152 research outputs found

    Focusing and Polarization in Intuitionistic Logic

    Get PDF
    A focused proof system provides a normal form to cut-free proofs that structures the application of invertible and non-invertible inference rules. The focused proof system of Andreoli for linear logic has been applied to both the proof search and the proof normalization approaches to computation. Various proof systems in literature exhibit characteristics of focusing to one degree or another. We present a new, focused proof system for intuitionistic logic, called LJF, and show how other proof systems can be mapped into the new system by inserting logical connectives that prematurely stop focusing. We also use LJF to design a focused proof system for classical logic. Our approach to the design and analysis of these systems is based on the completeness of focusing in linear logic and on the notion of polarity that appears in Girard's LC and LU proof systems

    The ILLTP Library for Intuitionistic Linear Logic

    Get PDF
    Benchmarking automated theorem proving (ATP) systems using standardized problem sets is a well-established method for measuring their performance. However, the availability of such libraries for non-classical logics is very limited. In this work we propose a library for benchmarking Girard's (propositional) intuitionistic linear logic. For a quick bootstrapping of the collection of problems, and for discussing the selection of relevant problems and understanding their meaning as linear logic theorems, we use translations of the collection of Kleene's intuitionistic theorems in the traditional monograph "Introduction to Metamathematics". We analyze four different translations of intuitionistic logic into linear logic and compare their proofs using a linear logic based prover with focusing. In order to enhance the set of problems in our library, we apply the three provability-preserving translations to the propositional benchmarks in the ILTP Library. Finally, we generate a comprehensive set of reachability problems for Petri nets and encode such problems as linear logic sequents, thus enlarging our collection of problems

    Polarizing Double Negation Translations

    Get PDF
    Double-negation translations are used to encode and decode classical proofs in intuitionistic logic. We show that, in the cut-free fragment, we can simplify the translations and introduce fewer negations. To achieve this, we consider the polarization of the formul{\ae}{} and adapt those translation to the different connectives and quantifiers. We show that the embedding results still hold, using a customized version of the focused classical sequent calculus. We also prove the latter equivalent to more usual versions of the sequent calculus. This polarization process allows lighter embeddings, and sheds some light on the relationship between intuitionistic and classical connectives

    Kripke Semantics and Proof Systems for Combining Intuitionistic Logic and Classical Logic

    Get PDF
    International audienceWe combine intuitionistic logic and classical logic into a new, first-order logic called Polarized Intuitionistic Logic. This logic is based on a distinction between two dual polarities which we call red and green to distinguish them from other forms of polarization. The meaning of these polarities is defined model-theoretically by a Kripke-style semantics for the logic. Two proof systems are also formulated. The first system extends Gentzen's intuitionistic sequent calculus LJ. In addition, this system also bears essential similarities to Girard's LC proof system for classical logic. The second proof system is based on a semantic tableau and extends Dragalin's multiple-conclusion version of intuitionistic sequent calculus. We show that soundness and completeness hold for these notions of semantics and proofs, from which it follows that cut is admissible in the proof systems and that the propositional fragment of the logic is decidable

    Undecidability of Multiplicative Subexponential Logic

    Get PDF
    Subexponential logic is a variant of linear logic with a family of exponential connectives--called subexponentials--that are indexed and arranged in a pre-order. Each subexponential has or lacks associated structural properties of weakening and contraction. We show that classical propositional multiplicative linear logic extended with one unrestricted and two incomparable linear subexponentials can encode the halting problem for two register Minsky machines, and is hence undecidable.Comment: In Proceedings LINEARITY 2014, arXiv:1502.0441

    Constructive Provability Logic

    Full text link
    We present constructive provability logic, an intuitionstic modal logic that validates the L\"ob rule of G\"odel and L\"ob's provability logic by permitting logical reflection over provability. Two distinct variants of this logic, CPL and CPL*, are presented in natural deduction and sequent calculus forms which are then shown to be equivalent. In addition, we discuss the use of constructive provability logic to justify stratified negation in logic programming within an intuitionstic and structural proof theory.Comment: Extended version of IMLA 2011 submission of the same titl

    A Semantic Framework for Proof Evidence

    Get PDF
    International audienceTheorem provers produce evidence of proof in many different formats, such as proof scripts, natural deductions, resolution refutations, Herbrand expansions, and equational rewritings. In implemented provers, numerous variants of such formats are actually used: consider, for example, such variants of or restrictions to resolution refu-tations as binary resolution, hyper-resolution, ordered-resolution, paramodulation, etc. We propose the foundational proof certificates (FPC) framework for defining the semantics of a broad range of proof evidence. This framework allows both producers of proof certificates and the checkers of those certificates to have a clear formal definition of the semantics of a wide variety of proof evidence. Employing the FPC framework will allow one to separate a proof from its provenance and to allow anyone to construct their own proof checker for a given style of proof evidence. The foundation on which FPC relies is that of proof theory, particularly recent work into focused proof systems: such proof systems provide protocols by which a checker extracts information from the certificate (mediated by the so called clerks and experts) as well as performs various deterministic and non-deterministic computations. While we shall limit ourselves to first-order logic in this paper, we shall not limit ourselves in many other ways. The FPC framework is described for both classical and intuitionistic logics and for proof structures as diverse as resolution refutations, natural deduction, Frege proofs, and equality proofs

    A Tour on Ecumenical Systems

    Get PDF
    Ecumenism can be understood as a pursuit of unity, where diverse thoughts, ideas, or points of view coexist harmoniously. In logic, ecumenical systems refer, in a broad sense, to proof systems for combining logics. One captivating area of research over the past few decades has been the exploration of seamlessly merging classical and intuitionistic connectives, allowing them to coexist peacefully. In this paper, we will embark on a journey through ecumenical systems, drawing inspiration from Prawitz' seminal work [35]. We will begin by elucidating Prawitz' concept of “ecumenism” and present a pure sequent calculus version of his system. Building upon this foundation, we will expand our discussion to incorporate alethic modalities, leveraging Simpson's meta-logical characterization. This will enable us to propose several proof systems for ecumenical modal logics. We will conclude our tour with some discussion towards a term calculus proposal for the implicational propositional fragment of the ecumenical logic, the quest of automation using a framework based in rewriting logic, and an ecumenical view of proof-theoretic semantics
    • …
    corecore