2,059 research outputs found

    A Large Along-Track Baseline Approach for Ground Moving Target Indication Using TanDEM-X

    Get PDF
    In the paper a new method for ground moving target indication (GMTI) using two satellites (i.e. the TerraSAR-X and the TanDEM-X satellite) together is presented. The along-track baseline between the satellites is chosen to be in the order of several kilometres, so that each satellite observes the same moving vehicles at different times in the order of one to several seconds. The proposed method allows the estimation of the ground velocity of the moving targets as well as the estimation of the broadside positions without the need of complex bistatic processing techniques

    Automatic refocus and feature extraction of single-look complex SAR signatures of vessels

    Get PDF
    In recent years, spaceborne synthetic aperture radar ( SAR) technology has been considered as a complement to cooperative vessel surveillance systems thanks to its imaging capabilities. In this paper, a processing chain is presented to explore the potential of using basic stripmap single-look complex ( SLC) SAR images of vessels for the automatic extraction of their dimensions and heading. Local autofocus is applied to the vessels' SAR signatures to compensate blurring artefacts in the azimuth direction, improving both their image quality and their estimated dimensions. For the heading, the orientation ambiguities of the vessels' SAR signatures are solved using the direction of their ground-range velocity from the analysis of their Doppler spectra. Preliminary results are provided using five images of vessels from SLC RADARSAT-2 stripmap images. These results have shown good agreement with their respective ground-truth data from Automatic Identification System ( AIS) records at the time of the acquisitions.Postprint (published version

    SAR-Based Vibration Estimation Using the Discrete Fractional Fourier Transform

    Get PDF
    A vibration estimation method for synthetic aperture radar (SAR) is presented based on a novel application of the discrete fractional Fourier transform (DFRFT). Small vibrations of ground targets introduce phase modulation in the SAR returned signals. With standard preprocessing of the returned signals, followed by the application of the DFRFT, the time-varying accelerations, frequencies, and displacements associated with vibrating objects can be extracted by successively estimating the quasi-instantaneous chirp rate in the phase-modulated signal in each subaperture. The performance of the proposed method is investigated quantitatively, and the measurable vibration frequencies and displacements are determined. Simulation results show that the proposed method can successfully estimate a two-component vibration at practical signal-to-noise levels. Two airborne experiments were also conducted using the Lynx SAR system in conjunction with vibrating ground test targets. The experiments demonstrated the correct estimation of a 1-Hz vibration with an amplitude of 1.5 cm and a 5-Hz vibration with an amplitude of 1.5 mm

    Moving Target Azimuth Velocity Estimation for the MASA Mode Based on Sequential SAR Images

    Get PDF
    A novel azimuth velocity estimation method is proposed based on the multiple azimuth squint angles (MASA) imaging mode, acquiring sequential synthetic aperture radar images with different squint angles and time lags. The MASA mode acquisition geometry is given first, and the effect of target motion on azimuth offset and slant range offset is discussed in detail. Then, the azimuth velocity estimation accuracy is analyzed, considering the errors caused by registration, defocusing, and range velocity. Moreover, the interaction between target azimuth velocity and range velocity is studied for a better understanding of the azimuth velocity estimation error caused by the range velocity. With the proposed error compensation step, the new method can achieve a very high accuracy in azimuth velocity estimation, as verified by experimental results based on both simulated data and the TerraSAR-X data

    Target Motion Estimation Techniques in Single-Channel SAR

    Get PDF
    —Synthetic Aperture Radar (SAR) systems are versatile, high-resolution radar imagers useful for providing detailed intelligence, surveillance, and reconnaissance, especially when atmospheric conditions are non-ideal for optical imagers. However, targets in SAR images are smeared when they are moving. Along-track interferometry is a commonly-used method for extracting the motion parameters of moving targets but requires a dualaperture SAR system, which may be power- size- or cost prohibitive. This paper presents a method of estimating target motion parameters in single-channel SAR data given geometric target motion constraints. This estimation method includes an initial estimate, computation of the SAR ambiguity function, and application of the target motion constraints

    Reduction of Vibration-Induced Artifacts in Synthetic Aperture Radar Imagery

    Get PDF
    Target vibrations introduce nonstationary phase modulation, which is termed the micro-Doppler effect, into returned synthetic aperture radar (SAR) signals. This causes artifacts, or ghost targets, which appear near vibrating targets in reconstructed SAR images. Recently, a vibration estimation method based on the discrete fractional Fourier transform (DFrFT) has been developed. This method is capable of estimating the instantaneous vibration accelerations and vibration frequencies. In this paper, a deghosting method for vibrating targets in SAR images is proposed. For single-component vibrations, this method first exploits the estimation results provided by the DFrFT-based vibration estimation method to reconstruct the instantaneous vibration displacements. A reference signal, whose phase is modulated by the estimated vibration displacements, is then synthesized to compensate for the vibration-induced phase modulation in returned SAR signals before forming the SAR image. The performance of the proposed method with respect to the signal-to-noise and signalto-clutter ratios is analyzed using simulations. Experimental results using the Lynx SAR system show a substantial reduction in ghosting caused by a 1.5-cm 0.8-Hz target vibration in a true SAR image

    Fast and Accurate ISAR Focusing Based on a Doppler Parameter Estimation Algorithm

    Get PDF
    This letter deals with inverse synthetic aperture radar (ISAR) autofocusing of noncooperative moving targets. The relative motion between the target and the sensor, which provides the angular diversity necessary for ISAR imagery, is also responsible for unwanted range migration and phase changes generating defocusing. In the case of noncooperative targets, the relative motion is unknown: the ISAR needs, hence, to implement an autofocus step [motion compensation (MoCo)] to achieve high resolution imaging. This task is typically carried out via the optimization of functionals based on general image quality parameters. In this letter, we propose the use of a fast and accurate MoCo algorithm based on the estimation of the Doppler parameters, thus fully coping with the nature of the imaging system. The effectiveness of the proposed method is proven on both simulated data and data acquired by operational systems
    • …
    corecore