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Centro de Estudios en Ingenieŕıa de Software
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Abstract. In this paper, we propose an architecture for privacy pre-
serving protocols in an IoT-Fog-Cloud ecosystem computing hierarchy.
We consider the paradigms of Fog and Edge computing, together with a
multi-party computation mechanism that enables secure privacy-preserving
data processing in terms of exchanged messages and distributed comput-
ing. We discuss the potential use of such an architecture in a scenario of
pandemics where social distancing monitoring and privacy are pivotal to
manage public health yet providing confidence to citizens.
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1 Introduction

The Internet of Things (IoT) is bringing countless ways of collecting and pro-
cessing data as more and more smart devices and sensors (IoT devices, for short)
are deployed and connected to the Internet.

IoT devices are scattered at the edge of the network. They produce vast
amounts of heterogeneous data that does not generate value by itself by upload-
ing it to a - say - database [28] but needs computing power to be either further
processed in order to generate a desired output or to produce an immediate re-
sponse for a data query, may be even to produce intermediate data results that
need to be further acquired or with higher levels of processing.

Examples of these requirements can be easily found in smart agriculture
domains [9], healthcare, industry and energy, transportation, and urban infras-
tructures, to name a few [23,22].

In this context, privacy concerns upon data being transmitted to and from
the cloud arise naturally, as IoT devices and their data constitutes major targets



for security and privacy attacks, including data breaching, data integrity, and
data collusion [35]. Moreover, very often the data collected - if leaked and not
protected by suitable encryption - can breach the user’s privacy and be used for
non authorized virtual profiling [14].

On the other hand, however, data collected from IoT devices can also be
used for the common good and social profitability, as knowledge gathered from
those data sets can help in improving people’s quality of life, for example, by
offering personalised services, precise and up-to-date information about people’s
surroundings and interests, and information for improving planning and effi-
ciency of cities as well as for policy making [38]. Therefore, there is ample need
for the design and implementation of mechanisms for both, enabling and pre-
serving privacy that still allows significant IoT data to be collected, distributed,
and processed in a useful manner.

Currently, cloud computing has been used to store and process data collected
by IoT devices. This well-established computing paradigm is very convenient for
data processing applications that require large processing capacity, and it fits well
to computing problems that use data collected from many sources regardless of
their location. However, as IoT devices are located and scattered at the very edge
of the network, they can easily be brought to consuming data from neighbouring
counterparts, which then would not require further transfer to a centralised cloud
for processing [40]. In this scenario, Fog Computing [13] has emerged to bring and
distribute computing capacities closer to the edge. In this computing paradigm,
micro data centres, or cloudlets, are deployed throughout the network (e.g. at
access points or cellular base stations) to bring computing capacities closer to
the IoT devices. Combined, all three layers of edge IoT devices, fog devices, and
cloud computing, can provide a hierarchical ubiquitous-like infrastructure for
processing IoT data. Notwithstanding, privacy concerns are still present in this
scenario and should be addressed. Computational models for SMPC that fit the
proposed hierarchical structure in terms of resource allocation need to ensure
the privacy of individual users (parties) [17].

In order to present our approach, we introduce next some concepts and
discuss challenges in the study of the three components of the IoT-Fog-Cloud
ecosystem with regard to privacy preserving algorithms and protocols consider-
ing secure multi-party interactions. Then, in section 3 we introduce our proposed
architecture and discuss its instantiation. Section 4 presents preliminary results
towards such an architecture implementation and in section 5 we discuss some
available literature on these topics. Section 6 brings conclusions and remarks.

2 Background

2.1 IoT-Fog-Cloud ecosystem

The Internet of Things (IoT) consists of ’zillions’ of (inter-) connected devices
that can include sensors/actuators with communication capabilities, i.e., vir-
tually any object with embedded micro-controller and antennae, which can be



highly heterogeneous at different levels, as for example energy consumption re-
quirements, communications protocols, computing capacity, and mobility.

Therefore, IoT devices management becomes intrinsically challenging in terms
of data communication and processing, while it requires significant processing
and knowledge extraction capabilities in order to provide relevant insight and,
hence, constitutes an ideal field for developing and testing of Big Data tools. The
challenge is precisely to transform gathered data into actual information knowl-
edge by (secure) privacy-preserving processing. Examples of data collected by
IoT devices with such requirements are: location-based services, security cam-
eras, personalised preference tracking mechanisms (e.g. for advertisement), med-
ical data collected by body sensors or by professional equipment at hospitals and
clinics, see for example [30].

Cloud computing represents nowadays a largely adopted computing paradigm
servicing a variety of applications, providing dynamic configuration possibilities
such as elasticity and pay-per-use. Resource virtualization allows providers to
share slices of computing resources among users through the use of virtual ma-
chines and containers, where they appear to be logically isolated for each tenant.
On-demand provisioning/de-provisioning, elasticity, ubiquitous access, lower up-
front investments with reduced capital expenditures and faster time to market,
are a few properties offered by cloud computing.

Clouds can partially fulfil applications requirements for IoT but may fall short
for low latency, for example. Fog computing can be combined with the cloud to
provide an ecosystem that furnishes full potential for IoT application deploy-
ments, as it introduces a hierarchy of computing capacity (fog nodes, cloudlets
or micro data centres) between the edge and the cloud [13]. This hierarchy can
provide a wider range of services that may not be supported solely by the cloud.
Thus, a fog computing infrastructure can attend applications with a variety of
Quality of Services (QoS) by using different hierarchical levels to meet latency
and computing requirements.

A consequence of bringing processing closer to the edge with fog computing,
as illustrated in Figure 1, is to reduce total bandwidth used in the network
along the path between edge and cloud, as data can be aggregated at the edge
before being transferred to the cloud. This computing hierarchy provided by the
IoT-Fog-Cloud ecosystem enables thus processing to occur closer to where the
data is being generated. This is useful for applications that depend upon very
low delays or response times, but also for applications that only need data from
constrained or specific geographic locations, as in this scenario the data does not
need to be transferred all the way up to the cloud. Such a scenario demands the
implementation of privacy-preserving mechanisms so that data shared from said
IoT devices are not unintentionally available to third-parties.

Examples of such applications include real-time traffic estimation, autonomous
cars traffic control, collision avoidance in non-signalised road intersections, localisation-
based risk assessment, monitoring in disaster scenarios, actuators in dynamically
changing environments, and so on.



Mobile Industry

C
lo

u
d

, 
F

o
g

, 
N

e
tw

o
rk

in
g

, 
5

G
/6

G
 i
n

fr
a

s
tr

u
c
tu

re
s

R
e

s
o

u
rc

e
 a

llo
c
a

tio
n

 a
n

d
 s

c
h

e
d

u
lin

g
, s

e
rv

ic
e

s
 m

a
n

a
g

e
m

e
n

t, 
e

n
e

rg
y
 c

o
n

s
u

m
p

tio
n

, d
a

ta
 lo

c
a

lity, fe
d

e
ra

tio
n

, o
rc

h
e

s
tra

tio
n

IoT applications

Cloud

Fog 
(layers 2 … N-1)

Urban

Data privacy and trust

Fig. 1: Overview of the IoT-Fog-Cloud infrastructure (adapted from [4]).

We are interested in the modelling and design of efficient processing data
protocols for applications in a privacy-preserving context. We posit that Secure
Multi-Party Computation (SMPC) [16,19], understood as the joint computa-
tion of a desired function in terms of an appropriate splitting and distribution
among a number of parties under the constraint that all data has to remain
private, naturally furnishes a setting for privacy-preserving data processing and
correctness:

– Privacy, in the sense that no party learns anything new other than its pre-
scribed jointly computed output; and

– correctness, in the sense that parties can trust that the computed quantities
are indeed correct.

This is useful, e.g., for the distributed evaluation of trust, as in [7], where parties
or players compute a joint confidence level by combining their mutual degrees
of trust. See the survey in [39] (and the references therein) for a nice description
of the role of SMPC in the IoT field.

In view of potential applications, technologies should also consider, at least,
designs providing Confidentiality, Integrity and Availability (CIA triad) [21].
Other requirements may be further imposed, for example on the side of inde-
pendence of inputs, fairness, etc. (see [16]).

2.2 Privacy preservation in the IoT

Secure multiparty computations (SMPC) allows n players to compute together
the output of some function, using private inputs without revealing them to other
parties and without gaining access to knowledge entrusted to another party. This
is useful, e.g., for distributed evaluation of trust. In this context, players compute
a confidence level by combining their mutual degrees of trust. See for example



the survey in [39] (and the references therein) for a nice description of the role
of SMPC in the IoT field.

Notice that while SMPC protocols have been present in the literature for
more than thirty years, their application to a data streams in a hierarchy of IoT
devices (in terms of computational power), which are continuously producing
data worth analysing while preserving privacy, can be considered as a relatively
recent development [15], in contrast to the more typical reception, storage and
analysis of source data by a third-party centralised server that is not under the
administrative control of the smart environment and hence potentially untrust-
worthy.

In the proposed architecture, the server should not obtain access to the raw
data of the sources; it only fulfils management and orchestration purposes to
carry out SMPC computations that are executed by the sources themselves [19].
This enables privacy-preserving data processing while the sources can be dy-
namic. The role of an edge-IoT gateway, understood as middle-ware between
IoT devices and the cloud that facilitates computations and is a communica-
tion gateway as well [25], may be further extended to be able to receive queries
regarding the outcomes of the computations still without revealing any private
information about the sources.

Performance and resource consumption characteristics of SMPC methods
are key limitations for their application in resource constrained environments.
A detailed assessment of these characteristics is carried out in [20]. The authors
reach the conclusion that SMPC methods can be applied, in practice, in Intranet
environments, but with limitations in Internet settings. This shows the need for
new SMPC-based solutions where the resource environment performs in close
collaboration with privacy-preserving mechanisms.

3 Privacy towards the Edge

This section describes an overview for the proposed privacy-preserving multi-
party computation architecture for IoT using fog computing.

3.1 Hypotheses and Objectives

In order to develop a framework of theoretical nature and a test pilot for the
hierarchical architecture in layers: from IoT to Edge and from Edge to Fog com-
puting, in which multi party protocols can be proposed, we first consider current
techniques and methods for Fog/Edge technologies and Multi party computa-
tions.

Since cloud computing cannot rely exclusively upon cryptographic protocols
alone [37] and, furthermore, the data collected by cyber-physical (IoT) sensors
is known to be securely (and privately) processed using zero-knowledge proofs,
as in [12], we propose to undertake our approach of Privacy Preserving Multi
Party Computation for Data Analytic in the Iot-Edge-Fog ecosystem by first
establishing a hierarchy of devices, as in Figure 2 and then to follow the lines
proposed by [33] and [24].



Fig. 2: Edge/Fog Computing hierarchy together with secure multi-party compu-
tation brings resource allocation challenges.

3.2 Architectural Principles

At the edge, we propose that IoT devices are grouped, either statically or dy-
namically, to be considered as data generators for a specific application or user
query. Grouping is based on criteria such as resource allocation (at the fog),
scalability and geographic location. These devices are assumed to be capable of
executing SMPC in the context of the group which they currently belong to. The
output of such computation may either be used immediately, to answer localised
queries posed by users/consumers, or sent up (to services running in the same
or a different micro-datacenter in the fog) as intermediate outputs that in turn
are used in conjunction with outputs from other SMPC computations performed
by other IoT device groups. This pattern of dynamically grouping SMPC par-
ties that receive inputs from SMPC groups located underneath in the hierarchy
repeats at the fog and cloud levels to produce intermediate outputs and/or to
answer user queries.

To illustrate how this works, we consider the current pandemic scenario:
Consider an end-user who is willing to know how safe it is to go to a specific
place. Assume we can come up with a safety metric based on several pieces of
information from the neighbourhood and/or place where this user is willing to
go. A combination of data from IoT devices at the location of interest can be
used to compute such safety metric and respond to the user query. However, it
is clear that such information can often include personal data that raises privacy
concerns, as for example medical conditions of people in that area, real-time and
accurate information about people’s location, data on how those people interact
or have interacted on that location, information collected from cameras about
the amount of people wearing masks, and so on. A privacy-preserving mechanism
using multi-party computation would need to first choose sources to obtain all



that data to be processed, and this is an example of how devices are to be
grouped into sets that are able to generate data in response to a query. Then,
the data set obtained from those devices can be first processed using multi-party
computation protocols, and then be further moved to the closest cloudlet/micro
data center at the fog level for further processing. With privacy already in place,
it remains to aggregate the data and compute the necessary safety metrics of
interest to that query.

Note that more complex scenarios, with more data or data from multiple
geographic locations, can involve multiple cloudlets at the fog level or even in-
volve the cloud to provide enough capacity or enough data sets to allow a proper
computation of the desired metric.

To enable SMPC in the discussed scenario, many challenges arise. First, a
candidate set of SMPC protocols must be identified, studied, and potentially
adapted for the proposed infrastructure. Second, the composition of IoT device
groups should be enabled by distributed computing mechanisms. Third, once
these groups have been defined for a specific application or query, data process-
ing should occur in an efficient manner throughout the system through proper
resource allocation and scheduling mechanisms.

3.3 Architecture Instantiation

It is known that effective mechanisms addressing stacked fog layers (cloudlets)
constitutes still a challenge and open issue [4], since a universal standard of
multi-layered fog computing architecture has not yet been adopted. We address
this issue by considering data privacy aspects as inherent to a multi-layered fog
architecture, in which resource allocation mechanisms are needed to efficiently
process privacy-sensitive information.

Indeed, Fog computing technology enables the deployment of cloud-like com-
puting services at the edge of the network. Fog-aware mechanisms and procedures
to implement efficient resource management for applications with different lev-
els of latency requirements remains a non trivial challenge [18]. Several efforts
have addressed this body of work to provide a latency-driven fog computing
environment for IoT applications using only one fog layer (i.e. cloudlets, micro
data centres, or fog nodes) between the edge and the cloud (as illustrated in the
proposed fog-cloud topology in Figure 1) [32,3,34,26].

Next, it is common knowledge that some architectures [27] for IoT assume
that infrastructural elements in fog and edges are trusted entities. Thus, to pre-
serve data privacy, those architectures may adopt data randomisation techniques
such as differential privacy [8] based on a trust curator model [29]. But, in a
complete untrustworthy component model, which is at the centre of our consid-
erations, infrastructural components are not necessarily assumed to be trusted
entities, so they should not access sensible data. We propose hence that our
model should adopt techniques of secure multi-party computation to preserve
data privacy.

Adoption of these techniques will have a direct impact on resource usage
adequacy for IoT, in terms of processing power and exchanged messages among



devices. In particular, they produce a huge increase in both the length and the
number of messages, so they should be adapted to large-scale scenarios with IoT.

Finally, for the deployment of these protocols, end-to-end automated systems
for deploying large-scale SMPC protocols between end users, called MPSaaS
(acronym for system-as-a-service) have been designed and tested [2].

4 Preliminary Results and Discussion

In the field of smart homes with IoT, secure communications between smart
devices endowed with low computational capabilities and a home gateway are
frequently established via unsecured wireless communication channels. In [5] we
explored secure data transfer generated by IoT using standard Diffie-Hellman
secret sharing which can be applied via buffering to higher throughput commu-
nications. Our assumptions were that at setup both the user and the gateway
have enough processing power to perform - say - one time secured RSA encrypted
communication, hence relaxing the need for a trusted secure server outside the
domain, and that the protocol should at least be secure for a range of known
attacks, as replay or DoS attacks. In turn, the approach failed impersonation
attacks via Man in the Middle (MiM) so that a possible way out may lie in the
implementation of SMPC as proposed in the architecture proposed here, since
authentication would require a consensus (for example defined using Shamir’s
secret schem) to be build upon trusted devices. Hence, as mentioned above, joint
computation of trust among parties can be performed by matrix multiplication,
as in [6], where we proposed an ad hoc Strassen-Winograd multiplication protocol
that use a combination of partial homomorphic encryption schemes and additive
masking techniques together with a (novel) schedule for the location and encryp-
tion layout of all intermediate computations, such that privacy is preserved. It
turned out that the asymptotic communication volume and computational time
was reduced from O(n3) to O(n2.81).

Thus, the main challenge now is to incorporate the developed protocols to
the proposed computing hierarchy. This involves the prior study of performance
of devices from the edge to the cloud to evaluate the possible ways of allocating
resources for protocol processing and also assess communication costs. As a
second step, evaluating the performance of the protocols in a real-world scenario,
considering requirements as the amount of data inputs and needed response time
(e.g. in the pandemics scenario described in Section 3), is key for establishing
limitations and pinpoint where research must be focused to enable performance-
effective multiparty computation at the edge.

This involves developing optimization algorithms for dynamic grouping or
clustering, as presented in Figure 2, which should consider multiparty computa-
tion aspects both in terms of privacy and response times: a too large set of IoT
devices may impair performance for response time, while a too small set may
result in poor output for the application requiring data collection and processing.



5 Related work

A set of requirements for privacy preservation mechanisms in the context of
distributed and ubiquitous environments, such as in the IoT, was presented in
[1]. Among those requirements, they highlight the importance of ensuring privacy
of the outputs of SMPC, which may be as important as the privacy of the inputs
(as normally targeted in SMPC approaches), since data profiling might be used
to de-anonymize the inputs or obtain sensitive information about the parties.

We address this issue to some extent, as the outputs at a lower level of
the hierarchy are handled as inputs to the immediate upper level, and thus are
subject to the usual privacy requirement. It remains to assess the effects of such
privacy handling in relation to the use of the intermediate outputs for answering
localised queries in a multi-layered fog architecture.

Some architectures for IoT assume that infrastructural elements in fog and
edges are trusted entities [27]. Thus, to preserve data privacy, those architectures
adopt data anonymization techniques such as differential privacy [8] based on a
trust curator model [29]. In an untrusted component model, which is the center
of this proposal, infrastructural components are not assumed as trusted entities
so they should not access sensible data. This model usually adopts techniques
of secure multi-party computation to preserve data privacy.

In IoT, the adoption of those techniques differs in terms of the mechanism
for privacy preservation, resource usage adequacy and the architectural-style for
IoT platforms. The mechanisms for privacy preservation vary from differential
privacy [8], homomorphic encryption (partial or full) [10] and secure multi-party
computation. Adoption of those techniques have a direct impact on resource us-
age adequacy for IoT, but also in terms of requirements of processing power and
exchanged messages among devices. In particular, they produce a huge increase
in the length and number of messages, so they should be adapted (e.g. [2]) to
be applied in large-scale scenarios of IoT. Section 2.2 above discusses relevant
approaches for privacy preservation in the IoT.

The architectural-style of an IoT platform may be exploited to satisfy re-
source limitations (e.g., processing power) or to decrease the number of dis-
seminated messages, by transferring processing from devices or servers to in-
termediary components. Approaches of privacy preservation for IoT assume ar-
chitectures such as cloud-based [2] platforms, mixed-mesh [36] networks, edge
networks [11], fog [31], and mixed architectures with trusted entities [1]. In par-
ticular, fog and edge-fog architectures allow multiple levels of processing and
they are more adaptable to the dynamicity and diversity of IoT devices. We
hypothesize that fog-edge architectures allow the development of efficient pri-
vacy preservation techniques, in terms of exchanged messages and distributed
processing power.

6 Conclusions and future work

This work presented the main concepts and initial findings about the design
and evaluation of privacy preserving protocols in an IoT-Fog-Cloud ecosystem



computing hierarchy. We briefly discussed how this can be applied in a scenario
as the present times of pandemics, but also covered general aspects that need
attention for a generalized application of privacy-preserving mechanisms at the
edge of the network.

We considered the paradigms of Fog and Edge computing, together with
a multi-party computation mechanism to enable secure privacy-preserving data
processing at the edge. The proposed architecture demands further developments
in terms of understanding performance limitations and also in terms of resource
allocation for data collection and processing of multiparty computation proto-
cols, which can be the focus for further research. Also, the formalization of the
proposal, with the modeling of inputs and outputs for multiparty computation
at the edge, is a key future work to enable proper evaluation of efficiency and
limitations of the proposal.
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