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Benchmarking automated theorem proving (ATP) systems using standardized problem sets is a well-

established method for measuring their performance. However, the availability of such libraries for

non-classical logics is very limited. In this work we propose a library for benchmarking Girard’s

(propositional) intuitionistic linear logic. For a quick bootstrapping of the collection of problems,

and for discussing the selection of relevant problems and understanding their meaning as linear logic

theorems, we use translations of the collection of Kleene’s intuitionistic theorems in the traditional

monograph “Introduction to Metamathematics”. We analyze four different translations of intuitionis-

tic logic into linear logic and compare their proofs using a linear logic based prover with focusing. In

order to enhance the set of problems in our library, we apply the three provability-preserving trans-

lations to the propositional benchmarks in the ILTP Library. Finally, we generate a comprehensive

set of reachability problems for Petri nets and encode such problems as linear logic sequents, thus

enlarging our collection of problems.

1 Introduction

Benchmarking automated theorem proving (ATP) systems using standardized problem sets is a well-

established method for measuring their performance. However, the availability of such libraries for non-

classical logics is very limited. For intuitionistic logic, several small collections of formulas have been

published and used for testing ATP systems. Raths, Otten and Kreitz [24] consolidated and extended

these small sets to provide the ILTP Library1 for first-order and propositional intuitionistic logic. For

modal systems there are at least two libraries of theorems [31, 23].

In this paper, we provide a library for benchmarking Girard’s linear logic [11]. Linear logic is a

substructural logic that is a refinement of classical and intuitionistic logic, combining the dualities of the

former with many of the constructive properties of the latter. Ideas from linear logic have been influential

in fields such as programming languages, game semantics, quantum physics, as well as linguistics, par-

ticularly because of its emphasis on resource-boundedness, duality, and interaction. In particular, linear

logic has had an important role as a logical framework for specifying and reasoning about logical and

computational systems (the list is long; some examples are [6, 19, 8, 22]). As a consequence, several

provers have been built for linear logic for different purposes (listing some: Sympli 2, llprover3, LL
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prover4, linTAP5, LL prover explorer6, Lolli7, Alcove8). However, so far, there has been no discussion

about the efficiency or adequacy of these provers. In this work we present a comprehensive collection of

propositional tests. Moreover, with the aim of comparing proofs obtained from different translations of

intuitionistic problems, we use a prototypical prover, based on focusing, to run some experiments.

When designing a benchmark, one has to carefully decide on a set of formulas that is meaningful in,

at least, three ways: (1) the formulas should be able to distinguish several different characteristics of the

logical systems and provers; (2) the set should contain important theorems and paradigmatic formulas

(non necessarily provable); and (3) the set should be large enough, so to serve as a comparison for

different provers and systems. We first concentrate on (1) and (2), comparing translations of a (small) set

of intuitionistic formulas into linear logic. This will enable the discussion of other possible approaches

to follow. We will then deal with (3), by introducing a library with more than 4.000 problems, including

different translations of intuitionistic formulas as well as translations of reachability problems in Petri

nets as linear logic sequents.

Starting with (1), it turns out that propositional linear logic (LL) has many aspects that need to be

considered. For example, one could adopt its classical (CLL) or intuitionistic (ILL) versions. Hence one

important task would be to determine the difference in provability between them, and this is already

far from trivial. While it is possible to differentiate the syntax of formulas and the presentation of the

inference rules by the standard restriction on the right context to having at most one formula in ILL
9,

FILL [2] is a multiple-conclusion system with the same connectives and rules as CLL, but restricting the

form of the application of such rules. Restricting ourselves to formulas with the same syntax in classical

and intuitionistic versions of LL, the first interesting question would be which formulas are provable

in CLL but not in ILL. This is the same issue e.g. when building a benchmark for intuitionistic logic

versus the existing ones for classical logic. But the linear case is far more complicated, since the lack of

the structural rules of weakening and contraction in both ILL and CLL makes these systems “closer” to

each other than in the case of classical and intuitionistic logics. Indeed, only very recently [13] the first

conservativity results presented in [26] were generalized.

Another important aspect to be taken into consideration is focusing [1]. It turns out that both ILL and

CLL admit complete focused proof systems, and provers can be built using proof search strategies based

on this discipline, which reduces the proof search space. This has an immediate effect on the proposal

of formulas composing a possible benchmark library, since the amount of exponentials in a formula can

make a significant difference on the performance of provers.

Concerning (2), there is no consensus in the community on a set of “principal” theorems that should

be used as a test for LL-based theorem provers. In this work, we will start the discussion by considering

the translation of a fragment of Kleenes basic list of intuitionistic logic (IL). The first challenge is to

understand how these intuitionistic theorems should be interpreted in LL. A first answer would be: use

one of the well known translations of IL into LL. This naive approach has, at least, two problems. First,

it is not adequate to elect one translation, since different translations have very different computational

behaviors, as it will be clear in Section 2.2. Second, some translations would not give the best interpreta-

4https://github.com/wujuihsuan2016/LL_prover
5http://www.leancop.de/lintap/
6https://github.com/andykitchen/linear-logic
7http://www.lix.polytechnique.fr/~dale/lolli/
8http://cic.puj.edu.co/~caolarte/alcove2/
9We note that in the literature there are two versions of ILL, having at most or exactly one formula in the right context. This

is similar to the problem of considering intuitionistic/minimal logics. Since in this work we will use a multiplicative fragment

of ILL, we adopted the version of ILL having ⊥ in the grammar.

https://github.com/wujuihsuan2016/LL_prover
http://www.leancop.de/lintap/
https://github.com/andykitchen/linear-logic
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tion of linear logic formulas. As a simple example, A → A should most probably be translated as A−◦A,

without exponentials since this is equivalent, as a theorem, to the identity. But any sound translation from

IL to LL adds exponentials to implicational formulas. Hence none of them would preserve the axiom’s

interpretation.

To achieve desiderata (3), we start by applying four different translations from IL to LL using Kleene’s

collection of IL theorems. One of the translations is not validity perserving, resulting in 22 non-provable

formulas. We propose provable versions (not following any systematic translation) for those. This gives

a initial set of 271 sequents for our library. Next, we apply to all the propositional formulas of the ILTP

library the three provability preserving translations considered in this work. This whole set will not only

provide some interesting insights on different behaviors of LL formulas coming from different transla-

tions in the literature, but also present a significant set of 1.086 formulas for benchmarking linear logic

based provers. Finally, to enlarge the number of problems in our library, we have generated automati-

cally several reachability problems from the large collection of Petri nets10, available in the Petri Nets

Repository11 . Then, by using the standard translation of Petri nets as ILL formulas [17, 4], we add to our

benchmark 3.137 formulas of different levels of difficulty. All these 4.494 formulas will constitute our

ILLTP library for intuitionistic linear logic, available at:

https://github.com/meta-logic/lltp.

Outline. The rest of the paper is organized as follows. Section 2 presents LL, focusing, translations

and decorations; Section 3 explains the different parts that make ILLTP, and some experiment results;

Section 4 concludes the paper and presents some future research directions.

2 Linear Logic

Although we assume that the reader is familiar with linear logic, we review some of its basic proof theory

(see [30] for more details).

Linear logic is a substructural logic proposed by Girard [11] as a refinement of classical and intu-

itionistic logic. Formulas for propositional linear logic (LL) are built from the following grammar

F ::= p | 1 | 0 | ⊤ | ⊥ | F ⊗F | FOF | F & F | F ⊕F | F −◦F | ?F | !F

where atomic formulas p or their negations p⊥ = p−◦⊥ are called literals. The logical connectives for

LL can be divided into the following groups: the multiplicative version of conjunction, true, disjunction,

and false, which are written as ⊗, 1, O, ⊥, respectively; and the additive version of these connectives,

which are written as &, ⊤, ⊕, 0, respectively; and the exponentials ! and ?.

In this work we will concentrate on intuitionistic linear logic (ILL) [11], having sequents of the form

Γ ⊢ ∆ where ∆ has at most one formula and Γ is a multiset of formulas built from the grammar above,

except for the connective O and the exponential ?. The rules of ILL are depicted in Figure 1.

2.1 Focusing

Andreoli introduced in [1] a notion of normal form for cut-free derivations in linear logic. The connec-

tives of LL can be divided into two classes: negative (O, ⊥, &, ⊤, and ?) and positive (⊗, 1, ⊕, 0, and !).

Note that the dual of a negative connective is positive and vice-versa. In general, the right introduction

10We thank Frank Pfenning, who suggested the use of Petri nets during the TLLA/Linearity 2018 meeting.
11https://pnrepository.lip6.fr/

https://github.com/meta-logic/lltp
https://pnrepository.lip6.fr/
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p ⊢ p
init

⊢ 1
1R

Γ ⊢ ⊤
⊤R

Γ ⊢

Γ ⊢⊥
⊥R

Γ ⊢ ∆

Γ,1 ⊢ ∆
1L

⊥⊢
⊥L

Γ,0 ⊢ ∆
0L

Γ ⊢ F Γ ⊢ G

Γ ⊢ F & G
&R

Γ1 ⊢ F Γ2 ⊢ G

Γ1,Γ2 ⊢ F ⊗G
⊗R

Γ ⊢ Fi

Γ ⊢ F1 ⊕F2

⊕Ri

Γ,Fi ⊢ ∆

Γ,F1 & F2 ⊢ ∆
&Li

Γ,F,G ⊢ ∆

Γ,F ⊗G ⊢ ∆
⊗L

Γ,F ⊢ ∆ Γ,G ⊢ ∆

Γ,F ⊕G ⊢ ∆
⊕L

Γ,F ⊢ G

Γ ⊢ F −◦G
−◦R

Γ1 ⊢ F Γ2,G ⊢ ∆

Γ1,Γ2,F −◦G ⊢ ∆
−◦L

!Γ ⊢ F

!Γ ⊢ !F
!R

Γ, !F, !F ⊢ ∆

Γ, !F ⊢ ∆
contL

Γ ⊢ ∆

Γ, !F ⊢ ∆
weakL

Γ,F ⊢ ∆

Γ, !F ⊢ ∆
derL

Figure 1: System ILL. In ⊕Ri
and &Li

, Fi ∈ {F1,F2}.

rules for negative connectives are invertible, meaning that the conclusion of any of these introduction

rules is equivalent to its premises. The right introduction rules for the positive connectives are not nec-

essarily invertible, and may require a choice or a context restriction on the application of rules. The

notions of negative and positive polarities are extended to formulas in the natural way by considering the

outermost connective, e.g., A⊕B is positive while A & B is negative. Any bias can be assigned to atomic

LL formulas.

A focused proof is organized around two “phases” of proof construction: the negative phase for

introducing negative connectives on the succedent or positive ones in the antecedent, and the positive

phase for the positive connectives on the succedent or negative ones in the antecedent. In the focusing

discipline, formulas are decomposed eagerly in the negative phase, until only positive formulas on the

succedent or negative on the antecedent are left. Then one of them is non-deterministically chosen to be

focused on.

The focused system ILLF for intuitionistic linear logic is presented in Figure 2. There are three kinds

of arrows in this proof system and a pair of contexts to the left of the arrows:

• Θ is a set of antecedent formulas whose main connective is a bang, being hence the unbounded

(classical) context;

• Γ is a multiset of linear formulas, behaving as the bounded (linear) context;

• sequents of the form Θ : Γ−F→ or Θ : Γ
F
−→ ∆ belong to the positive phase and introduce the

logical connective of the “focused” formula F: building proofs of such sequents may require non-

invertible proof steps to be taken;

• sequents of the form Θ : Γ −→ ∆ belong to the negative phase and decompose the multisets Γ,∆
in such a way that only inference rules over negative formulas on the right or positive ones on the

left are applied.

The structural rules DL1,DL2 and DR make the transition between negative and positive phases. The

positive phase begins by choosing a non-atomic fomula Na from the classical context or a negative left

formula N (resp. a positive right formula P) on which to focus using DL1,DL2 (resp. DR). Atoms in

ILLF always have a positive bias12. Positive rules are applied to N,Na/P until either 1 or an atom is

encountered in the right, or ⊥ is on the left (and, in such cases, the proof must end by applying the

12Although ILL can allow any polarity assignment for atomic formulas, we will present here the system that was actually

implemented.
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respective axiom), or the promotion rule (!) is applied, or yet a positive left (respect. negative right)

subformula is encountered, when the proof switches to the negative phase by applying RL (resp. RR).

An observation is in order: the system presented in Figure 2 induces a weak focusing, in the sense

that, a priori, the positive phase could start even with the presence, in one of the contexts, of formulas

amenable to negative rule applications. However, our rewrite-based implementation (see Section 3.3)

forces the strong focusing approach: rules in the negative phase are exhaustively applied until a normal

form is found, i.e., in all the resulting subgoals, there are no positive formulas in the linear context, nor

a negative formula in the succedent.

Negative Phase

Θ : Γ,F,G −→ ∆

Θ : Γ,F ⊗G −→ ∆
⊗L

Θ : Γ,F −→ G

Θ : Γ −→ F −◦G
−◦R

Θ : Γ −→ ∆

Θ : Γ,1 −→ ∆
1L

Θ : Γ −→
Θ : Γ −→⊥

⊥R

Θ : Γ −→⊤
⊤R

Θ : Γ,0 −→ ∆
0L

Θ,F : Γ −→ ∆

Θ : Γ, !F −→ ∆
!L

Θ : Γ −→ F Θ : Γ −→ G
Θ : Γ −→ F & G

&R

Θ : Γ,F −→ ∆ Θ : Γ,H −→ ∆

Θ : Γ,F ⊕H −→ ∆
⊕L

Positive Phase

Θ : Γ1−F→ Θ : Γ2−G→

Θ : Γ1,Γ2−F⊗G→
⊗R

Θ : Γ1−F→ Θ : Γ2
G
−→ ∆

Θ : Γ1,Γ2
F−◦G
−−−→ ∆

−◦L
Θ : Γ−Fi

→

Θ : Γ−F1⊕F2
→

⊕Ri

Θ : Γ
Fi−→ ∆

Θ : Γ
F1&F2−−−→C

&Li

Θ : · −1→
1R

Θ : ·
⊥
−→

⊥L Θ : · −→ F
Θ : · −!F→

!R

Θ : Γ−p→
IR given p ∈ (Θ∪Γ) and Γ ⊆ {p}

Structural Rules

Θ,Na : Γ
Na−→ ∆

Θ,Na : Γ −→ ∆
DL1

Θ : Γ
N
−→ ∆

Θ : Γ,N −→ ∆
DL2

Θ : Γ−P→
Θ : Γ −→ P

DR

Θ : Γ,P −→ ∆

Θ : Γ
P
−→ ∆

RL Θ : Γ −→ N
Θ : Γ−N→

RR

Figure 2: System ILLF: a focused proof system for ILL. Here, p is an atomic formula (we will assume

positive bias for atoms); N is a negative formula; P is a positive formula; Na is a non-atomic formula. In

⊕Ri
and &Li

, Fi ∈ {F1,F2}.

Finally, we observe that, although focusing is a complete strategy that decreases considerably the

search space, it is not enough for avoiding loops on proof search. Let us give two simple examples. A

focused proof of the sequent · : !A, !(!A−◦B) −→ 0 starts by storing A, !A−◦B in the classical context

and then it focuses on !A−◦B continuously, adding various copies of B in the linear context. Since

the sequents produced in this process are all different, no loop detection will work for this case. One

way of avoiding this kind of behavior would be by restricting the number of focusing steps over the

same formula in the classical context. This is a sound, but not complete, strategy. Another way to deal

with this problem would be to introduce a heuristics in order to stop the computation or to modify the
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sequents, depending on the shape of formulas in the context. In this particular example, it is enough to

observe that sequents of the form Θ,A,A−◦B : Γ −→ C can be re-written as Θ,A,B,A−◦B : Γ −→ C,

and continue by analyzing the formula B.

Another pathological behavior may arise with a sequent of the shape Θ,P1 & P2 : Γ −→ C where Pi

is a positive formula. In this case, if we decide to focus on the formula P1 & P2, we are forced to choose

one of the Pi and then, the positive phase ends by adding yet another copy of Pi into the linear context.

In this particular case, we may use the well known equivalence !(F & G)≡!F⊗!G and rewrite the above

sequent into a simpler one: Θ,P1,P2 : Γ −→ C. If P1 and P2 are atomic formulas, this simplification is

quite useful since those atoms will remain in the classical context (remember that it is not possible to

focus on them) and they will never be added to the linear context.

In a broader sense, the analysis of proof theoretic properties of LL must guide the design of more

advanced/efficient proof search procedures. For instance, invertibility and permutability of rules lead to

systems that reduce the non-determinism [10, 1] as already mentioned. Moreover, the resource manage-

ment problem has been tackled by delaying, as much as possible, the decision on how to split the linear

context [5, 16]. On the other hand, systems for forward reasoning have been also explored in the context

of LL (see e.g., [20, 28, 29, 7]), usually showing a better performance that those based on backward

reasoning [28, 7]. Since our goal with this work is to present an initial library for LL and not to test

particular theorem provers or automated reasoning techniques, we will not focus our attention on these

issues. We just note that no silver-bullet will work in all the cases since, as it is well known, propositional

linear logic is undecidable [15].

2.2 Translations and Decorations

A naive approach for building a set of test formulas for LL based provers would be to use one of the

well known translations of intuitionistic (or classical) formulas into LL. Since there are several ways of

translating a formula from IL to LL, we asked ourselves which one would be the best option, if any. Each

translation characterizes a different linear view of intuitionistic formulas and it is interesting and relevant

to establish a comparison between them. We analyze four: a multiplicative translation, the original

Girard’s translation, Girard’s positive translation and Miller and Liang’s 0/1 translation.

The multiplicative translation trivially substitutes the intuitionistic connectives by their multiplicative

linear version

(p)m = p (A → B)m = Am −◦Bm (A∧B)m = Am ⊗Bm

(t)m = 1 (A∨B)m = Am
OBm ( f )m = ⊥

Translation of sequents is given by (Γ ⊢ A)m = Γ
m ⊢ Am. Observe that this translation does not preserve

provability: for instance, diagonals A⊗A → A exist in IL, but not in LL.

Girard’s translation [11], also known as call-by-name translation, is the most well known translation

of IL into LL, defined as

(p)g = p (A → B)g = !Ag −◦Bg (A∧B)g = Ag & Bg

(t)g = ⊤ (A∨B)g = !Ag ⊕ !Bg ( f )g = 0

Sequents are translated as (Γ ⊢ A)g = !Γ
g ⊢ Ag. Girard’s translation preserves provability but is not a

decoration in the sense of [9], namely, a proof of A in IL is transformed into a proof of Ag in LL which is

not isomorphic to the original one.
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Girard proposed in the same paper [11] another translation, known as call-by-value translation.

Henceforth, we will call this translation positive, since IL formulas become positive LL formulas.

(p)p = ! p (A → B)p = !(Ap −◦Bp) (A∧B)p = Ap ⊗Bp

(t)p = 1 (A∨B)p = Ap ⊕Bp ( f )p = 0

Sequents are translated as (Γ⊢A)p =Γ
p ⊢Ap. It is easy to see that the positive translation is a decoration:

proofs of Ap in LL are isomorphic to proofs of A in IL (see [9] for details).

Another interesting translation is the 0/1 translation [14], which distinguishes the polarity of formu-

las in a sequent.

(p)0 = p (A → B)0 = !A1 −◦ !B0 (A∧B)0 = !A0 & !B0

(t)0 = ⊤ (A∨B)0 = !A0 ⊕ !B0 ( f )0 = 0

(p)1 = p (A → B)1 = !(!A0 −◦B1) (A∧B)1 = !(A1 & B1)
(t)1 = 1 (A∨B)1 = !A1 ⊕ !B1 ( f )1 = 0

The translation of sequents is given by (Γ ⊢ A)0/1 = !Γ
0 ⊢ A1. Using this translation, focused proofs

in ILLF are in bijective correspondence with proofs in IL. In a loose sense, this can be considered a

decoration if the isomorphism is interpreted “modulo focusing”. In the focusing context, this is referred

to as adequacy on the level of derivations [21].

Basically these four translations differ on their use of bangs and polarization of atoms. The multi-

plicative translation introduces no bangs; Girard’s translation forces backchaining proofs; the positive

translation sets the global preference to be forward-chaining and atoms have positive polarity; the 0/1

translation is asymmetric, and it does not impose restrictions on atoms. Of course, less bangs implies

shorter proofs. For instance, consider the IL sequent A → B,B → C ⊢ A → C and the corresponding

proofs using the four translations in Figure 3.

3 The ILLTP Library

The ILLTP library is composed of problems from three sources: Kleene’s “Introduction to Metamathe-

matics”, ILTP (a library of problems for intuitionistic theorem provers), and Petri nets from the Model

Checking Contest 13. We use a syntax similar to TPTP [27]14, where axioms (formulas on the left side

of the sequent) and conjectures (the formula on the right side of the sequent) are specified as fof(name,

axiom, F) and fof(name, conjecture, F) respectively. The name chosen is not important. The

denominations axiom and conjecture are fixed. F is a linear logic formula built from the connectives:

*, &, +, |, -o, !, ?, corresponding to ⊗, N, ⊕, O, ⊸, !, ?, respectively15 .

3.1 Kleene’s problems

Kleenes traditional book “Introduction to Metamathematics” [12] has a collection of interesting intu-

itionistic theorems. They are rather straightforward, thus they would not be especially useful for testing

the efficiency of a prover. Instead, they can be regarded as a minimal set of intuitionistic theorems that a

13https://pnrepository.lip6.fr/mcc/
14http://www.tptp.org
15 Although our library is used here for ILL, the format of our files and translations support LL formulas as well, so that our

library can be extended to the classical case as well.

https://pnrepository.lip6.fr/mcc/
http://www.tptp.org
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Multiplicative translation

· : A ⊢ A

· : B ⊢ B · : C ⊢C

· : B,B−◦C ⊢C
−◦

· : A,A−◦B,B−◦C ⊢C
−◦

· : A−◦B,B−◦C ⊢ A−◦C
⋆

Call-by-name

A, !(A)−◦B, !(B)−◦C : · ⊢ A

A, !(A)−◦B, !(B)−◦C : · ⊢ !(A)
!

A, !(A)−◦B, !(B)−◦C : B ⊢ B

A, !(A)−◦B, !(B)−◦C : !(A)−◦B ⊢ B
−◦

A, !(A)−◦B, !(B)−◦C : · ⊢ B
DC

A, !(A)−◦B, !(B)−◦C : · ⊢ !(B)
!

A, !(A)−◦B, !(B)−◦C : C ⊢C

A, !(A)−◦B, !(B)−◦C : !(B)−◦C ⊢C
−◦

A, !(A)−◦B, !(B)−◦C : · ⊢C
DC

· : !(!(A)−◦B), !(!(B)−◦C) ⊢ !(A)−◦C
⋆

Call-by-value

A, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ A

A, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ !(A)
!

A,B, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ B

A, !(A)−◦ !(B), !(B)−◦ !(C) : !(B) ⊢ B
⋆

A, !(A)−◦ !(B), !(B)−◦ !(C) : !(A)−◦ !(B) ⊢ B
−◦

A, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ B
DC

A, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ !(B)
!

A,C, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢C

A,C, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ !(C)
!

A, !(A)−◦ !(B), !(B)−◦ !(C) : !(C) ⊢ !(C)
⋆

A, !(A)−◦ !(B), !(B)−◦ !(C) : !(B)−◦ !(C) ⊢ !(C)
−◦

A, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ !(C)
DC

!(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ !(A)−◦ !(C)
⋆

!(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ !(!(A)−◦ !(C))
!

· : !(!(A)−◦ !(B)), !(!(B)−◦ !(C)) ⊢ !(!(A)−◦ !(C))
⋆

0/1

A, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ A

A, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ !(A)
!

A,B, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ B

A, !(A)−◦ !(B), !(B)−◦ !(C) : !(B) ⊢ B
⋆

A, !(A)−◦ !(B), !(B)−◦ !(C) : !(A)−◦ !(B) ⊢ B
−◦

A, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ B
DC

A, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ !(B)
!

A,C, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢C

A, !(A)−◦ !(B), !(B)−◦ !(C) : !(C) ⊢C
⋆

A, !(A)−◦ !(B), !(B)−◦ !(C) : !(B)−◦ !(C) ⊢C
−◦

A, !(A)−◦ !(B), !(B)−◦ !(C) : · ⊢C
DC

!(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ !(A)−◦C
⋆

!(A)−◦ !(B), !(B)−◦ !(C) : · ⊢ !(!(A)−◦C)
!

· : !(!(A)−◦ !(B)), !(!(B)−◦ !(C)) ⊢ !(!(A)−◦C)
⋆

Figure 3: Proof of the sequent A → B,B →C ⊢ A →C using the four translations. The formulas in blue

represent the classical context and the ⋆ rule condenses all the rules in the negative phase.
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sound prover should be able to derive. As such, they can be valuable to uncover bugs and unsoundness.

Our first goal is to set up a similar set for LL.

The main challenge is to understand how these intuitionistic theorems should be interpreted in LL.

Deciding whether to translate intuitionistic disjunction as the multiplicative disjunction O of linear logic

or the additive disjunction ⊕ changes the target system under consideration, thus we prefer to not con-

sider the intuitionistic disjunction to begin with. Hence we will start by considering what we call the

rudimentary fragment of IL, which is very well-behaved: semantically this fragment corresponds to

cartesian closed categories. Figure 4 shows the 61 theorems considered.

Applying each translation defined in Section 2.2 to these 61 sequents gives rise to 244 different ILL

sequents. As already noted, provability is not preserved in the multiplicative translation. The reason for

that, other than the obvious absence of structural rules in the left context, is that the multiplicative false

⊥ is relevant, so while 0 ⊢ B for any B, A⊗ (A−◦⊥) 6⊢ B in LL. The other three translations fix this by

systematically adding bangs and additive connectives.

The multiplicative translation of all sequents in Kleene’s list is in Appendix A, including the 22 ones

that are not provable (indicated by 6⊢). In Figure 5 we present an alternative translation for them, using a

small number of bangs and/or additives.

3.2 ILTP problems

The problems from the ILTP library for intuitionistic theorem provers [24] were parsed and translated

into linear logic using the three provability preserving translations presented in Section 2.2. Due to

the number and size of problems, it is unpractical to apply the multiplicative translation and find the

unprovable sequents to propose an alternative translation as it was done with the previous set of problems.

The original library contains 274 problems (including theorems and non-theorems), separated into

three categories: LCL (logical calculi), SYJ and SYN (syntactic problems that have no obvious inter-

pretation in intuitionistic and classical logic, respectively). Their translation resulted in 822 linear logic

problems. Moreover, we also considered the remaining Kleene’s theorems in [12] (i.e., those out of the

rudimentary fragment) resulting in a total of 1.086 problems in this collection.

3.3 Comparing translations

We specified IL and different fragments of linear logic in rewriting logic (RW, see e.g. [18]) and im-

plemented in Maude16 a very basic prover for IL as well as for ILLF and LLF. The use of RW leads

to a clear separation between deterministic inference rules that can be eagerly applied (as those in the

negative phase) and non-deterministic inference rules where backtracking may be needed (as those in

the positive phase). Moreover, the minimal distance between the represented logic (IL, ILLF and LLF)

and its specification in RW allowed us to quickly implement a good prototypical tool useful for our tests.

Although more efficient provers can be built by e.g., including sophisticated heuristics and specialized

data structures, our prototypical implementations were enough to compare the different translations.

Using these provers, we generated LATEX proofs for the intuitionistic problems from Kleene and ILTP,

plus for all ILL translations of the sequents, when provable. These results can be found in the PDFs at

https://github.com/carlosolarte/Linear-Logic-Prover-in-Maude

in the directory output.

16http://maude.cs.uiuc.edu

https://github.com/carlosolarte/Linear-Logic-Prover-in-Maude
http://maude.cs.uiuc.edu
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1. ⊢ A → A

2. A → B,B →C ⊢ A →C

3. A → (B →C) ⊢ B → (A →C)

4. A → (B →C) ⊢ A∧B →C

5. A∧B →C ⊢ A → (B →C)

6. A → B ⊢ (B →C)→ (A →C)

7. A → B ⊢ (C → A)→ (C → B)

8. A → B ⊢ A∧C → B∧C

9. A → B ⊢C∧A →C∧B

10. ¬A ⊢ A → B

11. A ⊢ ¬A → B

12. B ⊢ A → B

13. A → B ⊢ ¬B →¬A

14. A →¬B ⊢ ¬¬B →¬A

15. A → B,B → A ⊢ A ↔ B

16. A ↔ B ⊢ A → B

17. A ↔ B ⊢ B → A

18. A ↔ B,A ⊢ B

19. A ↔ B,B ⊢ A

20. ⊢ A ↔ A

21. A ↔ B ⊢ B ↔ A

22. A ↔ B,B ↔C ⊢ A ↔C

23. A → (B →C),¬¬A,¬¬B ⊢ ¬¬C

24. ¬¬(A → B) ⊢ ¬¬A →¬¬B

25. ¬¬(A → B),¬¬(B →C) ⊢ ¬¬(A →C)

26. ⊢ ¬¬(A∧B)↔ (¬¬A∧¬¬B)

27. ⊢ ¬¬(A ↔ B)↔ (¬¬(A → B)∧¬¬(B → A))

28. A ↔ B ⊢ (A →C)↔ (B →C)

29. A ↔ B ⊢ (C → A)↔ (C → B)

30. A ↔ B ⊢ (A∧C)↔ (B∧C)

31. A ↔ B ⊢ (C∧A)↔ (C∧B)

32. A ↔ B ⊢ ¬A ↔¬B

33. ⊢ ((A∧B)∧C)↔ (A∧ (B∧C))

34. ⊢ (A∧B)↔ (B∧A)

35. ⊢ (A∧A)↔ A

36. A ⊢ (A → B)↔ B

37. B ⊢ (A → B)↔ B

38. ¬A ⊢ (A → B)↔¬A

39. ¬B ⊢ (A → B)↔¬A

40. B ⊢ (A∧B)↔ A

41. ¬B ⊢ (A∧B)↔ B

42. ⊢ A →¬¬A

43. ⊢ ¬¬¬A ↔¬A

44. ⊢ ¬(A∧¬A)

45. ⊢ ¬(A ↔¬A)

46. ⊢ ¬¬(¬¬A → A)

47. ⊢ (A∧ (B∧¬B))↔ (B∧¬B)

48. ⊢ (A → B)→¬(A∧¬B)

49. ⊢ (A →¬B)↔ (¬(A∧B))

50. ⊢ (¬(A∧B))↔ (¬¬A →¬B)

51. ¬¬B → B ⊢ (¬¬A → B)↔ (A → B)

52. ¬¬B → B ⊢ (A → B)↔ (¬(A∧¬B))

53. ⊢ (¬¬A → B)→¬(A∧¬B)

54. ⊢ (A∧B)→¬(A →¬B)

55. ⊢ (A∧¬B)→¬(A → B)

56. ⊢ ¬¬A∧B →¬(A →¬B)

57. ⊢ (¬¬A∧¬B)↔¬(A → B)

58. ⊢ ¬(A → B)↔¬¬(A∧¬B)

59. ⊢ ¬¬(A → B)↔¬(A∧¬B)

60. ⊢ ¬(A∧¬B)↔ (A →¬¬B)

61. ⊢ (A →¬¬B)↔ (¬¬A →¬¬B)

Figure 4: Kleene’s theorems collected from [12] (page 113 onwards). Only the (→,∧) fragment is

considered. Bi-implication is defined as A ↔ B = (A → B)∧ (B → A).
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10. A−◦0 ⊢ A−◦B

11. A ⊢ (A−◦0)−◦B

12. B ⊢ !A−◦B

16. (A−◦B)⊗ !(B−◦A) ⊢ A−◦B

17. !(A−◦B)⊗ (B−◦A) ⊢ B−◦A

18. A ˛ B,A ⊢ B⊗ (B−◦A)

19. A ˛ B,B ⊢ A⊗ (A−◦B)

26. a. ⊢ ((A & B)⊥⊥)−◦ (A⊥⊥ & B⊥⊥)

b. ⊢ (A⊥⊥⊗B⊥⊥)−◦ (A⊗B)⊥⊥

27. a. ⊢ (!(A −◦ B)⊗ !(B −◦ A))⊥⊥ −◦ [(A −◦ B)⊥⊥ &

(B−◦A)⊥⊥]

b. ⊢ (A−◦B)⊥⊥⊗ (B−◦A)⊥⊥−◦ (A ˛ B)⊥⊥

35. ⊢ (!A⊗ !A)˛ !A

36. A ⊢ ((A−◦B)−◦B)⊗ (B−◦ (!A−◦B))

37. B ⊢ (!(A−◦B)−◦B)⊗ (B−◦ (!A−◦B))

38. A⊥ ⊢ (!(A−◦B)−◦A⊥)⊗ ((A−◦ 0)−◦ (A−◦B))

39. B−◦0 ⊢ (A−◦B)˛ (A−◦ 0)

40. B ⊢ ((A⊗ !B)−◦A)⊗ (A−◦ (A⊗B))

41. B−◦0 ⊢ ((!A⊗B)−◦B)⊗ (B−◦ (A⊗B))

45. ⊢ (!(A−◦A⊥)⊗ ((!A)⊥−◦ !A))⊥

46. ⊢ (!(!(A⊥−◦0))−◦A)⊥)⊥

47. ⊢ A⊗ (B⊗ (B−◦ 0))˛ (B⊗ (B−◦0))

57. a. ⊢ (A⊥⊥⊗B⊥)−◦ (A−◦B)⊥

b. ⊢ (!A−◦B)⊥−◦ ((A−◦0)⊥ & B⊥)

58. a. ⊢ !((!A−◦B)⊥)−◦ ((A⊗B⊥)−◦ 0)⊥

b. ⊢ (A⊗B⊥)⊥⊥−◦ (A−◦B)⊥

59. a. ⊢ (A−◦B)⊥⊥−◦ (A⊗B⊥)⊥

b. ⊢ ((A⊗B⊥)−◦ 0)−◦ (!(!A−◦B)⊥)⊥

Figure 5: Alternative translation for Kleene theorems

Encoding 0/1 Call-by-Name Call-by-Value

KLE LCL SYJ SYN KLE LCL SYJ SYN KLE LCL SYJ SYN

Num. of Problems 88 2 248 20 88 2 248 20 88 2 248 20

Unsolved (timeouts) 11 2 209 9 12 2 203 9 9 2 209 9

Solved (Theorems) 76 0 39 7 76 0 45 6 76 0 39 7

Non-Theorems 1 0 0 4 0 0 0 5 3 0 0 0

Min Time 17 - 18 16 17 - 17 16 16 - 17 17

Avg Time 798.78 - 34039.10 105.81 250.43 - 20319.98 96.27 494.49 - 33884.36 77.18

Max Time 41548 - 276886 458 4186 - 174778 383 24427 - 265778 321

Table 1: Comparison of translations. Times are measured in miliseconds. Test run on a QEMU Virtual

CPU, 2GHz, 64 bits, 6GB of RAM running Ubuntu. Timeout set to 5 minutes.

The proofs are grouped by intuitionistic problem, so one can compare the shape and size of the

original intuitionistic proofs and their linear versions resulted from each translation. A summary of the

results is presented in Table 1.

3.4 Petri nets problems

Petri nets (see e.g. [25]) are a model for distributed systems that generalize automata and hence also

transition systems. Local states in the net are called places (denoted graphically as a circle) and the

global state is a multiset of local states called a marking. A certain number n of copies of a local state s

in a marking M is denoted as n tokens (graphically bullets) inside the circle s. Transitions produce and

consume tokens, representing transformations in the local states.

Abstractly, we can see a Petri net as a multiset rewrite system and thus, there is a natural connection

with the multiplicative fragment of linear logic [3]. More precisely, a transition system over the set of

places S is a set of rewrite rules of the form r : •t � t• where •t and t• are multisets on S, usually called

preset and postset. As expected, the rule r is enabled in a marking (global state) M if •t is a multisubset

of M. Then, M reduces to M′, notation M � M′, where M′ = M \ •t ⊎ t•. Let �
∗ be the reflexive and

transitive closure of �. We say that M′ is reachable from M if M �
∗ M′.

Let s ∈ S be a place and M,M′ be a multisets on S. Then, we can encode places, markings and rules
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as follows [3]:

(s)pt = s ({})pt = 1

({s}⊎M)pt = (s)pt ⊗ (M)pt (r : M � M′) = !((M)pt −◦ (M′)pt)

where s is an atomic proposition. Given a set of transitions R, the reachability problem whether M �
∗M′

can be encoded as the ILL sequent
⊗

r∈R

(r)pt ⊢ (M)pt −◦ (M′)pt .

The Petri Nets Repository17 contains a large collection of Petri nets in PNML (Petri Net Markup

Language18) syntax, an XML with tags for places and transitions (or “arcs”), and a way to represent the

initial marking. We wrote scripts that translate PNML into a simple Maude program that can perform

transitions in the net, transforming the markings. This program was used to generate final markings of

the Petri nets after 1, 5, 10, 20, 50 and 100 transitions. Each final marking, together with the Petri net

specification, is a reachability problem in linear logic, which was written in the ILLTP format (described

at the beginning of Section 3) using the translation above. It is worth noticing that some nets are cyclic

(deadlock free transition systems), hence it is possible that the marking after n transition can be also

obtained after m < n transitions. This procedure allowed us to generate 3.137 new problems.

4 Conclusion

In this work we proposed an initial set of problems as a library for benchmarking linear logic based

provers. Starting with the (→,∧)-fragment of Kleene’s theorems, we generated 244 different ILL se-

quents using 4 automatic translations: multiplicative, call-by-name, call-by-value and 0/1. The first

translation is the only one that does not preserve provability. For each of those 22 ILL sequents that

are not provable via the multiplicative translation, we proposed an alternative provable sequent with a

small set of additives and bangs added. This makes these particular sequents amenable to the use of all

the power of focusing theorem provers. In fact, the excess of bangs in formulas tends to neutralize the

efficacy of focusing, due to the positive/negative behavior of the exponentials. Thus our initial proposal

for a suitable benchmark for ILL has 271 formulas, testing aspects like provability and focusing.

It is worth noticing that (1) we include ⊥ in the grammar of ILL; (2) all the sequents of our collection

can also serve as tests in CLL. The decision in (1) was motivated by the fact that the resulting sequents

fall into the multiplicative fragment of ILL. However, observe that one could clearly exchange ⊥ for 0 in

the multiplicative translation (that would not be multiplicative anymore) and still obtain a significant set

of 23 formulas not provable via this new translation.

We then moved in the direction of increasing the amount of formulas in our library, still using the

translation approach. For that, we took all the 274 formulas from the ILTP Library and applied the three

sound translations from IL to LL considered in this work. At this point, our library had already 1.093

formulas to be tested. For an initial experiment with this first proposed set of sequents, we implemented

a focused-based prover for ILL. This allowed us to compare well known LL translations for IL formulas,

not only considering the time needed for proving a sequent: our results give a comprehensive collection

of proofs where it is possible to visualize the different shapes (and sizes) of such proofs.

Finally, following Frank Pfenning’s suggestion, we have generated automatically several reachability

problems from the large collection of Petri nets. This not only moves us out of intuitionistic logic

17https://pnrepository.lip6.fr/
18http://pnml.lip6.fr/

https://pnrepository.lip6.fr/
http://pnml.lip6.fr/
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examples, but it also considers a serious amount of problems that are actually used for testing Petri nets

model checkers.

It should be noted that these are only the first steps on the direction of benchmarking linear logic. For

future work, we intend to test different provers already available online and to propose a large collection

of formulas dedicated to classical linear logic CLL.

References

[1] Jean-Marc Andreoli (1992): Logic Programming with Focusing Proofs in Linear Logic. J. Log. Comput.

2(3), pp. 297–347, doi:10.1093/logcom/2.3.297.
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A Multiplicative translation of Kleene’s list

1. ⊢ A−◦A (identity)

2. A−◦B,B−◦C ⊢ A−◦C (transitivity of implication)

3. A −◦ (B −◦ C) ⊢ B −◦ (A −◦ C) (exchange of

premises)

4. A−◦ (B−◦C) ⊢ A⊗B−◦C (uncurrying)

5. A⊗B−◦C ⊢ A−◦ (B−◦C) (currying)

6. A−◦B ⊢ (B−◦C)−◦ (A−◦C) (precomposing maps)

7. A −◦ B ⊢ (C −◦ A) −◦ (C −◦ B) (post-composing

maps)

8. A−◦B ⊢ A⊗C−◦B⊗C (tensor is a bifunctor)

9. A−◦B ⊢C⊗A−◦C⊗B (tensor is a bifunctor)

10. A⊥ 6⊢ A−◦B

11. A 6⊢ A⊥−◦B

12. B 6⊢ A−◦B but (projection is non-linear)

13. A−◦B ⊢ B⊥−◦A⊥ (linear negation is contravariant)

14. A−◦B⊥ ⊢ B⊥−◦A⊥

15. A−◦B,B−◦A ⊢ A ˛ B

16. A ˛ B 6⊢ A−◦B (cannot throw away B−◦A)

17. A ˛ B 6⊢ B−◦A (cannot throw away A−◦B)

18. A ˛ B,A 6⊢ B

19. A ˛ B,B 6⊢ A

20. ⊢ A ˛ A

21. A ˛ B ⊢ B ˛ A

22. A ˛ B,B ˛C ⊢ A ˛C

23. A−◦ (B−◦C),A⊥⊥,B⊥⊥ ⊢C⊥⊥

24. (A −◦ B)⊥⊥ ⊢ A⊥⊥ −◦ B⊥⊥ (double negation is a

functor)

25. (A−◦B)⊥⊥,(B−◦C)⊥⊥ ⊢ (A−◦C)⊥⊥

26. 6⊢ (A⊗B)⊥⊥
˛ A⊥⊥⊗B⊥⊥

27. 6⊢ (A ˛ B)⊥⊥
˛ (A−◦B)⊥⊥⊗ (B−◦A)⊥⊥

28. A ˛ B ⊢ (A−◦C)˛ (B−◦C)

29. A ˛ B ⊢ (C−◦A)˛ (C−◦B)

30. A ˛ B ⊢ (A⊗C)˛ (B⊗C)

31. A ˛ B ⊢ (C⊗A)˛ (C⊗B)

32. A ˛ B ⊢ A⊥
˛ B⊥

33. ⊢ ((A⊗B)⊗C)˛ (A⊗ (B⊗C)).

34. ⊢ A⊗B ˛ B⊗A

35. 6⊢ A⊗A ˛ A (⊗ is not idempotent)

36. A 6⊢ (A−◦B)˛ B

37. B 6⊢ (A−◦B)˛ B

38. A⊥ 6⊢ (A−◦B)˛ A⊥

39. B⊥ 6⊢ (A−◦B)˛ A⊥

40. B 6⊢ (A⊗B)˛ A

41. B⊥ 6⊢ ((!A⊗B)−◦B)⊗ (B−◦ (A⊗B))

42. ⊢ A−◦A⊥⊥

43. ⊢ A⊥⊥⊥
˛ A⊥

44. ⊢ (A⊗A⊥)⊥

45. 6⊢ (A ˛ A⊥)⊥

46. 6⊢ (((A−◦0)−◦ 0)−◦A)⊥⊥

47. 6⊢ A⊗ (B⊗B⊥)˛ (B⊗B⊥)

48. ⊢ (A−◦B)−◦ (A⊗B⊥)⊥

49. ⊢ (A−◦B⊥)˛ (A⊗B)⊥

50. ⊢ (A⊗B)⊥ ˛ (A⊥⊥−◦B⊥)

51. B⊥⊥−◦B ⊢ (A⊥⊥−◦B)˛ (A−◦B)

52. B⊥⊥−◦B ⊢ (A−◦B)˛ (A⊗B⊥)⊥

53. ⊢ (A⊥⊥−◦B)−◦ (A⊗B⊥)⊥

54. ⊢ A⊗B−◦ (A−◦B⊥)⊥

55. ⊢ A⊗B⊥−◦ (A−◦B)⊥

56. ⊢ (A⊥⊥⊗B)−◦ (A−◦B⊥)⊥

57. 6⊢ (A⊥⊥⊗B⊥)˛ (A−◦B)⊥

58. 6⊢ (A−◦B)⊥ ˛ (A⊗B⊥)⊥⊥

59. 6⊢ (A−◦B)⊥⊥
˛ (A⊗B⊥)⊥

60. ⊢ (A⊗B⊥)⊥ ˛ (A−◦B⊥⊥)

61. ⊢ (A−◦B⊥⊥)˛ (A⊥⊥−◦B⊥⊥)
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