804 research outputs found

    Coop-DAAB : cooperative attribute based data aggregation for Internet of Things applications

    Get PDF
    The deployment of IoT devices is gaining an expanding interest in our daily life. Indeed, IoT networks consist in interconnecting several smart and resource constrained devices to enable advanced services. Security management in IoT is a big challenge as personal data are shared by a huge number of distributed services and devices. In this paper, we propose a Cooperative Data Aggregation solution based on a novel use of Attribute Based signcryption scheme (Coop - DAAB). Coop - DAAB consists in distributing data signcryption operation between different participating entities (i.e., IoT devices). Indeed, each IoT device encrypts and signs in only one step the collected data with respect to a selected sub-predicate of a general access predicate before forwarding to an aggregating entity. This latter is able to aggregate and decrypt collected data if a sufficient number of IoT devices cooperates without learning any personal information about each participating device. Thanks to the use of an attribute based signcryption scheme, authenticity of data collected by IoT devices is proved while protecting them from any unauthorized access

    SMCP: a Secure Mobile Crowdsensing Protocol for fog-based applications

    Get PDF
    The possibility of performing complex data analysis through sets of cooperating personal smart devices has recently encouraged the definition of new distributed computing paradigms. The general idea behind these approaches is to move early analysis towards the edge of the network, while relying on other intermediate (fog) or remote (cloud) devices for computations of increasing complexity. Unfortunately, because both of their distributed nature and high degree of modularity, edge-fog-cloud computing systems are particularly prone to cyber security attacks that can be performed against every element of the infrastructure. In order to address this issue, in this paper we present SMCP, a Secure Mobile Crowdsensing Protocol for fog-based applications that exploit lightweight encryption techniques that are particularly suited for low-power mobile edge devices. In order to assess the performance of the proposed security mechanisms, we consider as case study a distributed human activity recognition scenario in which machine learning algorithms are performed by users’ personal smart devices at the edge and fog layers. The functionalities provided by SMCP have been directly compared with two state-of-the-art security protocols. Results show that our approach allows to achieve a higher degree of security while maintaining a low computational cost

    Internet of things in health: Requirements, issues, and gaps

    Get PDF
    Background and objectives: The Internet of Things (IoT) paradigm has been extensively applied to several sectors in the last years, ranging from industry to smart cities. In the health domain, IoT makes possible new scenarios of healthcare delivery as well as collecting and processing health data in real time from sensors in order to make informed decisions. However, this domain is complex and presents several tech- nological challenges. Despite the extensive literature about this topic, the application of IoT in healthcare scarcely covers requirements of this sector. Methods: A literature review from January 2010 to February 2021 was performed resulting in 12,108 articles. After filtering by title, abstract, and content, 86 were eligible and examined according to three requirement themes: data lifecycle; trust, security, and privacy; and human-related issues. Results: The analysis of the reviewed literature shows that most approaches consider IoT application in healthcare merely as in any other domain (industry, smart cities…), with no regard of the specific requirements of this domain. Conclusions: Future effort s in this matter should be aligned with the specific requirements and needs of the health domain, so that exploiting the capabilities of the IoT paradigm may represent a meaningful step forward in the application of this technology in healthcare.Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía P18-TPJ - 307

    EFFICIENT AND SECURE ALGORITHMS FOR MOBILE CROWDSENSING THROUGH PERSONAL SMART DEVICES.

    Get PDF
    The success of the modern pervasive sensing strategies, such as the Social Sensing, strongly depends on the diffusion of smart mobile devices. Smartwatches, smart- phones, and tablets are devices capable of capturing and analyzing data about the user’s context, and can be exploited to infer high-level knowledge about the user himself, and/or the surrounding environment. In this sense, one of the most relevant applications of the Social Sensing paradigm concerns distributed Human Activity Recognition (HAR) in scenarios ranging from health care to urban mobility management, ambient intelligence, and assisted living. Even though some simple HAR techniques can be directly implemented on mo- bile devices, in some cases, such as when complex activities need to be analyzed timely, users’ smart devices should be able to operate as part of a more complex architecture, paving the way to the definition of new distributed computing paradigms. The general idea behind these approaches is to move early analysis to- wards the edge of the network, while relying on other intermediate (fog) or remote (cloud) devices for computations of increasing complexity. This logic represents the main core of the fog computing paradigm, and this thesis investigates its adoption in distributed sensing frameworks. Specifically, the conducted analysis focused on the design of a novel distributed HAR framework in which the heavy computation from the sensing layer is moved to intermediate devices and then to the cloud. Smart personal devices are used as processing units in order to guarantee real-time recognition, whereas the cloud is responsible for maintaining an overall, consistent view of the whole activity set. As compared to traditional cloud-based solutions, this choice allows to overcome processing and storage limitations of wearable devices while also reducing the overall bandwidth consumption. Then, the fog-based architecture allowed the design and definition of a novel HAR technique that combines three machine learning algorithms, namely k-means clustering, Support Vector Machines (SVMs), and Hidden Markov Models (HMMs), to recognize complex activities modeled as sequences of simple micro- activities. The capability to distribute the computation over the different entities in the network, allowing the use of complex HAR algorithms, is definitely one of the most significant advantages provided by the fog architecture. However, because both of its intrinsic nature and high degree of modularity, the fog-based system is particularly prone to cyber security attacks that can be performed against every element of the infrastructure. This aspect plays a main role with respect to social sensing since the users’ private data must be preserved from malicious purposes. Security issues are generally addressed by introducing cryptographic mechanisms that improve the system defenses against cyber attackers while, at the same time, causing an increase of the computational overhead for devices with limited resources. With the goal to find a trade-off between security and computation cost, the de- sign and definition of a secure lightweight protocol for social-based applications are discussed and then integrated into the distributed framework. The protocol covers all tasks commonly required by a general fog-based crowdsensing application, making it applicable not only in a distributed HAR scenario, discussed as a case study, but also in other application contexts. Experimental analysis aims to assess the performance of the solutions described so far. After highlighting the benefits the distributed HAR framework might bring in smart environments, an evaluation in terms of both recognition accuracy and complexity of data exchanged between network devices is conducted. Then, the effectiveness of the secure protocol is demonstrated by showing the low impact it causes on the total computational overhead. Moreover, a comparison with other state-of-art protocols is made to prove its effectiveness in terms of the provided security mechanisms

    Emerging privacy challenges and approaches in CAV systems

    Get PDF
    The growth of Internet-connected devices, Internet-enabled services and Internet of Things systems continues at a rapid pace, and their application to transport systems is heralded as game-changing. Numerous developing CAV (Connected and Autonomous Vehicle) functions, such as traffic planning, optimisation, management, safety-critical and cooperative autonomous driving applications, rely on data from various sources. The efficacy of these functions is highly dependent on the dimensionality, amount and accuracy of the data being shared. It holds, in general, that the greater the amount of data available, the greater the efficacy of the function. However, much of this data is privacy-sensitive, including personal, commercial and research data. Location data and its correlation with identity and temporal data can help infer other personal information, such as home/work locations, age, job, behavioural features, habits, social relationships. This work categorises the emerging privacy challenges and solutions for CAV systems and identifies the knowledge gap for future research, which will minimise and mitigate privacy concerns without hampering the efficacy of the functions

    Big data reduction framework for value creation in sustainable enterprises

    No full text
    Value creation is a major sustainability factor for enterprises, in addition to profit maximization and revenue generation. Modern enterprises collect big data from various inbound and outbound data sources. The inbound data sources handle data generated from the results of business operations, such as manufacturing, supply chain management, marketing, and human resource management, among others. Outbound data sources handle customer-generated data which are acquired directly or indirectly from customers, market analysis, surveys, product reviews, and transactional histories. However, cloud service utilization costs increase because of big data analytics and value creation activities for enterprises and customers. This article presents a novel concept of big data reduction at the customer end in which early data reduction operations are performed to achieve multiple objectives, such as a) lowering the service utilization cost, b) enhancing the trust between customers and enterprises, c) preserving privacy of customers, d) enabling secure data sharing, and e) delegating data sharing control to customers. We also propose a framework for early data reduction at customer end and present a business model for end-to-end data reduction in enterprise applications. The article further presents a business model canvas and maps the future application areas with its nine components. Finally, the article discusses the technology adoption challenges for value creation through big data reduction in enterprise applications

    A Comprehensive Survey on the Cooperation of Fog Computing Paradigm-Based IoT Applications: Layered Architecture, Real-Time Security Issues, and Solutions

    Get PDF
    The Internet of Things (IoT) can enable seamless communication between millions of billions of objects. As IoT applications continue to grow, they face several challenges, including high latency, limited processing and storage capacity, and network failures. To address these stated challenges, the fog computing paradigm has been introduced, purpose is to integrate the cloud computing paradigm with IoT to bring the cloud resources closer to the IoT devices. Thus, it extends the computing, storage, and networking facilities toward the edge of the network. However, data processing and storage occur at the IoT devices themselves in the fog-based IoT network, eliminating the need to transmit the data to the cloud. Further, it also provides a faster response as compared to the cloud. Unfortunately, the characteristics of fog-based IoT networks arise traditional real-time security challenges, which may increase severe concern to the end-users. However, this paper aims to focus on fog-based IoT communication, targeting real-time security challenges. In this paper, we examine the layered architecture of fog-based IoT networks along working of IoT applications operating within the context of the fog computing paradigm. Moreover, we highlight real-time security challenges and explore several existing solutions proposed to tackle these challenges. In the end, we investigate the research challenges that need to be addressed and explore potential future research directions that should be followed by the research community.©2023 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore