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Abstract 

Robust Autoencoders separate the input image into a Signal(L) and a Noise(S) part which, intuitively speaking, 

roughly corresponds to a more stable background scene (L) and an undesired anomaly (or defect) (S). This property 

of the method provides a convenient theoretical basis for divorcing intermittent anomalies that happen to clutter a 

relatively consistent background image. In this paper, we illustrate the use of Robust Deep Convolutional 

Autoencoders (RDCAE) for defect detection, via a pseudo-supervised training process. Our method introduces 

synthetic simulated defects (or structured noise) to the training process, that alleviates the scarcity of true (real-

life) anomalous samples. As such, we offer a pseudo-supervised training process to devise a well-defined 

mechanism for deciding that the defect-normal discrimination capability of the autoencoders has reached to an 

acceptable point at training time. The experiment results illustrate that pseudo supervised Robust Deep 

Convolutional Autoencoders are very effective in identifying surface defects in an efficient way, compared to state 

of the art anomaly detection methods. 

Keywords: robust autoencoders, anomaly detection,  defect detection,  machine learning,  convolutional 

neural networks 

1. Introduction 

Detecting data samples with deviating features compared to a set of examples deemed as "normals", 

constitutes a major research area. Research communities with varying precedence and focus employ 

different names for this problem, such as outlier detection, novelty detection, anomaly detection, defect 

detection, noise detection, deviation detection or exception mining. Despite the variation in naming, the 

fundamental problem is to define a region in the feature space that represents "the normal" for a data 

set, and subsequently identify all cases that lie outside the boundaries of that region. The application 

areas of the problem include fraud detection, structural defect detection, intrusion detection, time-series 

monitoring, loan application processing, medical condition monitoring, motion segmentation, detecting 

novelty in text etc.  [1]. The solution space to the problem has been explored by different communities 

resulting in a partitioning along several axes, reflecting approaches, methodologies and tools adopted 

by those communities. Many surveys on the subject probe into different methods, techniques and 

approaches employed to solve the problem  [1, 2, 3]. As more recent developments in Deep Learning  

[4] offer promising results in extracting relevant features in an automated way, in particular for computer 

vision applications  [5], more recent surveys such as  [6] and  [7] provide a deep learning centric account 

of the subject. 

 
Anomaly detection problem is relatively difficult to solve in general. Therefore, most of the techniques 

in the literature tend to solve a specific instance of the general problem based on the type of application, 

the type of input data and model, the availability of labels for the training data, and the type of anomalies. 

The problem of defect detection in flat surfaces, where scarcity of defect samples is a common issue, is 

a good example of a research domain that stands to benefit from an anomaly detection perspective. 

Scarcity of abnormal data is something that promotes the use of anomaly detection as a candidate 

solution, since anomaly detection methods rely only on normal (as apposed to abnormal or anomalous) 

samples at training phase. In this domain, it is also important to increase the accuracy, recall and 

precision of the detection process to ensure the applicability of the method for complex real life 
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problems in industrial settings. So methods that avoid dependency on abundant defect samples whilst 

improving the detection performance are of particular interest. 
Recently, a specific form of neural networks, namely an Autoencoder (AE)  [8], has attracted the 

attention of researchers from different domains, due to its ability to learn an efficient, compressed 

representation of its input via its encoder part and reconstruct this input via its decoder part (see for 

instance  [9] and  [10]). The primary motivation for those researchers has been to exploit this capability 

to learn the features characterizing the normal samples and later use the error generated by the difference 

between the input and the reconstructed output to identify the anomalous samples. AEs, come in 

different flavors, such as Convolutional AE (CAE), Variational AE (VAE) and Robust AE (RAE) to 

name a few, each introducing an additional capability on top the central ability mentioned above. A 

variant of AEs called Robust Convolutional Autoencoder(RCAE) [11, 12] appears to be a particularly 

promising solution for two reasons:  

  
• First, Convolutional Autoencoders(CAE), in general, combine the good aspects of AEs and 

Convolutional Neural Networks (CNN). As stated above, an AE is known for its talent to learn a 

low level compressed representation of a normal class via minimization of the reconstruction error 

through its encoding and decoding layers. A CNN on the other hand preserves the spatial locality  

[13] of important features and this is very important for 2D images since defects are locally 

positioned in an image.  
• Second, Robust AEs, in particular, separate the input image into a Signal(L) and a Noise(S) part 

which, intuitively speaking, roughly corresponds to a more stable background scene (L) and an 

undesired anomaly (or defect) (S) for image based applications. This property of the method 

provides a convenient theoretical basis for divorcing intermittent anomalies that happen to clutter a 

relatively consistent background image. There is a large family of automated visual quality 

inspection applications that can benefit from such anomaly detection capability.  

 
As described by  [11], use of the Robust AE by feeding normal and anomalous samples during training 

and letting the RAE differentiate the anomalies as noise at the end of an iterative process, is relatively 

straightforward. However, this requires the availability of abnormal samples at training time and does 

not accommodate subsequent (post-training) anomalous instance identification. Training the RAE using 

only normal samples to specify a threshold based on a learned reconstruction score of the normal 

samples and later use that threshold to detect unseen anomalies is what we are interested in. This process 

is named as inductive anomaly detection by  [12] and can be challenging when RAE struggles to learn 

the distribution of the normal data to a sufficient degree that it can differentiate out of distribution (OOD) 

samples correctly. This may be due to two problems:   

 
1. the normal samples used for training may not be sufficiently representative (both in terms of quality 

and number), or  
2. the training architecture and process may not be vigorous enough to cater for signal-noise separation 

in the absence of some representative abnormal samples (i.e. qualitative noise).  
 

In this paper, we primarily target the improvement of the latter of the problems mentioned above. Our 

overall contribution is twofold:   

 
1. We illustrate the viability of Robust Deep Convolutional AEs as an efficient solution for surface 

defect detection utilizing two relatively recent industrial quality datasets.  
2. We propose a method to further enhance this solution, by introducing synthetic simulated defects 

(or structured noise) to the training process in a novel way, so that a safe discriminating threshold 

can be determined by relying on a more robust convergence criteria during training iterations, in the 

absence of true (real life) abnormal samples. As such, we offer a specific form of pseudo-supervised 

training process as a well defined mechanism to alleviate the dependency of RAEs to true abnormal 

samples.  
The rest of the paper is organized as follows: Section  2 provides some theoretical background and 

related work, Section  3 introduces the details of our methodology, Section  4 provides information on 
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the structure of the experiments, Section 5 presents results and discussions and finally Section  6 

provides some concluding remarks. 

2. Background and Related Work  

The problem of defect detection in textured surfaces is a good example of a research domain that stands 

to benefit from an anomaly detection perspective and therefore it is selected as the target case study for 

our method. Anomaly detection context, re-casts the defect identification problem into the problem of 

recognizing the divergence from the normal with reference to distinct features characterizing the normal. 

As such, relatively regular and uniform patterns that characterize a non-defected (normal) surface, 

provide a convenient referential basis for learning-based anomaly detection approaches. Traditionally, 

automated defect detection literature tend to categorize the solution methods into several groups 

including structural, statistical, spectral, model-based, learning-based and hybrid methods.  [14, 15] and  

[16], for instance, provide a comprehensive account of these methods including a comparative study of 

their detection and classification performance. The most important aspect of the classical methods is 

that they apply a processing pipeline to an image containing the surface to be inspected, that starts with 

low level image processing techniques such as filtering, transformation, distribution identification etc., 

continues with feature extraction and defect detection, and finally terminates with defect classification. 

More recent surveys such as  [17] focusing on textile domain and  [18] offering a more diverse view of 

industrial surface inspection applications, place greater emphasis on learning-based approaches and in 

particular on deep-learning. Both acknowledge that deep learning methods simplify the aforementioned 

processing pipeline since they automate feature extraction to a greater extent, but also note that they 

may require abundant and quality data samples for effective training of the classifiers. This latest trend 

in fabric defect detection research towards learning-based methods, suggests that the techniques and 

methods that are mostly developed by the machine learning community, are well placed to capitalize 

on. 
 

In that respect, there are several recent techniques and methods in the literature that are notably 

promising for anomaly detection cases that suffer from scarcity of abnormal samples. These are AEs  

[8], One-Class Support Vector Machines (OC-SVM)  [19], Isolation Forests (IF) [20, 21], One-Class 

Support Vector Data Description (OC-SVDD)  [22, 23] and One-Class Neural Networks (OC-NN)  [24]. 

Earlier anomaly detection methods such as the One-Class SVM (OC-SVM) or Kernel Density 

Estimation (KDE)  [25] are known to rely on tractable feature spaces with moderate dimensions and are 

prone to failure in cases involving large scale, complex data manipulation due to curse of dimensionality. 

More novel neural network based solutions such as Deep Convolutional Autoencoders(DCAE)  [26, 27] 

and Deep One-Class Neural Networks  [28, 29] have been on the agenda of contemporary research 

efforts, introducing some improvements that alleviate the deficiencies of the earlier methods. 
 

As stated in the introduction, Robust Convolutional Autoencoders(RCAE), in particular, exhibit 

distinctly useful behaviors since they combine the ability to learn a highly efficient, locality preserving 

and non-linear representation of their input, with the ability to progressively learn to separate signal 

(normal surface) from the noise (defects). These convenient properties form the rationale for our 

adoption of the RCAE as a viable solution. From a methodological point of view, the most relevant 

work in the literature to the work presented in this paper is that of  [11]. The authors augment an AE 

with a filter layer that culls out the anomalous parts of the input data, 𝑋, that are difficult to reconstruct. 

They then propose that the remaining portion of the data, 𝑆 can be represented by the low-dimensional 

hidden layer, 𝐿𝐷, with small reconstruction error. The problem of finding anomalies is than cast into the 

following optimization problem:  

 

 Min
𝜃,𝑆

= ∥ 𝐿𝐷 − 𝐷𝜃 (𝐸𝜃 (𝐿𝐷)) ∥2+ 𝜆 ∥  𝑆 ∥2,1;   𝑠. 𝑡. 𝑋 − 𝐿𝐷 − 𝑆 =  0 (1) 

 

Here the input data X is split into two parts, 𝐿𝐷 and 𝑆. 𝐿𝐷 is the input to an AE 𝐷𝜃 (𝐸𝜃 (𝐿𝐷)) and the 

AE is trained by minimizing the reconstruction error ∥ 𝐿𝐷 − 𝐷𝜃 (𝐸𝜃 (𝐿𝐷)) ∥2 through back-
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propagation. 𝑆, on the other hand, contains outliers which are difficult to represent using the AE. We 

use this general framework for the formulation of the problem at hand but there are some differences 

between their approach and ours, and also some improvements provided by our work that deserve 

mentioning:   
• They provide two distinct regularization methods one targeting denoising and the other targeting 

anomaly detection. We only aim at anomaly detection (or more specifically defect detection), so 

only 𝑙2,1 regularization is applied (as opposed 𝑙1 regularization which is used for denoising).  
• They require true anomalous samples (i.e. real samples labeled as defects) for tuning the 

hyperparameter controlling noise-signal separation (i.e. 𝜆 in the equation above). As such, part of 

the training has to be done in a semi-supervised manner. On the contrary, we perform the same 

hyper parameter tuning using synthetic defects leading to a pseudo-supervised training procedure. 

This divorces the training process from the dependency on labeled, true anomalous samples.  
• Their convergence control logic relies on the use of real defected samples and depend on the result 

of two conditional inquiry: 1 - check if 𝑋 − (𝐿𝐷 + 𝑆) < 𝜖 and 2 - check if 𝐿𝐷 and 𝑆 have converged 

to a fixed point (i.e. there is no a significant change any more). Whereas, we use synthetic defects 

in our training process and check the Area Under ROC Curve (AUC) score obtained by testing the 

AE performance in separating the (synthetic) defected samples from the normal samples. When the 

training ends we also obtain an outlier-threshold based on the reconstruction error that characterizes 

the normal samples (i.e. during actual testing, instances that produce a reconstruction error below 

that threshold are identified as normal).  
Before delving into the details of our methodology in the next section, we proceed by providing some 

background information on DCAE and RAE in the following subsections.  

2.1  Deep Convolutional Autoencoders (DCAE) 

An AE is known for its ability to compress its input into an efficient feature representation via its 

encoding part and then reconstruct it via its decoding part. In the middle of the two parts lies its 

bottleneck layer (also known as latent space) where the input is encoded into an efficient, much lower 

dimensional feature space. The encoder and decoder parts can be defined as transitions 𝐸 and 𝐷 , such 

that:  
𝐸: 𝒳 → ℱ 
𝐷: ℱ → 𝒳 

                                       𝐱′ = ∥ 𝐱 − 𝐷 (𝐸 (𝐱)) ∥ (2) 

 

where 𝐱 ∈ ℝ𝑑 = 𝒳 refers to an input in the 𝒳 domain and 𝐱′ denotes the reconstructed input. The 

hidden bottleneck layer, then, can be represented by 𝐳 = 𝐸(𝐱) ∈ ℝ𝑝 = ℱ in the ℱ domain. In the most 

popular form of AEs, 𝐷 and 𝐸 are neural networks. In the special case that D and E are linear operations, 

we get a linear AE, where we would achieve the same latent representation as Principal Component 

Analysis (PCA)  [30]. Therefore, an AE is in fact a generalization of PCA, where instead of finding a 

low dimensional hyperplane in which the data lies, it is able to learn a non-linear manifold  [8]. In 

particular, an AE can be viewed as a solution to the following optimization problem:  

 

                                                 min
𝐷,𝐸

= ∥ 𝐱 − 𝐷 (𝐸 (𝐱)) ∥ (3) 

 
 Where ∥. ∥ is usually the 𝑙2 norm. CAEs differ from conventional AEs in that their architecture contains 

an encoder part with convolutional and pooling layers, and an analogous decoder part with 

deconvolutional and upsampling layers. As such, recalling that 𝐱′ denotes the reconstruction, the 

encoder and decoder processes can be expanded as: 

 
𝐳 =  𝐸 (𝑊 ∘ 𝐱 + 𝑏) 

                                                           𝐱′ =  𝐷 (𝑊′ ∘ 𝐳 + 𝑏′) (4) 
where "∘" is the convolution process; 𝑊 and 𝑊′ are the weight matrices; 𝒃 and 𝒃′ are the bias vectors 

for the encoder and decoder, respectively; and 𝐸 and 𝐷 are the nonlinear mapping processes, 
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specifically, the convolutional, pooling, deconvolutional, and upsampling processes. Particularly, the 

pooling and upsampling processes are usually conducted in the form of max pooling and max unpooling. 

2.2  Robust Autoencoders (RAE) 

Robust AEs are built on a theoretical basis borrowed from Robust Principle Component Analysis 

(RPCA)  [31, 32]. Specifically, RPCA splits a data matrix X into a low-rank matrix 𝐿 and a sparse matrix 

𝑆 such that;  
 𝑋 =  𝐿 + 𝑆 (5) 

where the matrix 𝐿 contains a low-dimensional representation of 𝑋 and the matrix 𝑆 consists of element-

wise outliers, which can not be efficiently captured by the low-dimensional representation 𝐿. Similar to 

RPCA, a Robust Deep Autoencoder also splits input data 𝑋 into two parts;  
 𝑋 =  𝐿𝐷 + 𝑆 (6) 

where 𝐿𝐷 represents the part of the input data that is well represented by the hidden layer of the AE, and 

𝑆 contains noise and outliers which are difficult to reconstruct. So the idea is that, just as in RPCA, by 

iteratively separating out the noise and outliers from 𝑋 into 𝑆, the remaining data 𝐿𝐷 can be accurately 

reconstructed by an AE. As such, RAE combines non-linear representation capabilities of AEs with the 

anomaly detection capabilities of RPCA. The peculiar behavior of the AE that is conveniently exploited 

in reconstruction-based anomaly detection in a general context is that noise and outliers are essentially 

difficult to compress and therefore cannot effectively be projected to a low-dimensional hidden layer. 

So, if those outliers could be incorporated into the AE loss function in an appropriate way, then the low-

dimensional hidden layer could provide accurate reconstruction, except for those few outliers  [11]. 

3. Methodology 

Our method introduces synthetic simulated defects (or structured noise) to the training process, so that 

a safe discriminating threshold can be determined by relying on a more robust convergence criteria 

during training iterations, in the absence of true (real life) abnormal samples. As such, we offer a pseudo-

supervised training process to devise a well-defined mechanism for deciding that the defect-normal 

discrimination capability of the AE has reached to an acceptable point at training time. 
 

Using noisy inputs in the training of the robust AEs has been adopted by other researchers. For instance 

in  [33] white Gaussian random noise is used to simulate anomalous samples so that the AE can learn 

the distribution generating normal samples more efficiently. The main difference of our method is to 

use a more complex model (i.e. structured noise) for anomalies. Another example is the use of random 

noise in denoising AEs  [34]. A denoising AE is a stochastic extension to classic AE where the AE is 

forced to learn the reconstruction of input given its noisy version, usually using a stochastic corruption 

process to randomly set some of the inputs to zero. It is important to note that, the use of structured noise 

in our case is categorically different from this type of noise utilization. In contrast to denoising AEs, we 

force the AE to separate common, stable features from the anomalous ones. As it will be elaborated on 

in Section  5.1, our findings show that, for such cases, the incorporation of structured noise (or synthetic 

defects) produces better results compared to injecting random noise into some of the normal samples. 

A similar approach, in terms of incorporating structured synthetic noise at training time is used in more 

recent works (see for instance  [35] and  [36]). Of these two work,  [35] use an autoencoder equipped 

with skip connections and train it to reconstruct a clean image out of a synthetically corrupted version 

of it. To corrupt the training images they introduce a synthetic model, named Stain, that adds an irregular 

elliptic structure of variable color and size to the input image. Their main motivation for using synthetic 

anomalies is to alleviate a vulnerability of their skipped architecture that causes the network to perform 

identity mapping on uncorrupted clean images. In the work reported by  [36], on the other hand, 

synthetic anomalies are generated using a sort of “confetti noise”, a simple noise model that inserts 

colored blobs into images and reflects the local nature of anomalies. Since their approach is semi-

supervised, essentially they utilize the synthetic defects to model the incorporation of few known 

anomalies into the training process (in the absence of true anomalies), an approach which they report to 

be effective. Compared to our method, there are some differences, however, in the way both of these 
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approaches generate the synthetic defects as well as the exact purpose of and the final benefits obtained 

from using those synthetic defects:   

 
1. Our defect generation model is based on a more complex, Julia set-based algorithm that facilitates 

modeling of pseudo-topological patterns that are well suited to structured fabric surfaces. The merits 

of modeling the defects in a structured way, compared to simple statistical noise, has been explored 

in this paper. However exploring the impact of modeling structured synthetic defects relatively more 

faithfully compared to other structured modeling approaches would require a thorough 

experimentation and analysis using different types of datasets, something we do not intend to 

endeavor in this particular paper. Intuitively speaking, our approach may stand to benefit from 

increased defect modeling fidelity for certain datasets by causing AE to learn normal/abnormal 

separation earlier and more effectively. A more extensive comparative analysis remains as an 

interesting future work.  
2. The use of synthetic defects in our work is an integral part of the optimization process, both in terms 

of constituting an important ingredient of the noise component 𝑆 in Equation  6 and also being an 

important facilitator for deciding on the outlier threshold during the training phase. Determining a 

threshold at training time with good discriminating power for testing phase is an important success 

factor for reconstruction based approaches and synthetic defects in our method play a critical role 

in managing this process.  
 

Note that, in our case, synthetic defects are not used to train a classifier for defect classification, so 

extensive defect modeling is not needed here. Structured noise is used only to better exploit the signal-

noise separation capability of the robust auto encoder for efficient and effective defect detection, not to 

ensure accurate classification of different defect types. In the following three subsections, the 

formulation of the optimization problem, the algorithm used to generate synthetic defects and the 

optimization algorithm are explained in more detail. 

3.1  Formulation of the Optimization Problem 

The optimization problem is formulated along similar lines to the one given by  [11] for anomaly 

detection. Specifically; 
 

       Min
𝜃,𝑆

= ∥ 𝐿𝐷 − 𝐷𝜃 (𝐸𝜃 (𝐿𝐷)) ∥2+ 𝜆 ∥  𝑆𝑇 ∥2,1 (7) 

      𝑠. 𝑡. 𝑋 − 𝐿𝐷 − 𝑆 =  0 
 
where 𝐸𝜃(⋅) denotes an encoder, 𝐷𝜃(⋅) denotes a decoder, and 𝑆 captures the anomalous data, 𝐿𝐷 is a 

low dimension manifold and 𝜆 is a parameter that tunes the level of sparsity in S. Here the loss function 

for a given input 𝑋 could be thought of as the ‘grouped 𝑙2,1 norm of 𝑆, balanced against the 

reconstruction error of 𝐿𝐷. The 𝑙2,1 norm of any 𝑋 is defined as: 

 

              ∥ 𝑋 ∥2,1= ∑𝑛
𝑗=1 ∥ 𝑥𝑗 ∥2= ∑𝑛

𝑗=1 (∑𝑚
𝑖=1 |𝑥𝑖𝑗|2)

1

2 (8) 

 
and, it can be viewed as inducing a 2 norm regularizer over members of each group and then a 1 norm 

regularizer between groups. In equation  7, 𝜆 plays an essential role in the defect and background 

separation. In particular, a small 𝜆 will encourage much of the data to be isolated into 𝑆 as noise or 

outliers, and therefore minimize the reconstruction error for the AE. Similarly, a large 𝜆 will discourage 

data from being isolated into 𝑆 as noise or outliers, and therefore increase the reconstruction error for 

the AE. 
 

Note that here the 𝑙2,1 norm minimization problem can be implemented efficiently as a proximal 

problem as defined by [37] and adopted by [11], where the proximal operator is a block-wise soft-

thresholding function. 



Sakarya University Journal of Computer and Information Sciences 

 

Mahmut Nedim Alpdemir 

391 

 

3.2  Synthetic Defect Modeling 

Algorithm 1 Pseudo Code for Julia Set Defect Generator 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Procedure GenerateDefect (𝛼, 𝛽, Δ𝑥, Δ𝑦, 𝑐𝑥, 𝑐𝑦, 𝑧𝑓, 𝑤, ℎ)  

   𝑅 = escape radius            //such that 𝑅 > 0, 𝑅2 − 𝑅 > √𝑐𝑥2 + 𝑐𝑦2  

   For each pixel (x, y) on the image of size (w, h) 

             𝑧𝑥 =
𝛼 (𝑥 −

𝑤
2

)

0.5 ∗ 𝑧𝑓 ∗ 𝑤
+ Δ𝑥 

             𝑧𝑦 =
𝛽 (𝑦 −

ℎ
2

)

0.5 ∗ 𝑧𝑓 ∗ ℎ
+ Δ𝑦 

     max_iter = 255 

     i = max_iter 

     While 𝑧𝑥2 + 𝑧𝑦2 < 𝑅2 and i>max_iter 

        zy = 2zx * zy + cy 

        zx = 𝑧𝑥2 + 𝑧𝑦2 + 𝑐𝑥  
        i = i – 1 

     End While 

     image[x,y] = i 

   End For  

End Procedure  

  

 
As mentioned earlier we are not using the synthetic defects for high fidelity defect simulation, so 

decoration of the normal fabric surface with defect-like structures are deemed sufficient. To this aim, 

we employ Julia set fractals  [38]. Note that, other fractal pattern generation mechanisms can potentially 

be used for this purpose. However, Julia sets have a feature known as centro-symmetry  [39] that 

facilitates modeling of some pseudo-topological patterns. As such, with proper parameter tuning it is 

possible to create certain Julia Set patterns that mimic some common defects in textured fabric surfaces, 

such as yarn tails, thick bars, holes, stains etc. Julia set fractals can be obtained by using a complex 

number 𝑧 = 𝑥 + 𝑦𝑖 where 𝑖2 = −1 and 𝑥 and 𝑦 are image pixel coordinates. The fractal is generated by 

repeatedly updating 𝑧 using the formula 𝑧 = 𝑧2 + 𝑐, where 𝑐 is another complex number that gives a 

specific Julia set. After numerous iterations, if the magnitude of 𝑧 is less than a certain escape radius we 

say that pixel is in the Julia set and color it to generate desired patterns. Performing this calculation for 

a whole grid of pixels gives a fractal image. 

 
We employ a parametric algorithm to generate different defect patterns. Algorithm 1 given above is 

controlled by nine parameters, where 𝛼 and 𝛽 determine the extent (i.e. length) and alignment of the 

defect (i.e. horizontally extended, vertically extended, point-like), Δ𝑥, Δ𝑦 are used as position offsets 

with respect to the center of the image; 𝑐𝑥, 𝑐𝑦 are coefficients that determine the shape of the fractal 

pattern, 𝑧𝑓 is the zoom factor to determine coverage area of the defect, and finally 𝑤, ℎ are width and 

height of the image to be generated.  

 

   
Figure 1 Examples of synthetic defects generated by decorating normal fabric samples. Various different types 

of defects (i.e. horizontal, vertical, point-like etc.) are shown using four different fabric type. 

 

Figure 1 illustrates examples generated using four different fabric types in our dataset. The 32𝑥32 image 

patches are first extracted from non-defect fabric images and then they are decorated using the above 

algorithm. The original non-defect image patch and the 32𝑥32 matrix returned by the defect generator 

algorithm are blended by averaging the weighted pixel values to obtain a smoother overlay.  



Sakarya University Journal of Computer and Information Sciences 

 

Mahmut Nedim Alpdemir 

392 

 

3.3  Optimization Algorithm 

Algorithm 2 The pseudo code for our optimization procedure 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Procedure Optimize (𝛼, 𝛽, Δ𝑥, Δ𝑦, 𝑐𝑥, 𝑐𝑦, 𝑧𝑓, 𝑤, ℎ)  
   Input X                       //X is a set of input images 

         LD = 0                         //init  LD to 0(same size as X) 

   while upper-limit not reached 

     LD = X − S                    //Remove S from X, use LD to train the AE 

             𝑡𝑟𝑎𝑖𝑛𝑒𝑟. 𝑡𝑟𝑎𝑖𝑛(𝐷(𝐸(. )), LD, 𝑒𝑝𝑜𝑐ℎ𝑛𝑢𝑚)//Minimize recons. error using ADAM 

             LD = D(E(LD))             //Set LD to reconstruction from trained AE  

          S = X − LD                                  //Set S to be the difference between X and LD 

             𝑝𝑟𝑜𝑥𝜆,𝑙2,1
 (𝑆𝑇)              //Optimize 𝑆𝑇 using a proximal operator 

             𝑡𝑟𝑎𝑖𝑛𝑒𝑟. 𝑡𝑒𝑠𝑡(𝐷(𝐸(. )), X)      //test X for defect/non-defect separation 
     If AUC > 0.999 then  

        Break               //convergence criteria met, so break 

     End If      

   End While 

   Return LD,   𝑆  and outlier_treshold 
End Procedure  

 
Our optimization procedure (given in Algorithm 2) starts with reading the input 𝑋 and initializing 𝑆 and 

𝐿𝐷 to zero. X contains all the images used for training (i.e normal images and images with synthetic 

defects). Note that synthetic defects and normal samples are explicitly labeled (-1 and 0 respectively). 

X is a 4 dimensional tensor, so if the training set size is 𝑡, dimensions of 𝑋 would be (𝑡, 𝑤, ℎ, 𝑐), where 

𝑤 and ℎ are width and height of the image in pixels; and 𝑐 is the number of color channels of the images. 

The optimization loop starts by first setting 𝐿𝐷 to 𝑋 − 𝑆. Thus, in the first iteration 𝐿𝐷 becomes equal 

to 𝑋 since 𝑆 is zero. Then the AE (𝐷(𝐸(. )) is trained with the objective of minimizing the reconstruction 

error via the ADAM  [40] optimization algorithm. The next step is to use the trained AE to get the 

reconstructed 𝐿𝐷 set and assigning it onto itself, and later to set 𝑆 to be the difference between 𝑋 and 

𝐿𝐷. So the purpose of lines 3.3 and 3.3 is to capture features that are easy to reconstruct in 𝐿𝐷 and isolate 

the difference of the reconstructed and the original (which are supposed to be the features that are hard 

to reconstruct, and hence the noisy parts) in 𝑆. Then the second part of our optimization formulation 

given in Equation 7 (i.e. 𝜆 ∥  𝑆𝑇 ∥2,1) is handled using a proximal operator  [37, 11]. Finally we test for 

defect/ non-defect separation by checking the Area Under ROC Curve (AUC) score. If AUC is greater 

than 99.9%, then the  algorithm returns 𝐿𝐷, 𝑆 and an outlier_treshold to be used for further defect 

identification. The outlier_treshold is obtained by finding the highest 99.9% quantile of the set 

containing the reconstruction errors of non-defect (normal) samples.  [11] use a different convergence 

criteria in their method using actual abnormal samples. They calculate the sum of 𝐿𝐷 and 𝑆 to see if the 

sum is close to the input 𝑋, and also they check if 𝐿𝐷 and 𝑆 have converged to a fixed point (i.e. there 

is no a significant change any more). Our AUC score calculation serves a similar purpose, but prioritizes 

the learning level of the AE. In both approaches it is necessary to put an upper limit on the iterations to 

avoid cases leading to futile convergence. 

4. Experiments 

4.1  The Experimental Setup 

The architecture of our AE follows the style of a LeNet type CNN  [41], where each convolutional 

module consists of a convolutional layer followed by leaky ReLU activation and 2 × 2 max-pooling. 

Our CNN contains three modules, 32 × (5 × 5 × 3)-filters, 64 × (5 × 5 × 3)-filters, and 128 ×
(5 × 5 × 3)-filters, followed by a final dense layer of 256 units. This final dense layer implements the 

compressed latent representation. The batch size used in the experiments was 128 and weight decay 

hyper-parameter was set to 𝛾 = 10−6. The workstation used had an i5 CPU with 6 cores and an NVIDIA 

GTX 1060 graphics card with 6GB RAM and 1280 GPU cores. We used PyTorch  [42] as our main 
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machine learning framework. All of the neural networks and associated optimizers of our method are 

implemented in PyTorch with CUDA option enabled, to exploit the multi core capability of our GPU. 

We also utilized the popular python machine learning library scikit-learn  [43] for generating the results 

of other methods we endorsed for comparison (see Section  5.3).  

4.2  The Datasets Used 

We used two main datasets for the experiments: 1 - The AITEX Fabric Dataset is a recently introduced 

industrial quality image dataset targeted for fabric defect detection  [44]. The dataset consists of 245 

images of 4096 × 256 pixels captured by the system of seven different fabric structures. The fabrics in 

the dataset are mainly plain, which is very convenient for illustrating the utility of our method, yet covers 

a reasonable range of fabric types. There are 140 defect free images in the database, sampled from 20 

different types of fabric. The remaining 105 images are defected, containing 12 different types of fabric 

defects which commonly appear in the textile industry. 2 - The Kolektor Surface Defect Dataset 2 

(KSDD2) is yet another recently introduced dataset that is constructed from images of defected 

production items that were provided and annotated by Kolektor Group d.o.o.  [45]. The images were 

captured in a controlled industrial environment. The dataset consists of 356 images with visible defects 

and 2979 images without any defect, with image sizes of approximately 230 x 630 pixels. The defected 

images contain several different types of defects (scratches, minor spots, surface imperfections, etc.). 

Both of the datasets contain a number of mask images each of which corresponds to a unique image 

containing one or more defects. The mask image is a black-and-white image depicting the exact pixel 

wise location of a defect, in an unambiguous way. This enabled us to generate labels for defected and 

defect-free patches of arbitrary sizes, in an automated and deterministic way.  

   
Figure 2 Examples of original samples and mask images from AITEX and KSDD2 datasets. Note that mask 

images pinpoint the position of defects 

    

   
Figure 3  Examples of actual defect samples of size 32x32 pixel each, generated using both defect images and 

corresponding mask images provided by the AITEX and KSDD2 datasets. 
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Thus, we implemented a custom sample generator class that can be configured to generate defect free 

and defected patches of different sizes (e.g. 32 × 32, 64 × 64 pixels etc) using the original images 

contained in both of the datasets. The custom generator is also able to decorate the samples with 

synthetic structural defects or random noise (e.g. Gaussian, Poisson etc.) with a pre-defined ratio of the 

total training set. We assume that in a typical industrial setting an image scan camera would send image 

frames to a processing computer at a certain rate, and that the processing unit would generate small 

patches (32 × 32 pixel in our case) to be fed into the defect detector to facilitate easier localization of 

defects. So an input image to our neural network is a 32𝑥 × 32 × 3 matrix (3 at the end is for RGB 

color channels). Figure 2 illustrates the original and the mask image examples from both datasets, and 

Figure 3 shows 32 × 32 patches generated from images containing defects, and some corresponding 

mask image patches. 

4.3  Performance Evaluation Method 

Table 1 AUC, F1 Score and Accuracy results for different lambda values. 

 

We conducted the experiments using 1600 defect-free patches. 70% of these defect-free patches are 

used for training and 30% are left for testing. The number of defect samples for testing depends on the 

   

Dataset  

   

 𝝀  

 Noise  

 Ratio  

 Noise  

 Type  

  RDCAE   

  AUC   

    

  F1 Score   

    

  Accuracy   

  

 

𝑓𝑎𝑏𝑟𝑖c_00  

 

 

 1.0   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.993 ± 0.005   0.208 ± 0.006   0.135 ± 0.032  

 1.55   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   0.994 ± 0.009   0.999 ± 0.002  

 1.6   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   0.998 ± 0.004   1.000 ± 0.001  

 1.65   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   0.991 ± 0.008   0.998 ± 0.002  

 2.5   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.992 ± 0.011   0.936 ± 0.069   0.987 ± 0.013  

  

 

𝑓𝑎𝑏𝑟𝑖c_01  

 

 1.0   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.999 ± 0.001   0.715 ± 0.028   0.576 ± 0.054  

 1.55   3  𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   1.000 ± 0.000   1.000 ± 0.000  

 1.6   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   1.000 ± 0.000   1.000 ± 0.000  

 1.65   3  𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   1.000 ± 0.001   1.000 ± 0.001  

 2.5   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   0.990 ± 0.006   0.990 ± 0.006  

 

 

𝑓𝑎𝑏𝑟𝑖c_02  

 

 1.0   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   0.918 ± 0.112   0.940 ± 0.090  

 1.55   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   0.999 ± 0.002   1.000 ± 0.001  

 1.6   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   0.999 ± 0.002   1.000 ± 0.001  

 1.65   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   0.999 ± 0.002   0.999 ± 0.001  

 2.5   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   0.995 ± 0.004   0.997 ± 0.002  

  

 

𝑓𝑎𝑏𝑟𝑖c_03  

 

  

 1.0   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   0.865 ± 0.011   0.795 ± 0.019  

 1.55   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   1.000 ± 0.000   1.000 ± 0.000  

 1.6   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   1.000 ± 0.000   1.000 ± 0.000  

 1.65   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   1.000 ± 0.000   1.000 ± 0.000  

 2.5   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.001   0.987 ± 0.011   0.983 ± 0.014  

   
   

𝑓𝑎𝑏𝑟𝑖c_04  

   

 1.0   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.995 ± 0.004   0.186 ± 0.022   0.230 ± 0.106  

 1.55   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   0.994 ± 0.007   0.999 ± 0.001  

 1.6   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   0.997 ± 0.006   0.999 ± 0.001  

 1.65   3   𝑠𝑡𝑟𝑢𝑐𝑡.   1.000 ± 0.000   0.992 ± 0.017   0.998 ± 0.003  

 2.5   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.998 ± 0.002   0.934 ± 0.109   0.991 ± 0.015  

 

 

𝑓𝑎𝑏𝑟𝑖c_06  

 

 

 1.0   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.929 ± 0.041   0.260 ± 0.167   0.950 ± 0.035  

 1.55   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.951 ± 0.040   0.323 ± 0.249   0.977 ± 0.007  

 1.6   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.951 ± 0.040   0.287 ± 0.191   0.976 ± 0.005  

 1.65   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.951 ± 0.040   0.287 ± 0.191   0.976 ± 0.005  

 2.5   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.953 ± 0.041   0.210 ± 0.128   0.974 ± 0.003  

  

 

𝐾𝑆𝐷𝐷2  

  

 1.0   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.863 ± 0.047   0.903 ± 0.003   0.824 ± 0.004  

 1.55   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.939 ± 0.041   0.903 ± 0.056   0.856 ± 0.078  

 1.6   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.976 ± 0.012   0.960 ± 0.015   0.936 ± 0.024  

 1.65   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.938 ± 0.038   0.903 ± 0.053   0.855 ± 0.074  

 2.5   3   𝑠𝑡𝑟𝑢𝑐𝑡.   0.838 ± 0.033   0.759 ± 0.032   0.674 ± 0.034  
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number of defects available in each of the dataset. For instance, some fabric types in the AITEX dataset 

include a wider range of defect types and so a higher number of defects. For each dataset type we 

generated synthetic defects by a pre-determined percentage of normal samples using Julia set fractals as 

described in Section  3.2. The metrics used for performance evaluation are Area Under ROC Curve 

(AUC), F1 Score and Accuracy. We resort to these metrics selectively depending on their utility. For 

instance to compare the performance of our method with respect to the use of different noise types (i.e. 

random or structured), or to assess the effect of 𝜆 parameter we employ all of the metrics above. Whereas 

to compare our method to other state of the art methods we use AUC only. 

5. Results and Discussions 

5.1  Tuning the Lambda parameter and comparison of noise types 

As indicated in Section  3.1 the value of the 𝜆 parameter is critical to ensure that the signal and noise 

(normal background and defect) separation is optimal. This requires many experiments for tuning. We 

experimented extensively to search for an optimal value. Although dataset type seem to have an effect 

on the optimal value to a certain degree, 𝜆 = 1.6 offers a reasonable compromise for the whole dataset 

range. This is illustrated in Table 1. So in subsequent runs we set 𝜆 = 1.6.  

 
Table 2 AUC, F1 Score and Accuracy results for different image patch sizes. 

    
Another important observation during our experiments was the effect of the image patch size (i.e. the 

size of the input image given to the autoencoder in pixels) on the detection performance of the 

autoencoder. As indicated in Table 2, smaller patch size leads to much better performance. In fact, 

smaller patch sizes are also better for more precise defect localization especially for small defects. One 

drawback of small patch sizes, however, may emerge when the defect (on the actual surface being 

inspected) is much larger compared to the patch size, which would entail a certain level of additional 

processing for higher level interpretation and classification of the defect. We also investigated the effect 

of using synthetic defects as opposed to random noise for pseudo supervised training. The results are 

illustrated in Table 3. Both in Table 2 and in Table 3 noise ratio refers to the percentage of the noisy 

samples with respect to the total number of samples in the training dataset. Note that using different 

defect types (i.e. structured or random noise) leads to different behavior of the AE during the 

optimization loop, which in turn causes our conversion logic to result in varying iteration numbers for 

the training. Depending on the fabric type, this may have dramatic effects on the performance of RAE 

during the test phase. To ensure fair comparison of the two types of defect modeling, we fixed the 

number of training loops to a total of 630 (including regularization iterations as well as AE training 

epochs) for this particular exercise. Notice that, by observing accuracy and F1 scores in addition to AUC 

scores, it can be concluded that for all dataset types synthetic defects perform better, and that for some 

fabric types (e.g. fabric_00, fabric_04, fabric_06 and KSSD2) the improvement induced by using 

Dataset   𝝀   patch size    RCAE AUC     F1 Score    Accuracy   

  

𝑓𝑎𝑏𝑟𝑖𝑐_00  

 1.6   32 × 32   𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎   𝟎. 𝟗𝟏𝟖 ± 𝟎. 𝟎𝟓𝟎   𝟎. 𝟗𝟕𝟗 ± 𝟎. 𝟎𝟏𝟒  

 6.7   64 × 64   0.132 ± 0.012   0.169 ± 0.000   0.092 ± 0.000  

 

𝑓𝑎𝑏𝑟𝑖c_01  

 1.6   32 × 32   𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎   𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎   𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎  

 6.7   64 × 64   0.955 ± 0.012   0.931 ± 0.016   0.934 ± 0.015  

  

𝑓𝑎𝑏𝑟𝑖𝑐_02  

 1.6   32 × 32   𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎   𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎   𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎  

 6.7   64 × 64   0.999 ± 0.001   0.933 ± 0.008   0.950 ± 0.007  

 

𝑓𝑎𝑏𝑟𝑖c_03  

 1.6   32 × 32   𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎   𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎   𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎  

 6.7   64 × 64   0.491 ± 0.012   0.800 ± 0.000   0.667 ± 0.000  

  

𝑓𝑎𝑏𝑟𝑖𝑐_04  

 1.6   32 × 32   𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎   𝟎. 𝟗𝟗𝟑 ± 𝟎. 𝟎𝟎𝟕   𝟎. 𝟗𝟗𝟗 ± 𝟎. 𝟎𝟎𝟏  

 6.7   64 × 64   0.929 ± 0.000   0.854 ± 0.004   0.965 ± 0.000  

   

𝑓𝑎𝑏𝑟𝑖𝑐_06  

 1.6   32 × 32   𝟎. 𝟗𝟗𝟑 ± 𝟎. 𝟎𝟎𝟑   𝟎. 𝟗𝟓𝟓 ± 𝟎. 𝟎𝟒𝟓   𝟎. 𝟗𝟗𝟕 ± 𝟎. 𝟎𝟎𝟑  

 6.7   64 × 64   0.510 ± 0.006   0.192 ± 0.058   0.921 ± 0.003  

  

𝐾𝑆𝐷𝐷2  

 1.6   32 × 32   𝟎. 𝟗𝟕𝟔 ± 𝟎. 𝟎𝟏𝟐   𝟎. 𝟗𝟔𝟎 ± 𝟎. 𝟎𝟏𝟓   𝟎. 𝟗𝟑𝟔 ± 𝟎. 𝟎𝟐𝟒  

 3.3   64 × 64   0.814 ± 0.023   0.919 ± 0.008   0.855 ± 0.014  
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synthetic structured defects as opposed to random noise is more significant. In all experiments the 

convergence criteria used to terminate the iterations is the same, as explained in Section  3.1.  

 
Table 3 Comparison of the Results When Using synthetic Defects (Structured Noise) vs. Random (Gaussian) Noise. 

Dataset  

Noise  

Type 

Noise  

Ratio  RDCAE RAUC F1 score  Accuracy  

𝑓𝑎𝑏𝑟𝑖𝑐_00  
struct.  5 𝟎. 𝟗𝟗𝟏 ±  𝟎. 𝟎𝟎𝟗  𝟎. 𝟕𝟎𝟏 ±  𝟎. 𝟐𝟕𝟖  𝟎. 𝟖𝟒𝟔 ±  𝟎. 𝟏𝟒𝟗 

 

random   5 0.618 ±  0.137  0.228 ±  0.024  0.228 ±  0.114 
 

𝑓𝑎𝑏𝑟𝑖𝑐_01  
struct.  5 𝟏. 𝟎𝟎𝟎 ±  𝟎. 𝟎𝟎𝟎  𝟎. 𝟗𝟗𝟔 ±  𝟎. 𝟎𝟎𝟒 𝟎. 𝟗𝟗𝟓 ±  𝟎. 𝟎𝟎𝟓 

 

random  5 0.999 ±  0.000  0.963 ±  0.025  0.959 ±  0.028 
 

𝑓𝑎𝑏𝑟𝑖𝑐_02 
struct.  5 1.000 ±  0.000  1.000 ±  0.000  1.000 ±  0.000 

 

random   5 1.000 ±  0.000  1.000 ±  0.000  1.000 ±  0.000 
 

𝑓𝑎𝑏𝑟𝑖𝑐_03 
struct.  5 𝟏. 𝟎𝟎𝟎 ±  𝟎. 𝟎𝟎𝟎  𝟎. 𝟗𝟗𝟖 ±  𝟎. 𝟎𝟎𝟐  𝟎. 𝟗𝟗𝟕 ±  𝟎. 𝟎𝟎𝟑 

 

random   5 0.996 ±  0.002  0.883 ±  0.034  0.863 ±  0.036 
 

𝑓𝑎𝑏𝑟𝑖𝑐_04  
struct.  5 𝟏. 𝟎𝟎𝟎 ±  𝟎. 𝟎𝟎𝟎  𝟎. 𝟕𝟔𝟑 ±  𝟎. 𝟐𝟐𝟑  𝟎. 𝟗𝟐𝟓 ±  𝟎. 𝟎𝟕𝟐 

 

random   5 0.976 ±  0.004  0.333 ±  0.004  0.659 ±  0.001 
 

𝑓𝑎𝑏𝑟𝑖𝑐_06  
struct.  5 𝟎. 𝟗𝟗𝟗 ±  𝟎. 𝟎𝟎𝟎  𝟎. 𝟖𝟒𝟎 ±  𝟎. 𝟎𝟏𝟕  𝟎. 𝟗𝟗𝟐 ±  𝟎. 𝟎𝟎𝟎 

 

random   5 0.983 ±  0.005  0.414 ±  0.014  0.977 ±  0.001 
 

𝐾𝑆𝐷𝐷2  
struct.  5 𝟎. 𝟗𝟓𝟑 ±  𝟎. 𝟎𝟑𝟐  𝟎. 𝟗𝟐𝟒 ±  𝟎. 𝟎𝟒𝟕  𝟎. 𝟖𝟖𝟓 ±  𝟎. 𝟎𝟔𝟕 

 

random   5 0.943 ±  0.006  0.813 ±  0.008  0.739 ±  0.010 
 

 

5.2  Illustration of the Outputs 

   
 

  
(a) Training samples 
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(b) Test samples 

    
Figure 4 An example set of L (signal) and S (noise) matrices of 32x32 patches corresponding to fabric_03, 

illustrating samples extracted from both training (a) and test (b) sets. 

 

We further exemplify the performance of the RDCAE, in Figure 4, by illustrating the visual outputs of 

our method for signal (background) and noise (defect) samples of one of the datasets (i.e. fabric_03). 

Figure 4 (a) depicts the original synthetic defects, the L (signal) part and S (noise) part corresponding 

to the same patches at the end of the training process. Note that the L matrices preserve the overall 

background pattern except where the defects were located. In contrast, the S matrices capture the defect 

areas. The figure includes both normal and defect images to highlight the difference. Observe that S 

images corresponding to the normal samples do not contain any pattern or pixels, indicating that there 

was no defect to separate out. Figure 4 (b) illustrates the same matrices obtained after the training of the 

AE, this time using the test samples that include the actual real world defects. This time instead of 𝐿𝐷 

we have the reconstructed input (i.e. 𝑅 = 𝐷(𝐸(𝑋))) in the middle of the Figure. Notice how the 

background (𝑅) of the defect images is distorted, and the defects are reflected in the 𝑆 images.  
 
 Figure 5 on the other hand presents the final reconstruction error scores of our RDCAE plotted against 

a Structural SIMilarity (SSIM) index  [46] calculated by comparing the input and output of the AE. The 

Structural SIMilarity (SSIM) index is a method for measuring the similarity between two images. In 

contrast to RDCAE reconstruction error scores, with SSIM we expect to have high scores (close to 1) 

for normal images, and relatively low scores for defect images. For the SSIM algorithm implementation 

we used the compare_ssim function provided by the scikit-image  [47] library. Note that the normal 

samples of both training and test datasets are clustered closely in a relatively dense area and that the 

defect samples included in test datasets (i.e. actual real-world defects) are distributed away from the 

non-defect samples. Also, it can be seen that the synthetic defects are noticeably separated away from 

non-defect samples of both training and test datasets. This indicates that the RDCAE has learned an 

efficient representation of the normal samples exceptionally well, such that the RDCAE reconstruction 

error now behaves as a sound discriminator.  
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 Figure 5 Scatter graphs illustrating a 2D distribution of RDCAE reconstruction errors plotted against structural 

similarity scores, corresponding to anomalous samples and normal samples of test datasets. Normal samples and 

synthetic defects used during training 

 
Each graph includes a legend indicating the number of normal training samples, synthetic defects, true 

positives, true negatives, false positives (if any) and false negatives (if any). The results show that our 

RDCAE has a remarkable performance for detecting defects in regard with fabric types provided in an 

industrial grade dataset. Note that throughout the performance tests reported up to this point, the dataset 

𝑓𝑎𝑏𝑟𝑖c_06 performs relatively poorly. This is likely to be due to its challenging features with regard to 

two aspects:   

1. The normal samples are relatively difficult to differentiate from the anomalous ones since they share 

more common features compared to other datasets. We note that this could be regarded as an 

illustrative example of challenges that may arise in real world industrial applications.  
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2. The number of anomalous samples is much less compared to other datasets (i.e. only 10 samples, 

compared to 46 for 𝑓𝑎𝑏𝑟𝑖c_00, 404 for 𝑓𝑎𝑏𝑟𝑖c_01, 135 for 𝑓𝑎𝑏𝑟𝑖c_02, 690 for 𝑓𝑎𝑏𝑟𝑖𝑐_03 and 34 

for 𝑓𝑎𝑏𝑟𝑖_04). Therefore, metric scores (F1 in particular) are much more sensitive to the number of 

false positives and false negatives.  

 
Note also that, there are some other elements that lead to exceptionally good results for other datasets. 

First, each of our datasets contains samples from a specific fabric type. So we perform training for a 

particular fabric type, and then carry out defect detection test for the same fabric type. This implies that 

in a real world industrial application we would need to train the visual inspection system for each fabric 

type. This should not be an important predicament, since training times are not huge (in the order of a 

couple of minutes) for even modest hardware specification we used, and using embedded software 

would dramatically improve the performance. Moreover, large-volume fabric production lines can 

tolerate such initial setup phases. However, this is something that should be recognized when 

interpreting the results. Second, combining AE optimization with pixel wise regularization in a single 

framework to achieve signal/noise separation and feature learning in a progressive way, seem to work 

particularly well for fabric defect detection.  

5.3  Comparison to Other Anomaly Detection Methods 

Table 4 Comparison of Area Under ROC Curve (AUC) Metric Results of Robust Deep Convolutional Autoencoder 

(RDCAE) to That of Other Methods 

Dataset Robust DCAE DCAE Deep SVDD OC-SVM-LREP 
OC-SVM-
AERE ISOF-LREP ISOF-AERE 

𝑓𝑎𝑏𝑟𝑖𝑐_00 𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎 0.973 ± 0.026 0.944 ± 0.030 0.676 ± 0.134 0.828 ± 0.028 0.669 ± 0.148 0.825 ± 0.042 

𝑓𝑎𝑏𝑟𝑖𝑐_01 𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎 0.994 ± 0.002 0.842 ± 0.111 0.762 ± 0.015 0.911 ± 0.011 0.781 ± 0.027 0.902 ± 0.017 

𝑓𝑎𝑏𝑟𝑖𝑐_02 𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎 1.000 ± 0.000 0.982 ± 0.012 0.665 ± 0.028 0.857 ± 0.009 0.664 ± 0.021 0.886 ± 0.008 

𝑓𝑎𝑏𝑟𝑖𝑐_03 𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎 1.000 ± 0.001 0.818 ± 0.092 0.476 ± 0.057 0.875 ± 0.007 0.505 ± 0.031 0.873 ± 0.011 

𝑓𝑎𝑏𝑟𝑖𝑐_04 𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟎 0.978 ± 0.006 0.774 ± 0.109 0.488 ± 0.065 0.865 ± 0.019 0.485 ± 0.024 0.857 ± 0.019 

𝑓𝑎𝑏𝑟𝑖𝑐_06 𝟎. 𝟗𝟗𝟑 ± 𝟎. 𝟎𝟎𝟑 0.955 ± 0.019 0.739 ± 0.127 0.384 ± 0.008 0.737 ± 0.063 0.468 ± 0.003 0.777 ± 0.074 

𝐾𝑆𝑆𝐷2 𝟎. 𝟗𝟕𝟐 ± 𝟎. 𝟎𝟏𝟐 0.787 ± 0.013 0.807 ± 0.002 0.704 ± 0.010 0.712 ± 0.003 0.661 ± 0.017 0.722 ± 0.003 

 

We compare the performance of our method with four different state of the art methods:   

 
1. Deep Convolutional Autoencoders (DCAE)  [26, 27]. We employed exactly the same neural 

network architecture as our Robust DCAE except that the optimization method is based only on 

minimizing the reconstruction error as in standard AEs. 
2. Isolation Forests (IF)  [20]. We used the latest stable version of the widely-used python machine 

learning library scikit-learn  [43]. The IsolationForest function provided by the library is an 

implementation of the algorithm presented in  [20]. 

3. One-Class SVM  [19]. We employ the implementation provided by scikit-learn  [43] as we did for 

the Isolation Forests. This is an implementation of the algorithm presented in  [19]. Once again, we 

used the latent representation of the DCAE above as input to the algorithm. 

4. One-Class Support Vector Data Description (OC-SVDD). We adapt the method provided by  

[23]. We used the PyTorch implementation available from their github repository at 

https://github.com/lukasruff/Deep-SVDD-PyTorch. To facilitate a meaningful comparison, we 

ensured that our RDCAE architecture and the AE architecture used in their method are exactly the 

same, and also used the encoder part in the corresponding one-class SVDD network as suggested 

by their method.  
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Figure 6 The graphs above illustrate the Receiver Operating Characteristic (ROC) curves generated by all the 

methods listed in Table  4, pertaining to datasets that are relatively more challenging. 

 

For DCAE and Deep SVDD we trained the AEs using a comparable epoch number. As our Robust 

DCAE uses a specific convergence criteria, the number of total training iterations is not fixed. However, 

for DCAE and Deep SVDD a pre-determined epoch number has to be set. So, for a fair comparison we 

used the average training epoch number obtained from our replicated runs and used that number as the 

epoch number for DCAE and Deep SVDD. For OC-SVM and Isolation Forest we used the 

recommended hyper-parameters in their documentation. To establish a well-founded basis for 

comparison with these two methods we used two different inputs to their algorithm: 1 - the latent 

representation of the AE (in DCAE) mentioned above which is a feature set of size 256 for each image. 

This is indicated by the suffix "-LREP" at the end of corresponding column label in Table 4 (e.g. OC-

SVM-LREP), 2 - the reconstruction error obtained from the AE, which is a single figure. This is 

indicated by the suffix "-AERE" at the end of corresponding column label (e.g. ISOF-AERE). In 

addition to AUC scores given in Table 4, we provide Receiver Operating Characteristic (ROC) curves 

generated by those methods in Figure 6, to illustrate a more comprehensive and discernible performance 

comparison of the methods. The ROC curve shows the trade-off between sensitivity (or True Positive 

Rate (TPR)) and specificity (1 – False Positive Rate(FPR)). For all methods, normalized raw scores are 

used (rather than predicted labels) to obtain smoother and more indicative curves. The four graphs in 

the figure pertain to relatively more challenging datasets, to further articulate the level of improvement 

achieved for those datasets. It can be observed that our method, Robust DCAE, outperforms all of the 

methods, in some cases with a significant margin. This can be attributed to the ability of the robust 

convolutional AEs to efficiently learn the stable representative features, through the separation of signal 

and noise during its training. 
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6. Concluding Remarks 

In this paper, we illustrated the use of Robust Deep Convolutional Autoencoders (RDCAE) for defect 

detection via two recently introduced industrial quality datasets and we presented some improvements 

to the training process of RDCAE, that enable us to more reliably manage the convergence of the 

training. We have illustrated the use of synthetic simulated defects (or structured noise), so that a robust 

convergence criteria can be settled without compromising the detection performance of the method. We 

believe that this introduces a plausible and efficient solution to the defect detection process in the 

absence of true (real life) abnormal samples. 
 

Our experiment results are a clear manifestation of the theoretical argument stating the competency of 

robust deep convolutional AEs in signal-noise separation and thus their ability to more effectively learn 

the common, stable features as opposed to subtle and inconsistent features that are exhibited by outliers. 

In other words, compared to plain AEs (e.g DCAE) and many other anomaly detection methods, robust 

AEs are more adept to learn the boundary between the normal and abnormal samples. There are many 

application areas, such as automated visual surface inspection systems, that can benefit from the 

strengths of this method. 
 

It is also worth noting that the clear separation of the noise (i.e. defects) into a separate image (e.g. S 

images in Figure 4) makes the method more amenable to either further image processing (as a post 

processing step), or various custom neural network architecture designs for further feature extraction to 

enable defect identification and classification. 
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