance metrics to evaluate the event detection system performance. They are sensitivity, specificity, precision, accuracy, F1-score, and G-mean

    Enhanced non-parametric sequence learning scheme for internet of things sensory data in cloud infrastructure

    Get PDF
    The Internet of Things (IoT) Cloud is an emerging technology that enables machine-to-machine, human-to-machine and human-to-human interaction through the Internet. IoT sensor devices tend to generate sensory data known for their dynamic and heterogeneous nature. Hence, it makes it elusive to be managed by the sensor devices due to their limited computation power and storage space. However, the Cloud Infrastructure as a Service (IaaS) leverages the limitations of the IoT devices by making its computation power and storage resources available to execute IoT sensory data. In IoT-Cloud IaaS, resource allocation is the process of distributing optimal resources to execute data request tasks that comprise data filtering operations. Recently, machine learning, non-heuristics, multi-objective and hybrid algorithms have been applied for efficient resource allocation to execute IoT sensory data filtering request tasks in IoT-enabled Cloud IaaS. However, the filtering task is still prone to some challenges. These challenges include global search entrapment of event and error outlier detection as the dimension of the dataset increases in size, the inability of missing data recovery for effective redundant data elimination and local search entrapment that leads to unbalanced workloads on available resources required for task execution. In this thesis, the enhancement of Non-Parametric Sequence Learning (NPSL), Perceptually Important Point (PIP) and Efficient Energy Resource Ranking- Virtual Machine Selection (ERVS) algorithms were proposed. The Non-Parametric Sequence-based Agglomerative Gaussian Mixture Model (NPSAGMM) technique was initially utilized to improve the detection of event and error outliers in the global space as the dimension of the dataset increases in size. Then, Perceptually Important Points K-means-enabled Cosine and Manhattan (PIP-KCM) technique was employed to recover missing data to improve the elimination of duplicate sensed data records. Finally, an Efficient Resource Balance Ranking- based Glow-warm Swarm Optimization (ERBV-GSO) technique was used to resolve the local search entrapment for near-optimal solutions and to reduce workload imbalance on available resources for task execution in the IoT-Cloud IaaS platform. Experiments were carried out using the NetworkX simulator and the results of N-PSAGMM, PIP-KCM and ERBV-GSO techniques with N-PSL, PIP, ERVS and Resource Fragmentation Aware (RF-Aware) algorithms were compared. The experimental results showed that the proposed NPSAGMM, PIP-KCM, and ERBV-GSO techniques produced a tremendous performance improvement rate based on 3.602%/6.74% Precision, 9.724%/8.77% Recall, 5.350%/4.42% Area under Curve for the detection of event and error outliers. Furthermore, the results indicated an improvement rate of 94.273% F1-score, 0.143 Reduction Ratio, and with minimum 0.149% Root Mean Squared Error for redundant data elimination as well as the minimum number of 608 Virtual Machine migrations, 47.62% Resource Utilization and 41.13% load balancing degree for the allocation of desired resources deployed to execute sensory data filtering tasks respectively. Therefore, the proposed techniques have proven to be effective for improving the load balancing of allocating the desired resources to execute efficient outlier (Event and Error) detection and eliminate redundant data records in the IoT-based Cloud IaaS Infrastructure

    Privacy Preserving Multi Party Computation for Data-Analytics in the IoT-Fog-Cloud Ecosystem

    Get PDF
    International audienceIn this paper, we propose an architecture for privacy pre- serving protocols in an IoT-Fog-Cloud ecosystem computing hierarchy. We consider the paradigms of Fog and Edge computing, together with a multi-party computation mechanism that enables secure privacy-preserving data processing in terms of exchanged messages and distributed comput- ing. We discuss the potential use of such an architecture in a scenario of pandemics where social distancing monitoring and privacy are pivotal to manage public health yet providing confidence to citizens

    Deep and transfer learning for building occupancy detection: A review and comparative analysis

    Get PDF
    The building internet of things (BIoT) is quite a promising concept for curtailing energy consumption, reducing costs, and promoting building transformation. Besides, integrating artificial intelligence (AI) into the BIoT is essential for data analysis and intelligent decision-making. Thus, data-driven approaches to infer occupancy patterns usage are gaining growing interest in BIoT applications. Typically, analyzing big occupancy data gathered by BIoT networks helps significantly identify the causes of wasted energy and recommend corrective actions. Within this context, building occupancy data aids in the improvement of the efficacy of energy management systems, allowing the reduction of energy consumption while maintaining occupant comfort. Occupancy data might be collected using a variety of devices. Among those devices are optical/thermal cameras, smart meters, environmental sensors such as carbon dioxide (CO2), and passive infrared (PIR). Even though the latter methods are less precise, they have generated considerable attention owing to their inexpensive cost and low invasive nature. This article provides an in-depth survey of the strategies used to analyze sensor data and determine occupancy. The article's primary emphasis is on reviewing deep learning (DL), and transfer learning (TL) approaches for occupancy detection. This work investigates occupancy detection methods to develop an efficient system for processing sensor data while providing accurate occupancy information. Moreover, the paper conducted a comparative study of the readily available algorithms for occupancy detection to determine the optimal method in regards to training time and testing accuracy. The main concerns affecting the current occupancy detection system in terms of privacy and precision were thoroughly discussed. For occupancy detection, several directions were provided to avoid or reduce privacy problems by employing forthcoming technologies such as edge devices, Federated learning, and Blockchain-based IoT. 2022 The AuthorsThis paper was made possible by the Graduate Assistant-ship (GA) program provided from Qatar University (QU). The statements made herein are solely the responsibility of the authors. Open Access funding provided by the Qatar National Library.Scopu

    Fog Intelligence for Real-Time IoT Sensor Data Analytics

    No full text
    corecore