6 research outputs found

    A review on orchestration distributed systems for IoT smart services in fog computing

    Get PDF
    This paper provides a review of orchestration distributed systems for IoT smart services in fog computing. The cloud infrastructure alone cannot handle the flow of information with the abundance of data, devices and interactions. Thus, fog computing becomes a new paradigm to overcome the problem. One of the first challenges was to build the orchestration systems to activate the clouds and to execute tasks throughout the whole system that has to be considered to the situation in the large scale of geographical distance, heterogeneity and low latency to support the limitation of cloud computing. Some problems exist for orchestration distributed in fog computing are to fulfil with high reliability and low-delay requirements in the IoT applications system and to form a larger computer network like a fog network, at different geographic sites. This paper reviewed approximately 68 articles on orchestration distributed system for fog computing. The result shows the orchestration distribute system and some of the evaluation criteria for fog computing that have been compared in terms of Borg, Kubernetes, Swarm, Mesos, Aurora, heterogeneity, QoS management, scalability, mobility, federation, and interoperability. The significance of this study is to support the researcher in developing orchestration distributed systems for IoT smart services in fog computing focus on IR4.0 national agend

    Towards the integration of modern power systems into a cyber–physical framework

    Get PDF
    The cyber–physical system (CPS) architecture provides a novel framework for analyzing and expanding research and innovation results that are essential in managing, controlling and operating complex, large scale, industrial systems under a holistic insight. Power systems constitute such characteristically large industrial structures. The main challenge in deploying a power system as a CPS lies on how to combine and incorporate multi-disciplinary, core, and advanced technologies into the specific for this case, social, environmental, economic and engineering aspects. In order to substantially contribute towards this target, in this paper, a specific CPS scheme that clearly describes how a dedicated cyber layer is deployed to manage and interact with comprehensive multiple physical layers, like those found in a large-scale modern power system architecture, is proposed. In particular, the measurement, communication, computation, control mechanisms, and tools installed at different hierarchical frames that are required to consider and modulate the social/environmental necessities, as well as the electricity market management, the regulation of the electric grid, and the power injection/absorption of the controlled main devices and distributed energy resources, are all incorporated in a common CPS framework. Furthermore, a methodology for investigating and analyzing the dynamics of different levels of the CPS architecture (including physical devices, electricity and communication networks to market, and environmental and social mechanisms) is provided together with the necessary modelling tools and assumptions made in order to close the loop between the physical and the cyber layers. An example of a real-world industrial micro-grid that describes the main aspects of the proposed CPS-based design for modern electricity grids is also presented at the end of the paper to further explain and visualize the proposed framework

    Fog Computing Model to Orchestrate the Consumption and Production of Energy in Microgrids

    No full text
    Energy advancement and innovation have generated several challenges for large modernized cities, such as the increase in energy demand, causing the appearance of the small power grid with a local source of supply, called the Microgrid. A Microgrid operates either connected to the national centralized power grid or singly, as a power island mode. Microgrids address these challenges using sensing technologies and Fog-Cloudcomputing infrastructures for building smart electrical grids. A smart Microgrid can be used to minimize the power demand problem, but this solution needs to be implemented correctly so as not to increase the amount of data being generated. Thus, this paper proposes the use of Fog computing to help control power demand and manage power production by eliminating the high volume of data being passed to the Cloud and decreasing the requests’ response time. The GridLab-d simulator was used to create a Microgrid, where it is possible to exchange information between consumers and generators. Thus, to understand the potential of the Fog in this scenario, a performance evaluation is performed to verify how factors such as residence number, optimization algorithms, appliance shifting, and energy sources may influence the response time and resource usage

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors
    corecore