4,339 research outputs found

    Flutter analysis of two parallel elastically coupled flat plates

    Get PDF
    Flutter of two parallel elastically coupled flat plates was investigated analytically. A closed-form solution including both aerodynamic and structural damping is presented for flutter of flat orthotropic plates coupled by an elastic medium. Both plates are simply supported along the side edges but are supported by deflectional, rotational, and torsional springs of arbitrary stiffness at the leading and trailing edges. Two-dimensional quasi-steady aerodynamics was utilized in the solution. Since the large number of variables present in the problem precludes extensive parametric studies, results are presented to indicate the basic flutter characteristics of coupled two-plate systems and to assess the validity of previously published modal solutions for similar problems

    Analytical and experimental study of the effects of wing-body aerodynamic interaction on space shuttle subsonic flutter

    Get PDF
    The effects on flutter of the aerodynamic interaction between the space shuttle bodies and wing, 1/80th-scale semispan models of the orbiter wing, the complete shuttle and intermediate component combinations were tested in the NASA Langley Research Center 26-inch Transonic Blowdown Wind Tunnel. Using the double lattice method combined with slender body theory to calculate unsteady aerodynamic forces, subsonic flutter speeds were computed for comparison. Using calculated complete vehicle modes, flutter speed trends were computed for the full scale vehicle at an altitude of 15,200 meters and a Mach number of 0.6. Consistent with findings of the model studies, analysis shows the shuttle to have the same flutter speed as an isolated cantilevered wing

    Model mount system for testing flutter

    Get PDF
    A wind tunnel model mount system is disclosed for effectively and accurately determining the effects of attack and airstream velocity on a model airfoil or aircraft. The model mount system includes a rigid model attached to a splitter plate which is supported away from the wind tunnel wall several of flexible rods. Conventional instrumentation is employed to effect model rotation through a turntable and to record model flutter data as a function of the angle of attack versus dynamic pressure

    Flutter Prediction for Aircraft Conceptual Design

    Get PDF
    Flutter prediction is usually a knowledge-based analysis process that aims to reduce the cost of aeroelastic stability margin certification. However, early detection of flutter problems is beneficial in the development of unconventional aircraft. The recently developed automation tool ConceptFEA for structural sizing of aircraft concepts paves the way for rapid physics-based flutter prediction of aircraft concepts. A match-point iteration procedure using the p-k method is implemented for ConceptFEA with minimum user input requirements to generate flutter boundary points. A subsonic business jet concept and its high aspect-ratio wing variant are used to demonstrate how the newly developed flutter prediction capability can be used during aircraft conceptual design. Sized structures, flutter boundary curves, and flutter sensitivity analysis results are generated for these two concepts using ConceptFEA. The relevant equivalent plate theory is provided to show the quantitative relationships between a stiffened panel and its equivalent NASTRAN PSHELL panel. The rapid flutter prediction capability of ConceptFEA makes multidisciplinary collaborations between systems analysts and aeroelasticity experts feasible in practice

    Experimental flutter boundaries with unsteady pressure distributions for the NACA 0012 Benchmark Model

    Get PDF
    The Structural Dynamics Div. at NASA-Langley has started a wind tunnel activity referred to as the Benchmark Models Program. The objective is to acquire test data that will be useful for developing and evaluating aeroelastic type Computational Fluid Dynamics codes currently in use or under development. The progress is described which was achieved in testing the first model in the Benchmark Models Program. Experimental flutter boundaries are presented for a rigid semispan model (NACA 0012 airfoil section) mounted on a flexible mount system. Also, steady and unsteady pressure measurements taken at the flutter condition are presented. The pressure data were acquired over the entire model chord located at the 60 pct. span station

    Flutter of a Low-Aspect-Ratio Rectangular Wing

    Get PDF
    A flutter test of a low-aspect-ratio rectangular wing was conducted in the Langley Transonic Dynamics Tunnel (TDT). The model used in this flutter test consisted of a rigid wing mounted to the wind-tunnel wall by a flexible, rectangular beam. The flexible support shaft was connected to the wing root and was cantilever mounted to the wind-tunnel wall. The wing had an aspect ratio of 1.5 based on the wing semispan and an NACA 64A010 airfoil shape. The flutter boundary of the model was determined for a Mach number range of 0.5 to 0.97. The shape of the transonic flutter boundary was determined. Actual flutter points were obtained on both the subsonic and supersonic sides of the flutter bucket. The model exhibited a deep transonic flutter bucket over a narrow range of Mach number. At some Mach numbers, the flutter conditions were extrapolated using a subcritical response technique. In addition to the basic configuration, modifications were made to the model structure such that the first bending frequency was changed without significantly affecting the first torsion frequency. The experiment showed that increasing the bending stiffness of the model support shaft through these modifications lowered the flutter dynamic pressure. Flutter analysis was conducted for the basic model as a comparison with the experimental results. This flutter analysis was conducted with subsonic lifting-surface (kernel function) aerodynamics using the k method for the flutter solution

    NACA0012 benchmark model experimental flutter results with unsteady pressure distributions

    Get PDF
    The Structural Dynamics Division at NASA Langley Research Center has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of this program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type computational fluid dynamics codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. This paper describes results obtained from a second wind tunnel test of the first model in the Benchmark Models Program. This first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree of freedom mount system. Experimental flutter boundaries and corresponding unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations are presented
    • …
    corecore