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  ABSTRACT 

           The Internet of Things (IoT) Cloud is an emerging technology that enables 
machine-to-machine, human-to-machine and human-to-human interaction through the 
Internet. IoT sensor devices tend to generate sensory data known for their dynamic and 
heterogeneous nature. Hence, it makes it elusive to be managed by the sensor devices 
due to their limited computation power and storage space. However, the Cloud 
Infrastructure as a Service (IaaS) leverages the limitations of the IoT devices by 
making its computation power and storage resources available to execute IoT sensory 
data. In IoT-Cloud IaaS, resource allocation is the process of distributing optimal 
resources to execute data request tasks that comprise data filtering operations. 
Recently, machine learning, non-heuristics, multi-objective and hybrid algorithms 
have been applied for efficient resource allocation to execute IoT sensory data filtering 
request tasks in IoT-enabled Cloud IaaS. However, the filtering task is still prone to 
some challenges. These challenges include global search entrapment of event and error 
outlier detection as the dimension of the dataset increases in size, the inability of 
missing data recovery for effective redundant data elimination and local search 
entrapment that leads to unbalanced workloads on available resources required for task 
execution. In this thesis, the enhancement of Non-Parametric Sequence Learning (N-
PSL), Perceptually Important Point (PIP) and Efficient Energy Resource Ranking- 
Virtual Machine Selection (ERVS) algorithms were proposed. The Non-Parametric 
Sequence-based Agglomerative Gaussian Mixture Model (NPSAGMM) technique 
was initially utilized to improve the detection of event and error outliers in the global 
space as the dimension of the dataset increases in size. Then, Perceptually Important 
Points K-means-enabled Cosine and Manhattan (PIP-KCM) technique was employed 
to recover missing data to improve the elimination of duplicate sensed data records. 
Finally, an Efficient Resource Balance Ranking- based Glow-warm Swarm 
Optimization (ERBV-GSO) technique was used to resolve the local search entrapment 
for near-optimal solutions and to reduce workload imbalance on available resources 
for task execution in the IoT-Cloud IaaS platform. Experiments were carried out using 
the NetworkX simulator and the results of N-PSAGMM, PIP-KCM and ERBV-GSO 
techniques with N-PSL, PIP, ERVS and Resource Fragmentation Aware (RF-Aware) 
algorithms were compared. The experimental results showed that the proposed N-
PSAGMM, PIP-KCM, and ERBV-GSO techniques produced a tremendous 
performance improvement rate based on 3.602%/6.74% Precision, 9.724%/8.77% 
Recall, 5.350%/4.42% Area under Curve for the detection of event and error outliers. 
Furthermore, the results indicated an improvement rate of 94.273% F1-score, 0.143 
Reduction Ratio, and with minimum 0.149% Root Mean Squared Error for redundant 
data elimination as well as the minimum number of 608 Virtual Machine migrations, 
47.62% Resource Utilization and 41.13% load balancing degree for the allocation of 
desired resources deployed to execute sensory data filtering tasks respectively. 
Therefore, the proposed techniques have proven to be effective for improving the load 
balancing of allocating the desired resources to execute efficient outlier (Event and 
Error) detection and eliminate redundant data records in the IoT-based Cloud IaaS 
Infrastructure 
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ABSTRAK 

            Awan Internet-Benda (IoT-Cloud) adalah teknologi yang muncul yang membolehkan 
interaksi mesin-ke-mesin, manusia-ke-mesin dan manusia-ke-manusia melalui Internet. 
Peranti deria IoT cenderung menghasilkan data deria yang dikenali dengan sifatnya yang 
dinamik dan heterogen. Oleh itu, sukar untuk dikendalikan oleh peranti deria kerana kuasa dan 
ruang penyimpanan yang terhad. Walau bagaimanapun, Awan Infrastruktur-sebagai-
Perkhidmatan (IaaS-Cloud) memanfaatkan batasan peranti IoT dengan menjadikan kuasa 
komputeran dan sumber penyimpanannya tersedia untuk melaksanakan data deria IoT. Dalam 
IaaS IoT-Cloud, peruntukan sumber adalah proses pengagihan sumber yang optimum untuk 
melaksanakan tugas permintaan data yang terdiri daripada operasi penyaringan data. Baru-
baru ini, algoritma pembelajaran mesin, bukan-heuristik, pelbagaiobjektif dan hibrid telah 
digunakan untuk peruntukan sumber yang cekap untuk melaksanakan tugas permintaan 
penyaringan data sensori IoT dalam IaaS-Cloud Terpasang-IoT. Walau bagaimanapun tugas 
penyaringan masih tertakluk kepada beberapa cabaran. Cabaran ini merangkumi perangkap 
carian global untuk pengesanan pengganjil peristiwa dan kesalahan kerana dimensi set data 
meningkat dalam ukuran, ketidakupayaan pemulihan data yang hilang untuk penghapusan data 
bertindih yang berkesan dan perangkap carian tempatan yang membawa kepada beban kerja 
yang tidak seimbang pada sumber daya yang sedia ada yang diperlukan untuk pelaksanaan 
tugas. Dalam tesis ini, penambahbaikan algoritma Pembelajaran Jujukan Bukan-Parametrik 
(N-PSL), Titik Penting Persepsi (PIP) dan Pemeringkatan Sumber Tenaga Efisien–Pemilihan 
Mesin Maya (ERVS) dicadangkan. Teknik Model Campuran Gaussian Agglomeratif 
berasaskan-Jujukan Bukan-Parametrik (NPSAGMM) pada awalnya digunakan untuk 
meningkatkan pengesanan pengganjil peristiwa dan ralat di ruang global apabila dimensi set 
data meningkat. Setelah itu, teknik Titik Penting Persepsi Terpasang-K-means Cosine dan 
Manhattan (PIP-KCM) digunakan untuk mengembalikan data yang hilang untuk memperbaiki 
penghapusan data bertindih yang dikesan. Akhirnya, teknik Baki Sumber yang Cekap 
Berasaskan Kedudukan Berasaskan Teknik Pengoptimuman Swarm (ERBV-GSO) digunakan 
untuk menyelesaikan perangkap carian tempatan untuk penyelesaian hampir optimum dan 
untuk mengurangkan ketidakseimbangan beban kerja pada sumber yang ada untuk 
pelaksanaan tugas dalam platform Awan-IoT IaaS. Eksperimen dijalankan menggunakan 
simulator NetworkX dan hasil perbandingan teknik N-PSAGMM, PIP-KCM dan ERBV-GSO 
dengan algoritma NPSL, PIP, ERVS dan Pemecahan sumber sedar (RF-Aware). Hasil 
eksperimen menunjukkan bahawa teknik N-PSAGMM, PIP-KCM, dan ERBV-GSO yang 
dicadangkan menghasilkan kadar peningkatan prestasi yang cemerlang berdasarkan kepada 
ketepatan 3.602%/6.74%, KETAHUI 9.724%/8.77%, Kawasan di bawah Lengkung 
5.350%/4.42% untuk mengesan pengganjil peristiwa dan kesalahan. Selanjutnya, hasil 
menunjukkan kadar peningkatan 94.273% skor F1, Nisbah Pengurangan 0.143 dengan 
minimum 0.149% Ralat Root Ralat Squared untuk penghapusan data bertindih serta bilangan 
minimum 608 perpindahan Mesin Maya, 47.62% Penggunaan Sumber dan 41.13% tahap 
pengimbangan beban untuk peruntukan sumber yang diinginkan digunakan untuk 
melaksanakan tugas penyaringan data sensori masing-masing. Oleh itu, teknik yang 
dicadangkan telah terbukti berkesan untuk meningkatkan keseimbangan beban 
memperuntukkan sumber yang diinginkan untuk pelaksanaan pengesanan pengganjil 
(Peristiwa dan Kesalahan) yang efisien dan penghapusan catatan data bertindih dalam 
Infrastruktur Awan IaaS yang berasaskan IoT. 
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CHAPTER 1  

INTRODUCTION 

1.1 Overview 

The integration of the Internet of Things (IoT)-based Cloud computing is an 

emerging ubiquitous network infrastructure, offering diverse distributed and 

transparent services in most computing applications. Smart devices such as sensors, 

micro-controllers, mobile phones, servers designated at local sites, and the cloud can 

interact with one another due to this new integrated technology. As the popularity and 

extensive use of IoT-cloud increases over the years, IoT sensory data are generated, 

and various IoT-cloud applications are implemented to deliver desired services to end-

users across the globe. IoT sensors can sense, pre-process, store and transmit sensed 

data directly to the Internet without any human intervention. IoT sensor nodes do not 

interact with each other or Internetwork to transmit their sensed data to a connected 

sink node, unlike Wireless Sensor Network (WSN) nodes. However, IoT sensors do 

not have the computation power and storage required to process and store IoT sensing 

data characterized by dynamicity and heterogeneity. This challenge is resolved with 

the support of the cloud`s heterogeneous processing power and storage resources, 

which led to integrating IoT and Cloud computing.  

Cloud resources can be accessed at anytime, anywhere for the storing and 

processing of IoT sensed IoT sensed data and applications over the Internet. Three 

service models are accessible on the cloud, namely, Infrastructure-as-a-Service (IaaS), 

Software-as-a-Service (SaaS) and Platform-as-a-Service (PaaS). The IaaS is made of 

enormous computing resources managed by IaaS providers that allocate resources to 

clients on a pay-as-you-go basis. IoT sensing data management, application systems 

to high-performance computing applications.  Resources such as Servers, Virtual 

Machine (VM), CPU, networks, and storage systems (hard disks and memory) are 

available and accessible on IaaS to manage workloads, ranging from IoT sensing data 



 

2 

management to application systems high-performance computing applications.  Figure 

1.1 illustrates the architecture of IoT-based Cloud computing infrastructure. It 

comprises three layers beginning from the IoT sensor device layer that generates 

various sensor data to be transmitted directly to the cloud. The network layer devices 

are introduced to minimize the occurrences of latency delay during data transmission 

from IoT sensors to the cloud data-center. The upper layer consists of the cloud 

platform where sensed data retrieved are stored and processed.  

 

 

 

Figure 1.1 IoT-based Cloud Computing Architecture 
 
 

The allocation of resources to execute IoT sensory data's filtering process is a 

critical challenge for Infrastructure-as-a-Service (IaaS) in cloud computing. Also, the 

filtering processes of IoT sensed data entails the utilization of algorithms. 

Implementing an algorithm required for practical IoT sensed data filtering is of great 

importance. Efficient resource allocation is the "optimal selection of desired resources 

(e.g., Servers and Virtual Machines) from the resource pool, required to execute the 

data filtering or application request tasks/cloudlets on the IaaS cloud platform. 

Data filtering is known as the process of defining, detecting and correcting or 

eliminating errors or duplicates in raw data samples to reduce the impact on succeeding 

analysis. Filtering algorithms are the techniques and procedures to tackle the filtering 

issues in applications to obtain its effectiveness, although it might not always be 
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attainable. In the last few decades, machine and deep learning algorithms are highly 

recognized algorithms for effective filtering of IoT sensed data in various areas of 

engineering, health, computing, geo-informatics, bio-informatics and signal 

processing. Furthermore, an efficient resource allocation algorithm is required to select 

optimal resources in IaaS cloud to execute the data filtering requests tasks for better 

performance.  

Non-parametric Sequence Learning (N-PSL) and Perceptually Important Point 

(PIP) algorithms are unsupervised machine learning techniques capable of data 

filtering. Existing studies confirmed that N-PSL and PIP are reliable and performs 

better in terms of outlier detection and elimination of data redundancy than current 

machine learning algorithms, including the Linear Discriminate Analysis (LDA), 

Support Vector Machine (SVM), Wavelet Transform (WT) and Principal Component 

Analysis (PCA). Also, N-PSL is deployed in multi-discipline researches such as 

Zhou et al.,(2018), Mallor et al.,(2017), Andersson et al., (2016), Neely et al.,(2012), 

Timm and Barth (2011) and Chen et al., (2010). On the other hand, the Energy-

efficient Resource Ranking-based Virtual Machine Selection (ERVS) algorithm is 

adapted to allocate resources to execute tasks. Its adaption is attributed to its ability to 

balance workloads on running physical machines (PMs). Thus, VMs (tasks) can be 

migrated from overloaded PMs to under-loaded PMs to minimize the workload 

imbalance on running PMs.  

1.2 Problem Background 

Sensed data is mainly generated by multiple IoT sensor devices embedded in 

the environment which they sense. IoT sensory data's main characteristic is inaccurate 

sensing due to several limitations such as unreliable reading that leads to data 

anomalies or outliers. Also, the data's dynamic nature is a result of a large amount of 

data generated from multiple sensors in real-time, which leads to redundant data 

records. Conversely, the increase in demand for IaaS resources in the cloud leads to 

load balancing challenges due to inefficient resource allocation to execute IoT sensed 

data filtering or application request tasks, both in static and real-time.   



 

4 

Data outliers are mainly of two types, namely event and error outliers, which 

are common in sensing data readings. An event outlier is when there is a sudden change 

in data readings triggered by unexpected circumstances. On the other hand, an error 

outlier is regarded as the data point that diverges significantly away from other data 

points caused by faulty sensor readings, as depicted in Figure 1.2.  

 

 

 

 

  Figure 1.2 Example of Event and Error Outliers 
 

An example of an event outlier can be discovering sudden gas leakage from a 

cylinder container, the discovery of unauthorized persons gaining access to prohibited 

company's files, and the detection of abnormality in a patient's health status. Therefore, 

event outliers are very important in all areas of research field due to its capability to 

identify unforeseen events that may be disastrous to human existence on earth. There 

are several filtering techniques deployed for detecting outliers in sensory data, 

generated by IoT sensor devices for IaaS cloud computing infrastructure. These 

techniques range from machine learning to deep learning algorithms, implemented in 

the cloud to identify outliers in vast amounts of sensed datasets.  

The detection of event and error outliers is a challenging process due to sensory 

data characteristic (Souza and Amazonas, 2015; Santos et al., 2018). Most of these 

algorithms mainly focus on the generality of outlier detection without considering 

either event or error type of outliers. However, some of the algorithms implemented 

are able to detect both error and event outliers in a reasonable amount of data sample 

such as the research work of Zhang et al. (2013), Kamal et al. (2015), Yu et al. (2017), 
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Santamaria et al. (2018) and Nesa et al. (2018), without considering the heterogeneity 

and dimensionality size of the sensory datasets. Hence, further research is required to 

develop an effective and reliable algorithm for discovering event and error outliers in 

IoT sensing datasets. 

The redundant sensed data records are prevalent in IoT sensory dataset need to 

be filtered out or eliminated, to obtain the actual data required for onward processing. 

The process of eliminating redundant data records from a given data sample involves 

removing all but one of the replica records in the data sample. Figure 1.3 depicts a 

typical redundant data records scenario for more insight. 

 

Figure 1.3 Examples of Duplicate Records in dataset  
 

A critical observation of the dataset records indicates that the dataset is retrieved from 

a single-car due to the ID Number column (i.e., the fifth column highlighted). The 

Report Time column indicates the time at which the contents of the report where 

obtained. Furthermore, the rows marked with yellow have the same Report Time and 

the records appeared to be identical. Hence, records in the yellow background are 

regarded as redundant or duplicate records. The solution is to eliminate all but leaving 

one of the records with a similar report time.  

 

An effective filtering algorithm is required to eliminate the redundant sensed 

data records with optimality solutions. Most of the algorithms developed by existing 

researchers mainly focus on discovering redundant data records by comparing the 
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features in a dataset. Redundant data is identified when features with similar records 

are discovered. Therefore, identical features are eliminated from the dataset. This type 

of procedure is not very effective in IoT sensing-based IaaS Cloud computing 

environment due to the unstructured pattern of sensed data generated by IoT sensors 

on real-time basis (Xie and Chen 2017; Doghman et al., 2017). Therefore, the filtering 

process that considers eliminating identical sensed data records or points from a given 

dataset is required for onward research. 

Due to the high demand of IaaS resource usage and challenges of allocating 

them in cloud data-center, scheduling of resources for the execution of IoT sensed data 

filtering operations in IoT-based cloud computing has attracted researchers' attention 

in recent times. Load balancing is one of the significant issues in IoT-based IaaS Cloud 

computing infrastructure (Ghomi et al., 2017). It is the process of allocating and 

reallocating the workload among available resources to maximize throughput while 

minimizing the cost and response time, improving performance and resource 

utilization as well as the reduction of energy consumption (Priyanka et al., 2016; 

Goyal et al., 2016; Ghomi et al., 2017). Figure 1.4 illustrates a general picture of the 

loading balancing procedure in the cloud data center. 

 
Figure 1.4 An Example of Load Balancing Model 

 

Various Non-heuristics, hybrid and multi-objective algorithms have been 

deployed to resolve the load balancing problem, which produces optimal solutions for 

large size problems in the research work of Abed and Yunis (2019), Muhiudin and 
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Almogren (2019), Makala and Viswanathan (2019), Xavier and Annadura (2018), 

Jing et al., (2018), Hallawi et al., (2017), Chen and Chen (2017) and Yu et al. (2016). 

However, the performance level of algorithms reduces as the problem size increases. 

Therefore, further research is required to improve the performance of existing 

algorithms for optimal solutions for large size problems due to local space entrapment 

in IoT-based Cloud IaaS environment.  

In IoT-based Cloud IaaS computing, effective and efficient data filtering with 

the support of optimized resource allocation algorithms is necessary to retrieve useful 

information with minimum resource utilization and computation time. Ways to filter 

sensing data during acquisition depend on various aspects such as the dynamicity of 

data, the volume of data generated over time, the issues related to the filtering process, 

the availability of storage and computation resources to store and execute the data 

filtering operation. Other issues are either the communication distance between the 

IoT sensing environmental coverage and the cloud IaaS location or cloud resource 

demand variation by end-users. 

 The problem leading to the research, as demonstrated in Figure 1.5, highlights 

the significant requirements that should be given thorough attention. The existing 

algorithms used in IoT-based IaaS Cloud computing infrastructure cannot guarantee 

the global search of detecting event and error outlier as the dimension of the sensory 

dataset increases in size, not considering the missing data effect that impedes the 

elimination of redundant sensory data records to obtain relevant data ones. They also 

suffer from inefficient load balancing of available resource allocation due to local 

entrapment. These challenges affect the users’ expectations in terms of recall, 

precision and area under curve for event/error outlier predictions, retrieval of useful 

data that is free from redundancies that ensure improved reduction ratio, f1-score with 

minimum root mean squared error. Also, satisfying the cloud service provider’s 

objectives, such as optimal workload balancing of active resources with a minimum 

number of virtual machine migration and resource utilization. 
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Figure 1.5 Problem Leading to Research 

 

Global search is the ability to explore the search to cover as much distance as 

possible to obtain new or best solutions within the search space. Finding the efficient 

algorithm with high scalability to converge in the discovering of both event and error 

outliers in IoT sensed datasets is challenging. Existing researches in this field are yet 

to address the challenge of global entrapment that often leads to ineffective outliers 

(event/error) detection in IoT sensed datasets.  The unsupervised clustering and outlier 

factor algorithms can help resolve this challenge and provide better performance at the 

global optimal IoT sensed dataset region.  

In IoT-based cloud computing, redundant data records in IoT sensed datasets 

are mostly considered irrelevant data that utilizes huge storage space. Consequently, 

“without the recovery of missing data records in the datasets before embarking on 

redundant records elimination leads to removing some relevant data together with 

redundant records” (Gong et al., 2016; Feng et al., 2017). Missing data causes 

similarity data record mismatched subsequences during the redundant identification 

process. Therefore, a technique that can recover missing data before the elimination of 
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redundant data records is required. The unsupervised imputation algorithm can be 

deployed for missing data recovery to eliminate redundant data records.  

Local search space is searching for a neighborhood solution, continuously 

finding it challenging to obtain a near-optimal solution and deciding to attain its 

iteration limits. Local search often leads to poor convergence with high computation 

time. Therefore, a meta-heuristic algorithm that can optimize the local search for a 

near-optimal solution is highly needed for better resource load balancing performance 

on the cloud datacenter.  

1.3 Problem Statement 

IoT Sensory data filtering processes with the support of resource allocation 

strategy for IaaS in cloud computing infrastructure is considered a critical challenge. 

The filtering process is composed of two scenarios known as outlier detection and 

elimination of redundant data. Outliers (event and error) and redundant data records 

are usually classified as unwanted data. However, outliers are often predicted due to 

their usefulness, whereas redundant ones are eliminated out rightly from a given 

dataset. The detection of outliers (event and error) and eliminating redundant data are 

addressed by utilizing suitable algorithms, including machine and deep learning 

algorithms. Also, suitable algorithms are required to address the unbalanced workload 

of IaaS in the cloud, which includes non-heuristics and meta-heuristic algorithms. The 

results generated by the filtering and resource allocation algorithms depict the 

computation complexities of the input size objective functions.  Therefore, effective 

filtering and efficient resource allocation techniques are necessary to resolve the 

abovementioned challenges in IoT-based Cloud IaaS infrastructure.  

Some of the existing researches consider the detection of error and event 

outliers in a given dataset instead of the majority of them that mainly focus on the 

generality of outlier detection. The Non-parametric Sequence Learning (N-PSL) 

algorithm is deployed for detection event and error outliers with some significant 

performance improvement rate in terms of Accuracy, Specificity, Recall, Precision, 
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False Positive Rate and Area under Curve. However, as the dimension of the dataset 

increases in size (i.e. 16 attributes and 51,500 objects), the performance rate of N-PSL 

algorithm degrades or becomes sub-optimal based on outlier (event/error) detection 

with the output of 69.849%/78.719% Recall, 57.590%/75.895% Precision and 

81.633%/89.082% Area under Curve. This is due to its weaknesses in global space 

search for event and error outlier detection as the dimension of the dataset increases 

with numerous data irregularities. Therefore, a machine learning technique is critically 

needed to resolve the above-mentioned challenges to enhance the N-PSL algorithm's 

performance rate based on Recall, Precision and Area under Curve.  

 It is imperative to establish the correlation between sensed data records 

according to their timestamp to eliminate redundant ones from the whole dataset 

effectively.  Due to the unstructured nature of IoT sensing data records generated 

overtime. The Perceptually Important Points (PIP) algorithm considers the similarity 

between data records and produces substantial performance results before and after 

eliminating redundant sensed data records. Nevertheless, as a weakness of eliminating 

relevant or useful data points together with redundant ones due to missing data in a 

given dataset. This leads to its sub-optimal performance rate based on F1-score, 

Reduction ratio and Root mean squared error. Therefore, an imputation technique is 

highly needed to handle missing data to improve the PIP algorithm's performance rate 

in terms F1-score, Reduction ratio Root mean squared error.  

Conversely, the computation complexity of IoT sensed data filtering operations 

increases exponentially as their workload size increases. However, the existing non-

heuristic, hybrid and multi-objective algorithms have produced better performance in 

exploring global and local search space in the available IaaS computation resources. 

However, the Energy-efficient Resource Ranking- based Virtual Machine Selection 

(ERVS) algorithm is still caught up in local search entrapment resulting in sub-optimal 

performance results. Therefore, the technique that can improve the local search space 

is highly needed to enhance the performance rate of ERVS algorithm in terms of 

Resource utilization, VM migration and Load balancing degree.  
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1.4 Research Questions 

In view of the above discussion, the following research questions are presented 

towards attaining the research objectives of this research work: 

i. How to avoid global optima for the performance improvement rates of event 

and error outlier detection as the dimension of sensed dataset increases in size? 

 

ii. How to recover missing data before and after elimination of redundant sensed 

data records for optimal solutions? 

 

iii. How to avoid the local optima to minimize workload imbalance of resources 

and enhance optimality solutions for resource allocation optimization?  

1.5 Research Goal 

This research aims to achieve optimal sensed data filtering-enabled resource 

allocation techniques that are efficient to explore global search for the detection of 

error and event outliers, recovery of missing data for redundant sensed data record 

elimination, and avoid local optima for optimal resource solution. 

1.6 Research Objectives 

This study mainly focuses on implementing IoT sensed data filtering and 

resource allocation techniques for IaaS Cloud computing infrastructure. Three 

objectives are established as: 

i. To develop a Non-parametric Sequence Agglomerative Gaussian Mixture 

Model (N-PSAGMM) technique to minimize global search for improving 

event and outlier detection based on precision, recall and area under curve.  
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ii. To develop a Perceptually Important Point-enabled K-means Imputation (PIP-

KCM) technique to recover missing data for improving the elimination of 

redundant data records in terms of reduction ratio, f1-score with minimum root 

mean squared error. 

 

iii. To develop an Efficient Resource Balanced Ranking Virtual Machine 

Selection-based Glowworm Swarm Optimization (ERBV-GSO) technique for 

avoiding local optima to minimize the unbalanced workload, number of VM 

migration and resource utilization of available IaaS resources.   

1.7 Research Scope 

The scope of this research work is as follows: 
 

i. This research considers the performance improvement rates based on 

precision, recall and area under curve to detect event and error outliers. Also, 

the performance improvement rates in terms of f1-score, reduction ratio with 

minimum root mean squared error for effective elimination of redundant 

sensory data records as well as load balancing degree, number of virtual 

machine migrations and resource utilization for optimal workload balancing on 

available resources for the execution tasks in IoT sensing-based IaaS Cloud 

computing infrastructure.  

 

ii. All benchmarks and datasets are generated from the University of California 

(UCI) machine learning repository, except one that was retrieved from a 

laboratory. 

 

iii. It also considers dependent and independent workload using a data-center 

Aware Round Robin load balancing Policy for resource allocation.  
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The physical and virtualization of IoT sensor devices, gateways and 

communication network bandwidth, Software-as-a-Service (SaaS) and Platform-as-a-

Service (PaaS) issue are out of the scope of this research.  

1.8 Thesis Organization 

The structure of the remaining thesis is outlined as follows:  

 

Chapter 2 presents a detailed description of previous and related research 

works. It explicitly shows the position of the research from previous literature. This 

chapter also briefly discusses the literature that has deployed the Non-parametric 

Sequence Learning (N-PSL) algorithm in resolving several challenges in other 

research fields. Chapter 3 describes the research methodology of the work. It is 

categorized into three research phases. The first phase comprise of the research 

background, preparation and planning. The second phase presents the design and 

development of effective filtering and efficient resource allocation techniques 

according to the set objectives of this research work. The third phase is made up of 

testing, performance evaluation and validation of the proposed techniques of this 

research. Chapter 4 presents the implementation of the filtering techniques, namely N-

PSAGMM and PIP-KCM. The proposed filtering techniques are formulated based on 

the Non-parametric Sequence Learning (N-PSL) and Perceptually Important Points 

algorithms. Also, experimentation and analysis of results for the proposed techniques 

and comparing them with related existing filtering techniques. Chapter 5 presents the 

implementation of the resource allocation technique namely ERVB-GSO. A detailed 

description of how the proposed technique is designed and developed is depicted in 

this chapter. Experimentation and discussion of results, as well as comparing its 

performance with other existing resource allocation algorithms, are also presented. 

Chapter 6 presents the conclusion, a brief discussion of this research's contributions 

and suggests future directions. It also presents the achievements of the set objectives 

and the comparative performance evaluati
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