344 research outputs found

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    Green demand aware fog computing : a prediction-based dynamic resource provisioning approach

    Get PDF
    Fog computing could potentially cause the next paradigm shift by extending cloud services to the edge of the network, bringing resources closer to the end-user. With its close proximity to end-users and its distributed nature, fog computing can significantly reduce latency. With the appearance of more and more latency-stringent applications, in the near future, we will witness an unprecedented amount of demand for fog computing. Undoubtedly, this will lead to an increase in the energy footprint of the network edge and access segments. To reduce energy consumption in fog computing without compromising performance, in this paper we propose the Green-Demand-Aware Fog Computing (GDAFC) solution. Our solution uses a prediction technique to identify the working fog nodes (nodes serve when request arrives), standby fog nodes (nodes take over when the computational capacity of the working fog nodes is no longer sufficient), and idle fog nodes in a fog computing infrastructure. Additionally, it assigns an appropriate sleep interval for the fog nodes, taking into account the delay requirement of the applications. Results obtained based on the mathematical formulation show that our solution can save energy up to 65% without deteriorating the delay requirement performance. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    A Comprehensive Survey on the Cooperation of Fog Computing Paradigm-Based IoT Applications: Layered Architecture, Real-Time Security Issues, and Solutions

    Get PDF
    The Internet of Things (IoT) can enable seamless communication between millions of billions of objects. As IoT applications continue to grow, they face several challenges, including high latency, limited processing and storage capacity, and network failures. To address these stated challenges, the fog computing paradigm has been introduced, purpose is to integrate the cloud computing paradigm with IoT to bring the cloud resources closer to the IoT devices. Thus, it extends the computing, storage, and networking facilities toward the edge of the network. However, data processing and storage occur at the IoT devices themselves in the fog-based IoT network, eliminating the need to transmit the data to the cloud. Further, it also provides a faster response as compared to the cloud. Unfortunately, the characteristics of fog-based IoT networks arise traditional real-time security challenges, which may increase severe concern to the end-users. However, this paper aims to focus on fog-based IoT communication, targeting real-time security challenges. In this paper, we examine the layered architecture of fog-based IoT networks along working of IoT applications operating within the context of the fog computing paradigm. Moreover, we highlight real-time security challenges and explore several existing solutions proposed to tackle these challenges. In the end, we investigate the research challenges that need to be addressed and explore potential future research directions that should be followed by the research community.©2023 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    SMCP: a Secure Mobile Crowdsensing Protocol for fog-based applications

    Get PDF
    The possibility of performing complex data analysis through sets of cooperating personal smart devices has recently encouraged the definition of new distributed computing paradigms. The general idea behind these approaches is to move early analysis towards the edge of the network, while relying on other intermediate (fog) or remote (cloud) devices for computations of increasing complexity. Unfortunately, because both of their distributed nature and high degree of modularity, edge-fog-cloud computing systems are particularly prone to cyber security attacks that can be performed against every element of the infrastructure. In order to address this issue, in this paper we present SMCP, a Secure Mobile Crowdsensing Protocol for fog-based applications that exploit lightweight encryption techniques that are particularly suited for low-power mobile edge devices. In order to assess the performance of the proposed security mechanisms, we consider as case study a distributed human activity recognition scenario in which machine learning algorithms are performed by users’ personal smart devices at the edge and fog layers. The functionalities provided by SMCP have been directly compared with two state-of-the-art security protocols. Results show that our approach allows to achieve a higher degree of security while maintaining a low computational cost

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    Fog computing security and privacy issues, open challenges, and blockchain solution: An overview

    Get PDF
    Due to the expansion growth of the IoT devices, Fog computing was proposed to enhance the low latency IoT applications and meet the distribution nature of these devices. However, Fog computing was criticized for several privacy and security vulnerabilities. This paper aims to identify and discuss the security challenges for Fog computing. It also discusses blockchain technology as a complementary mechanism associated with Fog computing to mitigate the impact of these issues. The findings of this paper reveal that blockchain can meet the privacy and security requirements of fog computing; however, there are several limitations of blockchain that should be further investigated in the context of Fog computing
    • …
    corecore