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FLUTTER ANALYSIS O F  TWO PARALLEL ELASTICALLY 

COUPLED FLAT PLATES 

Charles P. Shore 
Langley Research Center 

SUMMARY 

Flutter of two parallel elastically coupled flat plates is investigated analytically. 
A closed-form solution including both aerodynamic and structural  damping is presented 
for flutter of flat orthotropic plates coupled by an elastic medium. Both plates are sim
ply supported along the side edges but are supported by deflectional, rotational, and tor
sional springs of arbi t rary st iffness at the leading and trailing edges. Two-dimensional 
quasi-steady aerodynamics is utilized in the solution. Since the large number of vari
ables present in  the problem precludes extensive parametric studies, results are pre
sented to indicate the basic flutter characterist ics of coupled two-plate systems and to 
a s ses s  the validity of previously published modal solutions for similar problems. 

INTRODUCTION 

Flutter of two simply supported parallel isotropic plates connected by an elastic 
medium has been investigated previously in connection with micrometeroid bumpers 
which are attached to a primary structural  skin by a light soft filler material. Although 
intended primarily as a protective device in space, such configurations must withstand 
severe aerodynamic loads during launch. In reference 1a two-mode Galerkin solution 
to the coupled fourth-order differential equations describing motion of the two plates was 
obtained. The simple Ackeret expression for the lateral  loading due to air pressure was 
used in the analysis. In reference 2 a two-mode flutter solution which used piston theory 
aerodynamics to incorporate aerodynamic damping effects was obtained for the coupled-
plate problem. In addition a semiexact procedure and a finite-difference formulation 
were outlined; however, the only results presented were from the two-mode solution. 
Results presented in references 1 and 2 indicate that the elastic coupling medium can 
have significant effects on the flutter response of the two-plate system. In fact, depending 
on the magnitude of inplane loads acting on the plates and the spring stiffness of the elastic 
coupling medium, the two-plate system can become unstable at much lower dynamic pres
su res  than either of the two plates alone. 

More recently several  thermal protection systems which employ exposed surfaces 
coupled to primary load carrying s t ructures  by flexible insulation and/or strain-isolator 
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systems have been proposed for space shuttle and hypersonic cruise vehicles. The flut
ter characteristics of reusable surface insulation (RSI) panels coupled to a primary struc
ture  by a flexible strain isolator have been studied in  reference 3. The analysis utilizes 
plate modes for the simply supported primary structure and free-free beam modes for 
the RSI panels. Dynamic response of the coupled system was obtained by application of 
the Rayleigh-Ritz technique. Results presented in  reference 3 indicate that the presence 
of the RSI panels has a highly stabilizing effect on the flutter response of the primary 
structure. The main cause of the increased flutter stability of the primary structure 
was attributed to the segmented mode shapes of the RSI panels which govern the interac
tion of the aerodynamic forces and the deflections of the primary structure. Finally, the 
typical severely destabilizing influence of midplane compressive loads on single isotropic 
panels was not always observed for the coupled system, and the buckling value of the mid-
plane loading for the primary structure was  found to be increased significantly by the 
RSI/strain-isolator system. 

In many instances the exposed surfaces of typical thermal protection systems con
sis t  of highly orthotropic panels with arbitrary flexible supports at the boundaries. (See 
ref. 4.) Thus, the present report extends the previous solutions to a more general con
figuration consisting of two parallel orthotropic plates connected by an elastic medium 
and supported at  the leading and trailing edges on springs of arbitrary stiffness. Piston 
theory aerodynamics is employed to obtain the lateral  loading due to air pressure over 
the exposed plate, and taking the side edges of the plates to be simply supported allows a 
closed-form solution (i.e., nonmodal) to the governing partial differential equations. 
Results from the analysis a r e  compared with results from references 1to 3 ,  and a gen
eral flutter boundary for two identical simply supported coupled plates is presented for a 
single value of the elastic spring stiffness of the connecting medium. Specific examples 
are also presented to indicate the applicability of the solution and to indicate some effects 
of structural damping and inplane loading on the flutter of elastically coupled parallel 
plates. Additionally, the influence on flutter of single plates with unequal support springs 
at  the leading and trailing edges is briefly discussed. 

SYMBOLS 

Dimensional quantities are presented both in the International System of Units (SI) 
and in the U.S. Customary Units. Measurements were made in  U.S. Customary Units. 

Ai deflection shape coefficients 

-
A parameter defined by equation (16) 

a plate length 
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-
B 


b 

parameter defined by equation (17) 

plate width 

free-stream speed of sound 

plate bending stiffness in x-direction 

plate bending stiffness in y-direction 

plate twisting stiffness 

plate stiffness coefficients defined by equation (7) 

Young's modulus 

complex deflectional, torsional, and rotational support spring coeffi
cients defined by equation (11) 

complex coefficients defined by equation (8) 

aerodynamic damping coefficient, pc/yuwr ,u 

deflectional, torsional, and rotational support spring structural damping 
coefficients 

elastic coupling-medium structural damping coefficient 

plate structural damping coefficients 

moment of inertia 

imaginary unit, 

complex spring stiffness of elastic coupling medium 

spring stiffness of elastic coupling medium in compression 

deflectional, torsional, and rotational spring stiffnesses 
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aerodynamic loading term 

Mach number 

m number of half-waves in streamwise direction 

NX inplane loading in x-direction, positive i n  compression 

NY inplane loading in y-direction, positive in compression 

n number of tiles 

Pi roots to equation (22) 

q free-stream dynamic pressure 


RX nondimensional inplane loading parameter in x-direction, Nxb2/.2D1 


Rx ,c r  buckling load with no airflow 


RY nondimensional inplane loading parameter in y-direction, Nyb”/”D1
7~ 

S coupling-medium spring parameter defined by equations (18) 


t time 


V f ree-st ream velocity 


W lateral  deflection 


X deflection shape in x-direction 


Cartesian coordinates 

coefficients defined by equation (A5) 

P compressibility factor, {z 
Y plate mass  per unit a r e a  
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c complex frequency coefficient, $I + i w  

x dynamic -pressure parameter,  2qaypD1,u 

Px+y Poisson's ratio i n  x-direction and y-direction, respectively 

P free-stream air density 

$I real par t  of complex frequency exponential coefficient 

[521 boundary condition matrix 

W circular frequency 

wr reference frequency, see  equations (18) 

Subscripts: 

L lower plate 

le leading edge 

max maximum 

te trailing edge 

U upper plate 

Two te rms ,  one above the other, within braces { } occur in the equations of this 
report. This notation means that two equations may be obtained by substituting first the 
upper and then the lower term. For example, equation (4b) 

D 

- PX,UI-lY,U(-2 at x - 0x7u 

means that 

at x = o  ' 
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- = o  

and 

awU at x = a  
+ kr,te,U ax 

ANALYSIS 

The configuration to be analyzed is shown in figure 1and consists of an upper ortho
tropic plate exposed to the airflow coupled, by a linearly elastic medium, to a lower ortho
tropic plate. The coupling medium behaves like a Winkler foundation in  that an applied 
force causes deflection only at the point of application of the force. Both plates are sim
ply supported along the side edges but are supported by deflectional, rotational, and tor
sional springs of arbi t rary stiffness at the leading and trailing edges. Each plate may 
also have different material properties and inplane loadings. 

Differential Equations and Boundary Conditions 

The appropriate small-deflection equilibrium equations for the two orthotropic 
plates in the presence of inplane tensile o r  compressive loads may be written in the fol
lowing form (ref. 1): 

Upper plate 

2 82WU 2 
a wu a wu + k(wu - wL) = I(x,y,t)

+ Nx,u2+ Ny,u -+ Yu -
ax ,Y2 a t2  

Lower plate 
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The subscripts U and L refer  to the upper and lower plates, respectively; for 
each plate the bending stiffnesses in  the x- and y-directions a r e  denoted by Dx and Dy, 
respectively; Dxy denotes the plate twisting stiffness, y is the plate mass per unit 
area, and k denotes the spring stiffness of the elastic coupling medium in compression. 
The lateral  loading induced by supersonic flow over the upper plate is assumed to be given 
by two-dimensional quasi-steady aerodynamic theory, so that 

awUZ(x,y,t) = 2q awU PC -P ax a t  

1where q = -pV2 is the free-s t ream dynamic pressure and p = \JM2 - 1 is the compres
2 

sibility factor. The first t e rm on the right side of equation (3) corresponds to a static 
loading and the second term is an aerodynamic damping term. References 5 and 6 have 
shown that for M > 1.6 and a/b from 0 to 10, use of two-dimensional aerodynamic 
theory yields flutter results in  good agreement with those predicted by more exact aero
dynamic theory. 

According to reference 7 the boundary conditions may be written as follows: 

Upper plate 
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Lower plate 
Replace subscript U by L i n  equations (4a) and (4b); equation (4c) becomes 

The frequency-independent, linear, hysteretic formulation of structural  damping 
used in reference 6 is employed in the present analysis by modifying all the t e rms  in 
equations (l), (2), and (4) containing plate bending stiffnesses o r  spring stiffnesses by an 
appropriate (1+ ig) factor for simple harmonic motion. This procedure is equivalent to 
assuming orthotropic structural  damping properties as well as orthotropic stiffness prop
er t ies  for both plates and permits arbitrary levels of structural  damping to be considered 
for each of the leading- and trailing-edge support springs as well as for the elastic cou
pling medium. 

Solution 

With introduction of the generalized aerodynamic loading 
and of structural damping and with division by the appropriate 

the upper and lower plates, equations (1)and (2) become 

Upper plate 

4 2 
a wu + Nx,u a wu 

ax ay4 D i , ~ax2 

a2wU YU a2wU K 
D+k-+-- + -(Wu - W L )  + Dl,u- (5) 

2 D i , ~at2 i,u 

a 



- - .. - ...... . . . . 

Lower plate 

2 2 
N a w  Y L  a wL + --(WLK+J&L+-- - wu) = 0 

ay2 D i , ~
D
i , ~  at2 1,L 


where the plate stiffness coefficients are defined as 


and the damping factors are defined as 


Gx = 1+ igx Gxy = 1 + igxy GY -- 1 + igy K = k(l + igk) (8 )  


Similarly the boundary conditions for the upper plate become 

awU = 0 at x ={}ax 

D1,u 

D1,U 
-Gt,te,U 

D1,U 
- ““I 

a3wU 
X-- + G  -+ 

ax ay2 x,u ax3 



-- 

The boundary conditions for the lower plate become 

a w L - 0 at 
+ I - l Y J  ax 

= O  a t  x =  (10c) 

where the complex spring coefficients are defined as 

Gd,le = + igd,Ze Gd,te = '+ igd,te 1 
For exponentially varying motion of the two plates the assumption of simply sup

ported side edges admits the following lateral  deflection w for the two plates as a solu
tion to equations (5) and (6): 
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where X is the deflection shape in  the x-direction and ( is of the form 

Reference 8 has shown that for simple supports along the lateral  edges there is no 
stiffness coupling between cross-s t ream modes. U s e  of two-dimensional aerodynamic 
theory precludes any aerodynamic coupling of orthogonal cross-stream modes; thus, 
modes with a single half-wave in the cross-stream direction have the lowest natural f re
quencies and are used to determine the dynamic stability criterion (lowest value of X 
for which @ > 0) for the coupled-plate system under consideration. 

Substitution of the expressions in  equation (12) for wu and wL into equations (5) 
and (6) results i n  the following two coupled fourth-order ordinary differential equations 
in Xu and XL: 

Gx,uXC) + xuXG + AX; + gUXu - 7r4SUXL = 0 

x ( 4 )  + ALX;: + BLXL - 714SLXU = 0 
Gx,L L 

where the primes denote derivatives with respect to x/a and where 



Similar expressions for xL, SL, w ~ , ~ ,2 %,L, and %,L are obtained by replacing 
subscript U with L i n  equations (16) and (18). 

Equations (14) and (15) may be solved simultaneously for XU and XL or com

bined to yield a single eighth-order ordinary differential equation in XL as follows. 
From equation (15), 

xu = p(Gx,Lxp + XLX;: + ELXL11 = SL 

Substitution of the expression in equation (19) for Xu into equation (14)yields the fol
lowing eighth-order linear homogenous ordinary differential equation in XL: 

A closed-form solution to equation (20) with constant coefficients may be written 

where the Pi satisfy the characteristic equation 

-
+ XALPi + AUBL + - r8%SL) = 0r -

The boundary conditions for both plates can be written in  t e rms  of the Pi and Ai 
by using equations (12) and (21) along with equations (9) and (10). When written in  matrix 
form the boundary conditions become 

Detailed expressions for the elements of the boundary condition matrix [a]and their 
derivation are given in  the appendix. 
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The flutter behavior of the coupled two-plate system with either aerodynamic 
o r  structural  damping present is governed by the variation of the complex frequency 
< = Q, + i w  as a function of the aerodynamic load A. Flutter of the system occurs when 
Q, becomes positive and, hence, the lowest X condition when Q, = 0 is taken to be the 
critical condition. This condition corresponds to sustained simple harmonic motion and 
represents incipient flutter for the system. 

Flutter solutions for  the coupled two-plate system are obtained as follows. The 
physical characteristics of the system are specified except for the aerodynamic load X 
and the complex frequency c. An initial aerodynamic load X is assumed and then 
incremented, and values of 5 are determined for each value of X by an iteration 
scheme. The iteration on c is continued until a set of roots to equation (22)is obtained 
which satisfies the boundary conditions. Since, in general, the Ai in equations (21)and 
(23)are not zero, the boundary conditions are satisfied when the determinant of the bound
a ry  condition matrix is zero. This process is continued until a value of X is reached 
which causes the rea l  part  of 5 to be positive by a small  value and equation (12)implies 
that the amplitude of vibration for the system increases without limit. When both aerody
namic and structural damping in  the system are zero the rea l  part of 5 (@) is zero for 
all values of X below some critical value. When this critical value is reached, two 
natural frequencies of the system coalesce into complex conjugates, so  that positive V a l 

ues of the real part of { (+) occur and equation (12)again implies motion with growing 
amplitude, that is, flutter. 

To obtain flutter boundaries for the coupled two-plate system a computer algorithm 
was written to obtain values of c as a function of X. The algorithm is written in 
FORTRAN IV for the CDC 6000 se r i e s  computers at the Langley Research Center and 
makes use of library subroutines to numerically extract the roots of the eighth-order 
complex polynomial (eq. (22)) and to evaluate the determinant of the complex boundary 
condition matrix. In the algorithm, values of which satisfy equation (23) a r e  deter
mined for given values of X by using a Newton-Raphson iteration scheme wherein a new 
value of 5 is determined from the current value by the following expression: 

where A{ is a small increment in used to numerically calculate the f i rs t  derivative 
of the determinant of the boundary condition matrix with respect to 5 .  
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RESULTS AND DISCUSSION 

Because of the large number of variables involved, no attempt was made to conduct 
extensive parametric studies of the flutter behavior of coupled two-plate systems. How
ever,  results are presented to show that when aerodynamic and structural  damping effects 
are ignored and the two plates are identical with respect to geometry, inplane loading, 
edge conditions, and material properties, flutter boundaries can be obtained in t e rms  of 
the general parameters and as was done in  references 8 and 9 for single plates. 
Some effects of structural  damping on the flutter of coupled identical plates for a/b = 4 
are also presented. In addition, results from the current analysis a r e  compared with 
results from the modal solutions of references 1 and 2 to assess the validity of these 
solutions. Two thermal protection systems proposed for space shuttle which can be 
modeled as coupled two-plate systems a r e  analyzed to determine their flutter character
ist ics.  For  each system the stiffnesses of the upper and lower plates differ by 2 orders  
of magnitude. The plate with low stiffness is exposed to the flow in one system and in the 
other the plate with high stiffness is exposed to the flow. A discussion of the relative 
flutter behavior of the two systems is also presented. Finally, the influence on flutter of 
single plates of unequal support springs at the leading and trailing plate edges is discussed 
briefly. 

Flutter Boundary for Identical Coupled Plates 

When aerodynamic and structural damping are neglected and when the two plates 
are identical with respect to geometry, inplane loading, and material properties, equa
tions (16) and (17) indicate that the respective and parameters for the two plates 
a r e  equal. For these conditions it is possible to obtain general flutter boundaries for the 
coupled system for specific stiffness values of the elastic coupling medium and specified 
boundary conditions. Such flutter boundaries a r e  then applicable to a wide variety of 
panel configurations, material properties, and inplane loadings. 

Although it is possible to generate solutions for various values of the spring s t i f f 
ness  of the coupling medium and for various boundary conditions, only one such solution 
with both plates simply supported and a coupling-medium spring parameter of 
SU = SL = 10 (representative of a lightly coupled system) was obtained to illustrate the 
nature of such solutions. Figure 2 shows a comparison of the resulting flutter boundary 
for a coupled two-plate system with a similar boundary for a single plate. The boundaries 
are shown in terms of X1I3 as a function of A. The anomalous X = 0 flutter points 
occur whenever has a value that causes the two vibration modes which coalesce flut
ter to have equal natural frequencies for no airflow. For  the coupled-plate system the 
larger  number of X = 0 flutter points results from the fact that the coupled system has 
twice the number of natural vibration frequencies associated with a single plate. 
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Eight natural frequencies of the coupled system are shown in figure 3 in  which the- -
frequency parameter B is shown as a function of A. The solid curves correspond to 
vibration modes of the two plates which are in phase, the dashed curves correspond to 
vibration modes of the two plates which are 180° out of phase, and m denotes the num
ber of half-waves in the s t ream direction. Shaded regions between any two curves indi
cate that those modes contiguous to the shaded regions on the plot coalesce to give the 
lowest value of X for flutter. As usual in panel flutter, adjacent odd and even modes 
coalesce for flutter. However, since the coupled-plate system has both in-phase and out
of-phase vibration modes, many possibilities exist for coalescence of multiple pairs  of 
modes which have nearly the same degree of frequency separation, and i t  is not obvious 
which pair wil l  give the lowest flutter value of A. Comparison of figures 2 and 3 indicates 
that the X = 0 flutter points coincide with crossings of frequencies which coalesce for 
flutter and that the multiplicity of these points results from the double set  of frequencies. 

Although variation of the coupling-medium spring parameter S is not expected to 
change the basic character of the flutter boundary for the two-plate system, such changes 
will influence the separation of the in-phase and out-of-phase natural frequencies for the 
system and hence the values at  which the X = 0 flutter points occur. Reference 6 
shows that inclusion of aerodynamic and structural damping in the theory can remove 
the X = 0 flutter points for single plates. Calculations were made to determine whether 
the same effects hold for a coupled two-plate system. However, since inclusion of damp
ing precludes a flutter solution in t e rms  of the general parameters and E,i t  is nec
essary to pick a specific plate configuration. Thus, an a/b = 4 coupled-plate system is 
used to illustrate the effects of aerodynamic and structural damping on the flutter of cou
pled plates. Flutter boundaries for such a system with S u  = SL = 10 are shown in fig
ure 4 in which X1/3 is shown as a function of the inplane loading parameter R,. The 
dashed boundary is for no damping and the solid boundary is for structural damping coef
ficients g,, gxy, and gy of 0.01 in the plates and aerodynamic damping corresponding 
to sea level conditions. The aerodynamic damping is based on a 0.051-cm (0.02-in.) 
thick aluminum plate and sea  level air properties and was  calculated from the following 
equation from reference 6: 

The damping has a strong smoothing effect on the flutter boundary and completely removes 
the X = 0 flutter points. Although on the basis of these a/b = 4 results, it appears that 
damping has a large stabilizing effect and removes the h = 0 flutter points for both one-
and two-plate systems, such is not always the case. For example, reference 10 shows 
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that structural damping is destabilizing for built-up plates with low a/b ratios (approx
imately 1). Limited results concerning such behavior are discussed in  a subsequent 
section. 

Comparison of Modal and Closed-Form Results 

References 1 and 2 present resul ts  from two-mode Galerkin solutions for a coupled 
two-plate system with a/b = 1, simple support boundary conditions, and a value of the 
coupling-medium spring parameter SU = SL = S = 20. Reference 2 also presents a flut
ter boundary for S = 10. In figure 5(a), results from both analyses are compared with 
closed-form results from the present analysis. Flutter boundaries for identical plates 
with identical inplane loading are shown i n  t e rms  of X as a function of the inplane load
ing parameter Rx. These results are for S = 20. Closed-form results a r e  shown by 
the solid curve and modal results are shown by the dashed curve (ref. 1)and by the cir
cular symbols (ref. 2). A closed-form boundary for  a single plate is shown for reference. 
As mentioned in  reference 2,  for some as yet unexplained reason the two modal solutions 
from references 1 and 2 do not agree,  although both employ the same representation of 
the mode shapes. The two-mode Galerkin solutions have the correct trends but tend to 
be unconservative for some values of Rx. Results for S = 10 are shown in figure 5(b) 
and again the two-mode solution has  the correct trend, but i t  shows a tendency toward 
conservatism in some regions particularly as Rx increases negatively. The results of 
figure 5 indicate that as S increases  f rom 10 to 20, the f i rs t  X = 0 flutter point shifts 
to a negative (tensile) value of Rx. As mentioned in  reference 2, inclusion of aerody
namic damping will remove the anomalous X = 0 flutter point; but as indicated on fig
u re  5(a), the boundary continues to exhibit a large dip in  the vicinity of R, = -7. Calcu
lations from the closed-form solution showed the same trends, and when structural 
damping was  included i n  the calculations, no appreciable effect w a s  found at the X = 0 
flutter points; however, the structural damping was  found to be destabilizing for other 
values of Rx. As mentioned previously, this destabilizing effect has been noted for sin
gle plates i n  reference 10 and was  not pursued further in  the current investigation. 

Reference 1 also presents results for two geometrically identical plates with only 
one plate subjected to inplane loading. These results are compared with closed-form 
results i n  figure 6. Again a/b = 1, S = 20, and both plates are simply supported. Fig
u r e  6(a) shows flutter boundaries for the upper plate only subjected to inplane loading and 
figure 6(b) shows similar boundaries for the lower plate subjected to inplane loading. 
Solid curves denote closed-form results and dashed curves denote two-mode results. In 
this instance the two-mode solutions are for the most part  unconservative and in the 
region of negative Rx do not exhibit correct trends of the closed-form solution. Exam
ination of figure 7, which shows the natural frequencies of the coupled two-plate system 
with only one plate subjected to inplane loading, reveals the reason for this behavior. 
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Shaded regions denote that those modes contiguous to the shaded regions coalesce for 
flutter. Since the two-mode solution is restricted to the first two modes, it can give 
reliable results only when these modes coalesce for flutter. Thus, the disparity between 
the exact and two-mode solutions results from the fact that the boundary for the upper 
plate subjected to inplane loading (fig. 6(a)), except for Rx < -19 and Rx > 6.5 (fig. 7),  
is governed by a coalescence involving the third natural frequency. When the lower plate 
is subjected to inplane loading (fig. 6(b)), the flutter boundary from R, = -13 to 0 is 
governed by a coalescence involving modes 1 and 2, and although the two-mode solution 
is unconservative, the trend is correct. Outside the region Rx = -13 to 0, mode 3 is 
again involved and the disparity between the two-mode and closed-form solutions worsens. 

Application to Proposed Thermal Protection Systems 

Flexible mat system.- In reference 11a thermal protection system (TPS) is pro
posed which consists of a flexible mat fabricated from fibrous ceramic felt layers covered 
by a dense ceramic coating bonded to a load carrying primary structure. Since no flutter 
results for this TPS were presented in  reference 11, the present study was  undertaken. 
The TPS was  modeled as a system of springs connecting the surface covering to the sub
structure,  and calculations w e r e  made to determine the flutter characteristics for such 
TPS. The system, shown in figure 8, is similar to that considered in figure 6(b) with the 
exception that the plate exposed to the flow has a much lower flexural stiffness than the 
unexposed plate and the ends of the exposed plate a r e  not necessarily simply supported. 

Flutter boundaries which were calculated for this system on the assumption that i t  
behaves as two spring-connected beams are also shown in figure 8. The solid curves 
represent flutter boundaries for beams of finite stiffness. The upper boundary results 
from the assumption that the leading and trailing edges of both beams are simply sup
ported. The lower boundary corresponds to the assumption that the leading and trailing 
edges of the upper beam a r e  supported by deflectional springs with a spring stiffness 
equal to that of the coupling medium. The two horizontal dashed curves correspond to 
similar boundary conditions but with the lower beam of infinite bending stiffness. 

Figure 9 shows the natural frequencies of the two-beam system as a function of 
the inplane loading in the lower beam. The solid curves a r e  for simple supports and in-
phase motion, the dashed curve is the f i rs t  out-of-phase mode for simple supports, and 
the dot-dashed curves a r e  for spring supported edges and in-phase motion. Shaded 
regions between any two curves indicate that those modes contiguous to the shaded 
regions coalesce for flutter. Again the difference in  the two flutter boundaries is related 
to the modes which coalesce for flutter. Along the boundary for simple supports, in-phase 
modes 1 and 2 coalesce for flutter up to Rx/Rx,cr = 0.5; between Rx/Rx,cr = 0.5 and 
approximately 0.67, in-phase modes 2 and 3 coalesce; and beyond Rx/Rx,cr = 0.67, in-
phase mode 2 and out-of-phase mode 1 coalesce for flutter. For the boundary corre
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sponding to spring supports, in-phase modes 2 and 3 coalesce along the entire boundary 
to give the flutter condition. For this structure the upper beam has low flexural stiffness 
and the lower beam has high flexural stiffness (2 orders  of magnitude greater than the 
upper). For both se t s  of boundary conditions it is interesting to note that i f  the stiffness 
of the lower beam is considered to be infinite, conservative predictions of X result  
which are i n  good agreement with the corresponding minimum values of X obtained for 
a lower beam of finite stiffness. This suggests that for configurations in  which the lower 
beam carr ies  the inplane loading and is very stiff in relation to the upper beam, use of the 
simpler solution may be acceptable. 

Reusable surface insulation.- Reference 3 presents a modal solution for the flutter~~ 

behavior of a proposed space shuttle TPS consisting of relatively thick ceramic tiles 
mounted on a soft viscoelastic foundation which is bonded to a primary load carrying 
metallic structure. The concept is usually referred to as a reusable surface insulation 
(RSI) TPS. A Rayleigh-Ritz flutter solution employing 4 free-free beam streamwise 
modes and 1free-free beam cross-stream mode per tile, and 12 simply supported plate 
streamwise modes and up to 3 simply supported plate cross-stream modes for the metal
l ic primary structure was  obtained. 

The structural model in reference 3 for the viscoelastic foundation neglects viscous 
effects of the foundation material but is classified as a shear model (in contrast to the 
Winkler model) in that a point load gives r i se  not only to a deflection at that point but to 
surrounding points as well with an exponential decay of deflection away from the point of 
application of the force. In reference 3,  the Winkler model and shear model were found 
to give essentially the same results for a single tile and for streamwise multiple tile 
a r r ays  when the viscoelastic foundation was  assumed to be cut between tiles. The cut in  
the foundation is a part of the space shuttle design; hence, the difference in foundation 
models does not preclude valid comparisons of results from the present analysis with 
results from reference 3 .  Other differences also exist between the two analyses. For 
instance, the analysis of reference 3 is applicable to multitile a r r ays  and assumes the 
tiles to be free  on all edges. The current analysis, however, is restricted to a single 
two-plate combination which is simply supported along the side edges. Thus, the two 
analyses can be compared only on a limited basis. One valid comparison is for a/b = 0. 
Reference 3 gives a flutter value for X of 65 for a two-plate system where the RSI tile 
has a flexural stiffness of 52 N-m (458 lb-in.), the foundation has coupling-medium spring 
parameters of Su = 32 and SL = 1971, the lower plate has a flexural stiffness of 
0.75 N-m (6.67 lb-in.), the plates a r e  51 cm (20 in.) long, and sea  level aerodynamic 
damping is included. The present analysis gives a value of X of 56 for similar 
conditions. 

An additional comparison with results from reference 3 is shown in figure 10 in 
which flutter boundaries a r e  given for an a/b = 4 coupled-plate system. Since refer
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ence 3 assumes the tile to be free on all edges, the upper plate was modeled for the cur
rent analysis as having stiffness in  the streamwise direction only and hence is a beam-
type representation of the actual tile. The flutter boundaries shown in  figure 10 are pre
sented i n  t e rms  of h as a function of Rx/Rx,cr where Rx c r  is the value of the 
inplane loading parameter required to buckle the lower plate alone. Structural details of 
the coupled system are shown in  the inset in  figure 10. Two boundaries from reference 3 
a r e  shown; the boundary labeled n = 1 is for a single tile, and the curve labeled n = 4 
is for a streamwise a r r ay  of four tiles. The boundary labeled closed-form solution is 
from the present analysis and agrees  best with the n = 4 boundary from reference 3. 
The apparent lack of agreement between the closed-form and modal resul ts  for n = 1 
may be due to the relatively small  number of modes used to describe the motion of the 
tile. Two rigid-body and two bending modes may not be sufficient to adequately describe 
the motion of the t i les for n = 1. 

Results from the closed-form solution indicate that, although the mass  of the upper 
plate is approximately twice that of the lower plate and the stiffness of the upper plate is 
two orders  of magnitude greater  than that of the lower plate, the coupling between the two 
plates is sufficient to cause the upper plate to respond predominately in  bending rather  
than as a rigid body. The better agreement between the closed-form n = 1 and modal 
n = 4 flutter boundaries can be attributed to the closeness of the mode shapes for the 
respective solutions. Figure 11 shows mode shapes for the f i rs t  two modes of the cou
pled system. Since those are the modes which coalesce for flutter, it can be expected 
that the two solutions might give s imilar  flutter results.  Reference 3 points out that the 
salient feature of this coupled system is that although the upper plate has  a greater  mass  
and a much higher stiffness than the lower plate, it is the flexibility of the lower plate 
which governs the response of the system. In fact, the addition of the upper plate and 
elastic coupling medium actually results in an increase in  the dynamic pressure  required 
to flutter the coupled system over that required to flutter the lower plate alone 

(9/@coupled = 172 kPa (25 Ps i )  and q/@single -- 26 kPa (4 psi)) . The opposite behavior 

occurs for the situation shown in figure 8 in  which the upper plate has  a much lower flex
ural  stiffness (two orders  of magnitude) than the lower plate q Pcoupled = 834 kPa( /
(121 psi) and q/psingle = 105 MPa (15 290 psi)). In addition, the presence of the RSI 

tiles and viscoelastic foundation increases  the buckling load for the coupled system over 
that for the lower plate alone. 

Single plates with unequal supports.- As mentioned i n  reference 4, metallic thermal.- .-

protection systems have been proposed which can have rows of continuous supports with 
widely varying flexibilities normal to the plane of the panel. To i l lustrate the effects on 
flutter of such unequal deflectional supports, calculations were made using the present 
analysis for single plates with large streamwise bending stiffness and essentially zero  

19 




cross-stream bending and twisting stiffnesses. Figure 12 shows stability boundaries in  
dJze from 0 to 1.0 andte rms  of X as a function of spring stiffness ratios kd,te lk 


kd,te/kd,Ze from 1.0 to 0. The stability boundaries are for constant values of the spring 


stiffness parameter Kd,le of 100, 10, and 1. The dashed curve, shown for comparison, 

is the value of h for infinite spring stiffness or simple supports. 


The curves show large reductions in  X from the value associated with simple sup
ports as the edge spring stiffness is decreased. The effect of unequal supports appears 
to be a function of KdYze. For example, when Kd,le is large (e.g., loo), the effect of 
reducing the trailing-edge spring stiffness is small  as shown for kd,te/kd le < 1. How

ever, when Kd,ze is small  (e.g., l ) ,  a large reduction in the flutter X occurs as the 
trailing-edge spring stiffness decreases, Additionally, when KdYle is small, large val

ues of the trailing-edge spring stiffness Q le h , t e  < 1) may introduce divergence (loss( 9 1 

of static stability) which also results i n  large reductions in  A. 

On the basis of the results presented in figure 12, i t  appears that in the design of a 
TPS which employs flexible edge supports to alleviate thermal s t resses ,  adequate atten
tion must be given to the design of the supports to preclude the drastic reductions of aero
elastic stability margins associated with unequal supports. 

CONCLUDING REMARKS 

Flutter of two parallel elastically coupled plates was investigated analytically. A 
closed-form solution including both aerodynamic and hysteretic structural  damping was 
presented for supersonic flutter of flat orthotropic plates coupled by an elastic medium. 
Both plates were simply supported along the side edges but were supported by deflectional, 
rotational, and torsional springs of arbitrary stiffness at the leading and trailing edges. 
Two-dimensional quasi-steady aerodynamics was  used i n  the analysis. 

Because of the large number of variables involved, no attempt was made to conduct 
extensive parametric studies of the flutter behavior for coupled two-plate systems. How
ever, selected results were presented to illustrate the general flutter nature of such sys
tems. Similar to results for single plates, anomalous zero-dynamic-pressure flutter 
points were predicted for the two-plate system whenever the frequencies which coalesce 
for  flutter were equal for no airflow. Inclusion of aerodynamic and structural damping i n  
the calculation removed the computed anomalous zero-dynamic-pressure flutter points for 
the two-plate system for high length-width ratios (approximately 4) but had little effect for 
low length-width ratios (approximately 1). 

A comparison of flutter results was made for two thermal protection systems pro
posed for space shuttle. The two systems were similar i n  that for each the coupled plates 
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differed in flexural stiffness by two orders  of magnitude. The two systems differed in 
that for one the plate of higher flexural stiffness was  exposed to the airflow and in  the 
other the plate of lower flexural stiffness was  exposed to the airflow. The comparison of 
flutter results revealed that for coupled two-plate systems with different flexural stiff
nesses in  the two plates, maximum flutter margins occur when the plate with the higher 
flexural stiffness is exposed to the flow. 

Finally, on the basis of flutter results presented for a single plate with unequal 
deflectional supports, i t  appears that for thermal protection systems which employ flex
ible edge supports to alleviate thermal s t resses ,  adequate attention must be given to the 
design of the supports to preclude the drastic reductions in  aeroelastic stability margins 
associated with unequal supports. 

Langley Research Center 

National Aeronautics and Space Administration 

Hampton, Va. 23665 

November 4,  1975 
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APPENDIX 


where 

These expressions for the lower plate may be obtained by replacing subscript U with L. 
Finally, 

- kd,te,Ua3 
-

Kd,te,U - D1,L 

Equations (19) and (21) f rom the main text (repeated here  for convenience) are 

xu =4 1 (Gx,Lxp+ ALX;: + BLXL) 
7T SL 

XL = Alep1 x/a + A2eP x a  ’ + .  . . + A a ep g  x/a 

With these equations the boundary conditions given by equations (Al)  and (A2) may be 
written as follows: 

Upper plate 

ffx,uli- K = 0 at x ={} (A34 
j = l  
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APPENDIX 
-

Lower plate 

where 

1a.=-
n4SL (..,L 

P ? + X
L

P.
J 
2 +EL1J 

For j = 1, 2, 3, . . ., 8. The eight equations given by equations (A3) and (A4) can be 
combined and written in  matrix form as follows: 
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kPPENDM 

where [ 521 is a 8 X 8 square matrix and {A> is a 8 x 1 column matrix. The elements 


L 


-
+ Gd,te,UKd,te,U(l - "j) + Gt, te ,L%,te ,L(Fr  -

for j = l , 2 , 3  , . . . ,  8. 
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Figure 1.- Coupled plates, coordinate system, and spring support system. 
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Figure 2.- Flutter boundaries for parallel elastically coupled identical plates and for 
a single plate; S = 10; no structural and aerodynamic damping. 
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Figure 3. - Vibration modes which coalesce for flutter of simply supported 
identical plates. S = 10. 
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Figure 4.- Flutter boundaries for simply supported identical plates. a/b = 4; S = 10. 
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Figure 5. - Closed-form and two-mode flutter boundaries for simply supported 
identical plates. a/b = 1. 
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(a) Upper plate subjected to inplane loading. 

Figure 6.- Closed-form and two-mode flutter boundaries with one plate subjected to 
W inplane loading. S = 20. 
W 



-

l 2 O 0  r

I 

1000 

Flow 

Flutter 

1 

I 
I 

\ 

\ 


ed-form solution 
- Two-mode solution, ref. 1 

I 
2 4 6 8 1 0 

(b) Lower plate subjected to inplane loading. 

Figure 6. - Concluded. 



--- -- 

350 

300 

250 

200 

2 

150 

100 

50 

0 

r -Rx,U
m = 4  $=$-RZfL 

\ 
\ 
\ 
\- \ 

\ In  phase 

\ - - - Out of phase 
\ m = 3  

- \ 
\ 
\ \m \\ Couple for flutter, 

\ 
Rx,L only 

\ 
\- \ \ 

\ 

-

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2  0 2 4 6 8 10 

Rx 


Figure 7. - Natural frequencies for elastically coupled, simply supported plates 
with one plate subjected to inplane loading. a/b = 1; S = 20. 
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Figure 8,- Flutter boundaries for proposed TPS. 
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Figure 9.- Natural frequencies for proposed TPS. 
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Figure 10.- Closed-form and modal flutter boundaries for RSI panels. %,cr is for primary structure only. 

I 



0 

,-Closed form 
1 

W 

f 

Wmax Modal 

0 Upper plate 

Closed fo rm 

Mode - 1 

W 

Wmax Modal 

r
l .25 .50 .75 1.oo Lower plate 

/
Closed fo rm 

W 

-1 1 -~ I I Upper plate 

Closed fo rm 

Mode - 2 

Lower plate  
0 .25 .50 .75 1.00 

x/a 
Figure 11.- Mode shapes from n = 1 closed-form and 

n = 4 modal analyses of RSI panels. 

39 




I I I III I l l  I1 I IIIIIIIII 

500 

100 

50 

x 

10 

5 

1 

. 5  

/ Simple supports 

Kd, le 
-100 -

Flow 
t--a-l
75-3 


'\ kd, le kd,te 

Stable 

1111I 
0 .4 .8 1 1 .8 .4 

kd,te kd,le kd, le / kd,te 

Figure 12.- Effects of unequal edge spring supports on flutter of single plates. 
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