1,240 research outputs found

    Deep CNN-Based Automated Optical Inspection for Aerospace Components

    Get PDF
    ABSTRACT The defect detection problem is of outmost importance in high-tech industries such as aerospace manufacturing and is widely employed using automated industrial quality control systems. In the aerospace manufacturing industry, composite materials are extensively applied as structural components in civilian and military aircraft. To ensure the quality of the product and high reliability, manual inspection and traditional automatic optical inspection have been employed to identify the defects throughout production and maintenance. These inspection techniques have several limitations such as tedious, time- consuming, inconsistent, subjective, labor intensive, expensive, etc. To make the operation effective and efficient, modern automated optical inspection needs to be preferred. In this dissertation work, automatic defect detection techniques are tested on three levels using a novel aerospace composite materials image dataset (ACMID). First, classical machine learning models, namely, Support Vector Machine and Random Forest, are employed for both datasets. Second, deep CNN-based models, such as improved ResNet50 and MobileNetV2 architectures are trained on ACMID datasets. Third, an efficient defect detection technique that combines the features of deep learning and classical machine learning model is proposed for ACMID dataset. To assess the aerospace composite components, all the models are trained and tested on ACMID datasets with distinct sizes. In addition, this work investigates the scenario when defective and non-defective samples are scarce and imbalanced. To overcome the problems of imbalanced and scarce datasets, oversampling techniques and data augmentation using improved deep convolutional generative adversarial networks (DCGAN) are considered. Furthermore, the proposed models are also validated using one of the benchmark steel surface defects (SSD) dataset

    Effective Transfer of Pretrained Large Visual Model for Fabric Defect Segmentation via Specifc Knowledge Injection

    Full text link
    Fabric defect segmentation is integral to textile quality control. Despite this, the scarcity of high-quality annotated data and the diversity of fabric defects present significant challenges to the application of deep learning in this field. These factors limit the generalization and segmentation performance of existing models, impeding their ability to handle the complexity of diverse fabric types and defects. To overcome these obstacles, this study introduces an innovative method to infuse specialized knowledge of fabric defects into the Segment Anything Model (SAM), a large-scale visual model. By introducing and training a unique set of fabric defect-related parameters, this approach seamlessly integrates domain-specific knowledge into SAM without the need for extensive modifications to the pre-existing model parameters. The revamped SAM model leverages generalized image understanding learned from large-scale natural image datasets while incorporating fabric defect-specific knowledge, ensuring its proficiency in fabric defect segmentation tasks. The experimental results reveal a significant improvement in the model's segmentation performance, attributable to this novel amalgamation of generic and fabric-specific knowledge. When benchmarking against popular existing segmentation models across three datasets, our proposed model demonstrates a substantial leap in performance. Its impressive results in cross-dataset comparisons and few-shot learning experiments further demonstrate its potential for practical applications in textile quality control.Comment: 13 pages,4 figures, 3 table

    Automated Medical Device Display Reading Using Deep Learning Object Detection

    Full text link
    Telemedicine and mobile health applications, especially during the quarantine imposed by the covid-19 pandemic, led to an increase on the need of transferring health monitor readings from patients to specialists. Considering that most home medical devices use seven-segment displays, an automatic display reading algorithm should provide a more reliable tool for remote health care. This work proposes an end-to-end method for detection and reading seven-segment displays from medical devices based on deep learning object detection models. Two state of the art model families, EfficientDet and EfficientDet-lite, previously trained with the MS-COCO dataset, were fine-tuned on a dataset comprised by medical devices photos taken with mobile digital cameras, to simulate real case applications. Evaluation of the trained model show high efficiency, where all models achieved more than 98% of detection precision and more than 98% classification accuracy, with model EfficientDet-lite1 showing 100% detection precision and 100% correct digit classification for a test set of 104 images and 438 digits.Comment: 6 pages, 5 figure

    GANs and alternative methods of synthetic noise generation for domain adaption of defect classification of Non-destructive ultrasonic testing

    Full text link
    This work provides a solution to the challenge of small amounts of training data in Non-Destructive Ultrasonic Testing for composite components. It was demonstrated that direct simulation alone is ineffective at producing training data that was representative of the experimental domain due to poor noise reconstruction. Therefore, four unique synthetic data generation methods were proposed which use semi-analytical simulated data as a foundation. Each method was evaluated on its classification performance of real experimental images when trained on a Convolutional Neural Network which underwent hyperparameter optimization using a genetic algorithm. The first method introduced task specific modifications to CycleGAN, to learn the mapping from physics-based simulations of defect indications to experimental indications in resulting ultrasound images. The second method was based on combining real experimental defect free images with simulated defect responses. The final two methods fully simulated the noise responses at an image and signal level respectively. The purely simulated data produced a mean classification F1 score of 0.394. However, when trained on the new synthetic datasets, a significant improvement in classification performance on experimental data was realized, with mean classification F1 scores of 0.843, 0.688, 0.629, and 0.738 for the respective approaches.Comment: 16 Page

    Pseudo-Supervised Defect Detection Using Robust Deep Convolutional Autoencoders

    Get PDF
    Robust Autoencoders separate the input image into a Signal(L) and a Noise(S) part which, intuitively speaking, roughly corresponds to a more stable background scene (L) and an undesired anomaly (or defect) (S). This property of the method provides a convenient theoretical basis for divorcing intermittent anomalies that happen to clutter a relatively consistent background image. In this paper, we illustrate the use of Robust Deep Convolutional Autoencoders (RDCAE) for defect detection, via a pseudo-supervised training process. Our method introduces synthetic simulated defects (or structured noise) to the training process, that alleviates the scarcity of true (real-life) anomalous samples. As such, we offer a pseudo-supervised training process to devise a well-defined mechanism for deciding that the defect-normal discrimination capability of the autoencoders has reached to an acceptable point at training time. The experiment results illustrate that pseudo supervised Robust Deep Convolutional Autoencoders are very effective in identifying surface defects in an efficient way, compared to state of the art anomaly detection methods

    Application of deep learning methods in materials microscopy for the quality assessment of lithium-ion batteries and sintered NdFeB magnets

    Get PDF
    Die Qualitätskontrolle konzentriert sich auf die Erkennung von Produktfehlern und die Überwachung von Aktivitäten, um zu überprüfen, ob die Produkte den gewünschten Qualitätsstandard erfüllen. Viele Ansätze für die Qualitätskontrolle verwenden spezialisierte Bildverarbeitungssoftware, die auf manuell entwickelten Merkmalen basiert, die von Fachleuten entwickelt wurden, um Objekte zu erkennen und Bilder zu analysieren. Diese Modelle sind jedoch mühsam, kostspielig in der Entwicklung und schwer zu pflegen, während die erstellte Lösung oft spröde ist und für leicht unterschiedliche Anwendungsfälle erhebliche Anpassungen erfordert. Aus diesen Gründen wird die Qualitätskontrolle in der Industrie immer noch häufig manuell durchgeführt, was zeitaufwändig und fehleranfällig ist. Daher schlagen wir einen allgemeineren datengesteuerten Ansatz vor, der auf den jüngsten Fortschritten in der Computer-Vision-Technologie basiert und Faltungsneuronale Netze verwendet, um repräsentative Merkmale direkt aus den Daten zu lernen. Während herkömmliche Methoden handgefertigte Merkmale verwenden, um einzelne Objekte zu erkennen, lernen Deep-Learning-Ansätze verallgemeinerbare Merkmale direkt aus den Trainingsproben, um verschiedene Objekte zu erkennen. In dieser Dissertation werden Modelle und Techniken für die automatisierte Erkennung von Defekten in lichtmikroskopischen Bildern von materialografisch präparierten Schnitten entwickelt. Wir entwickeln Modelle zur Defekterkennung, die sich grob in überwachte und unüberwachte Deep-Learning-Techniken einteilen lassen. Insbesondere werden verschiedene überwachte Deep-Learning-Modelle zur Erkennung von Defekten in der Mikrostruktur von Lithium-Ionen-Batterien entwickelt, von binären Klassifizierungsmodellen, die auf einem Sliding-Window-Ansatz mit begrenzten Trainingsdaten basieren, bis hin zu komplexen Defekterkennungs- und Lokalisierungsmodellen, die auf ein- und zweistufigen Detektoren basieren. Unser endgültiges Modell kann mehrere Klassen von Defekten in großen Mikroskopiebildern mit hoher Genauigkeit und nahezu in Echtzeit erkennen und lokalisieren. Das erfolgreiche Trainieren von überwachten Deep-Learning-Modellen erfordert jedoch in der Regel eine ausreichend große Menge an markierten Trainingsbeispielen, die oft nicht ohne weiteres verfügbar sind und deren Beschaffung sehr kostspielig sein kann. Daher schlagen wir zwei Ansätze vor, die auf unbeaufsichtigtem Deep Learning zur Erkennung von Anomalien in der Mikrostruktur von gesinterten NdFeB-Magneten basieren, ohne dass markierte Trainingsdaten benötigt werden. Die Modelle sind in der Lage, Defekte zu erkennen, indem sie aus den Trainingsdaten indikative Merkmale von nur "normalen" Mikrostrukturmustern lernen. Wir zeigen experimentelle Ergebnisse der vorgeschlagenen Fehlererkennungssysteme, indem wir eine Qualitätsbewertung an kommerziellen Proben von Lithium-Ionen-Batterien und gesinterten NdFeB-Magneten durchführen

    Deep Industrial Image Anomaly Detection: A Survey

    Full text link
    The recent rapid development of deep learning has laid a milestone in industrial Image Anomaly Detection (IAD). In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques, from the perspectives of neural network architectures, levels of supervision, loss functions, metrics and datasets. In addition, we extract the new setting from industrial manufacturing and review the current IAD approaches under our proposed our new setting. Moreover, we highlight several opening challenges for image anomaly detection. The merits and downsides of representative network architectures under varying supervision are discussed. Finally, we summarize the research findings and point out future research directions. More resources are available at https://github.com/M-3LAB/awesome-industrial-anomaly-detection

    Automated Semiconductor Defect Inspection in Scanning Electron Microscope Images: a Systematic Review

    Full text link
    A growing need exists for efficient and accurate methods for detecting defects in semiconductor materials and devices. These defects can have a detrimental impact on the efficiency of the manufacturing process, because they cause critical failures and wafer-yield limitations. As nodes and patterns get smaller, even high-resolution imaging techniques such as Scanning Electron Microscopy (SEM) produce noisy images due to operating close to sensitivity levels and due to varying physical properties of different underlayers or resist materials. This inherent noise is one of the main challenges for defect inspection. One promising approach is the use of machine learning algorithms, which can be trained to accurately classify and locate defects in semiconductor samples. Recently, convolutional neural networks have proved to be particularly useful in this regard. This systematic review provides a comprehensive overview of the state of automated semiconductor defect inspection on SEM images, including the most recent innovations and developments. 38 publications were selected on this topic, indexed in IEEE Xplore and SPIE databases. For each of these, the application, methodology, dataset, results, limitations and future work were summarized. A comprehensive overview and analysis of their methods is provided. Finally, promising avenues for future work in the field of SEM-based defect inspection are suggested.Comment: 16 pages, 12 figures, 3 table

    Evaluation of neural network based image super-resolution

    Get PDF
    Abstract. Super-resolution (SR) aims to produce a higher resolution image containing more details than the original image. The amount of pixels is easy to add with simple interpolation methods, but the amount of details does not increase. To overcome this limitation single image super-resolution (SISR) was introduced, which aims to recover the high-resolution (HR) image from the low-resolution (LR) images. Convolutional neural networks (CNN) have become an essential method in machine learning. With the growth of CNN, super-resolution solutions have grown immensely. In this work, a broad review is done on neural network methods designed for super-resolution. Four methods are chosen by their originality and different architectural choices, implemented in PyTorch framework. The models are already trained with public datasets, and the pre-trained models are used for the evaluation. The evaluation is done by analyzing the results with qualitative and quantitative methods. All the methods are tested with public datasets and a private dataset called Hiottu-1, including a wood surface images with different defect types. The evaluation is done based on their image quality and inference time. Peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) metrics are used for quality evaluation, and the inference time is measured by how fast the model generates the output result of test image. The chosen methods improved the image qualities of test images in each datasets. The best perfoming ones were swin image restoration (SwinIR) and pixel attention network (PAN) methods. SwinIR had better PSNR and SSIM values than PAN method and results were pealing to human eye. The inference time of SwinIR is slow, therefore the best possible application would be offline usage. The PAN method had impressing results and its inference time enables the real-time application usage. The SwinIR performed extremely well on Hiottu-1 dataset, with increasing the image quality of defect types and reducing noise overall. The PAN method got high metrics values on Hiottu-1 dataset, although the results were not as pealing as the SwinIR. In the wood manufacturing inspection side, the SwinIR could be utilized on slow production line with high defect detection accuracy, while the PAN method could be utilized on faster production line
    corecore