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Flutter prediction is usually a knowledge-based analysis process that aims to reduce the 

cost of aeroelastic stability margin certification. However, early detection of flutter problems 

is beneficial in the development of unconventional aircraft. The recently developed 

automation tool ConceptFEA for structural sizing of aircraft concepts paves the way for rapid 

physics-based flutter prediction of aircraft concepts. A match-point iteration procedure using 

the p-k method is implemented for ConceptFEA with minimum user input requirements to 

generate flutter boundary points. A subsonic business jet concept and its high aspect-ratio 

wing variant are used to demonstrate how the newly developed flutter prediction capability 

can be used during aircraft conceptual design. Sized structures, flutter boundary curves, and 

flutter sensitivity analysis results are generated for these two concepts using ConceptFEA. The 

relevant equivalent plate theory is provided to show the quantitative relationships between a 

stiffened panel and its equivalent NASTRAN PSHELL panel. The rapid flutter prediction 

capability of ConceptFEA makes multidisciplinary collaborations between systems analysts 

and aeroelasticity experts feasible in practice. 

Nomenclature 

A11  = maximum membrane stiffness of stiffened or unstiffened panel  

AS  = cross section area of uniaxial stiffener 

bl, bu  = lower and upper bounds for flutter air density in the match-point iteration procedure 

c  = speed of sound 

D11  = maximum bending stiffness of stiffened or unstiffened panel with respect to neutral axis 

𝐷11
∗   = scaled bending stiffness of equivalent panel defined by NASTRAN PSHELL 

Dyy  = maximum bending stiffness of stiffened panel with respect to neutral axis 

g, gs  = damping coefficient 

f1,  fN  = frequency in Hz 

h(web)  = thickness of web of stiffener 

hS  = thickness of equivalent-stiffener layer 

hS(skin)  = thickness of base plate of stiffened plate 

H(stiffener) = height of stiffener 

i  = imaginary unit √−1 

Im(p)  = imaginary part of p 

j, s  = integer index 

K  = generalized stiffness matrix 

k, k1, kj  = reduced frequency 

kmin, kmax  = lower and upper bounds for reduced frequency range in the match-point iteration procedure 

L  = reference length in flutter equation 

M  = generalized mass matrix 

M  = constant Mach number in flutter equation 

MD  = dive Mach number 

Mf  = predicted flutter Mach number 

Mmin, Mmax  = lower and upper bounds for Mach speed range in the match-point iteration procedure 

MV  = Mach number corresponding to velocity V 

MTOW  = maximum take-off weight 
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n, n1, n2  = positive integer 

N  = number of flexible vibration modes for flutter analysis 

p, ps  = complex eigenvalue of flutter equation 

q  = eigenvector of flutter equation 

QI  = imaginary part of generalized aerodynamic force matrix 

QR  = real part of generalized aerodynamic force matrix 

R  = region consisting of cross sections of a stiffener and a segment of base plate 

V, Vs  = velocity 

VD  = dive velocity 

Vf  = flutter velocity 

Vmin, Vmax  = minimum and maximum velocities for flutter analysis using p-k method, respectively 

y, z  = coordinates of a point on a plane 

Z, Z0  = altitude 

ZFW  = zero fuel weight 

  = scaling parameter for bending stiffness of NASTRAN PSHELL element 

δ, δ1, δ2  = positive number 

, 1, 2  = air density 

next  = predicted air density corresponding to flutter Mach 

ω, ωs  = imaginary part of p, ps 

I. Introduction 

HE p-k method [1-3] is an acceptable flutter prediction method for the Federal Aviation Administration (FAA) 

aeroelastic stability margin certification of new aircraft. The challenge is to build a structural model that exhibits 

the same vibration modes as the complete aircraft. Ground vibration tests are usually conducted to calibrate the 

structural model. Therefore, any validated flutter prediction is usually available at the late stage of new aircraft 

development.  

 Flutter analysis of a complete aircraft as a scientific research discipline is very costly, partially due to the difficulty 

in validating the FEM required for flutter analysis and the volume of the information required to document it. 

Ascertaining all the key information for the reported flutter boundary computation is difficult in the open literature. 

The most detailed example is the match-point flutter analysis of a complete F-16 aircraft configuration in the ZONA 

Application Manual Vol. 1 [4], where the input file for the match-point flutter solution is provided. This example 

shows the match-point flutter analysis at a constant Mach number of 0.9 with varying altitude using ZONA’s g-

method. In general, the flutter boundary of a configuration is represented by a few data points in a (Mach, Altitude) 

or (Mach, Dynamic Pressure) plot [5-10]. 

 The motivation for enhancing the automated structural sizing tool ConceptFEA [11] with a flutter prediction 

capability is to enable flutter assessment and mitigation during the early conceptual design phase, a much needed 

analysis capability for the development of unconventional aircraft. Initially, ConceptFEA was developed for structural 

sizing of panel thicknesses of an aircraft concept using a finite-element model (FEM) of quadrilaterals and some 

triangles. ConceptFEA integrates weight and mission data from the Flight Optimization System (FLOPS) [12] in 

finite-element analysis (FEA); it only requires a parametric definition of a 2D layout of spars, ribs, and 

frames/bulkheads for automated generation of a FEM mesh for wing and fuselage of any OpenVSP [13] geometry. 

Aero panels for aerodynamic surfaces (such as wing, canard, aileron, and tails) are also automatically generated using 

two input parameters that define the desired panel size and the minimum number of aero panels in the flow direction. 

Aero-structural coupling is defined via NASTRAN [14] SPLINE1 and the load bearing nodes are mapped to the 

corresponding aero panels with a proximity projection algorithm. All tedious manual steps for allocation of fuel tanks, 

fuel distribution, attachments for point weights, definitions of trim conditions, and assignments of material properties 

are automated and can be completed in minutes. The PATRAN [15] Paver is used to generate FEM meshes of the 

FEM-ready geometry model [16] constructed by ConceptFEA. A post-meshing algorithm of ConceptFEA ensures no 

disconnection between two adjacent panels in the generated FEM mesh for wing and fuselage. For any OpenVSP 

aircraft configuration with a wing and fuselage, a mathematically correct model for sizing of wing and fuselage 

structural panels can be generated in less than one day. In this paper, ConceptFEA is extended for flutter boundary 

prediction of the sized FEM model of an aircraft concept. 

 For ease of use, an iterative process based on the NASTRAN p-k method is implemented to compute a match-

point flutter solution for any constant Mach number and the required inputs for the NASTRAN p-k method are also 

reduced to a minimum. To obtain a match-point flutter solution, a user only needs to provide a target flutter Mach 
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number, a Mach range, the number of modes for flutter analysis, an initial guess for the flutter altitude, and an error 

tolerance for the computed flutter Mach number. 

 A configuration similar to the Gulfstream G450 (G450-like) and its high aspect-ratio (AR) wing variant (G450-

AR24) are used to demonstrate the feasibility of the developed flutter analysis capability for aircraft conceptual design. 

Finite-element models of both configurations are generated/sized using ConceptFEA and flutter studies are conducted 

with the sized configurations. The flutter analysis results include flutter boundary prediction and sensitivity of flutter 

altitude with respect to a variety of modeling parameters, such as structural and aero panel resolutions, the number of 

modes for flutter analysis, bending stiffness scaling parameter, and wing sweep angle. 

 The paper is organized as follows. Section II introduces the match-point iteration procedure using the NASTRAN 

p-k method for finding a match-point flutter solution. Conceptual design, structural sizing, and flutter analysis of 

G450-like and G450-AR24 are given in Section III. Subsection III.A documents the conceptual design and structural 

sizing of the two aircraft concepts. Subsection III.B contains the flutter boundary curves of the two concepts for Mach 

numbers from 0.4 to 1.2. Subsection III.C provides the flutter sensitivity results with respect to numerical solution 

parameters (such as structural and aero panel resolutions) and system-level design parameters (such as wing sweep 

angle) for G450-AR24. Concluding remarks are included in Section IV. Appendices I-III are the technical details of 

numerical algorithms used in the match-point iteration procedure. Appendix IV reviews the basic theory on the 

relationships between a stiffened plate and its equivalences. This appendix lays the theoretical foundation to extract 

meaningful information of as-built panels from a sized structure model of equivalent panels. Moreover, the theory 

also helps conceptual designers to set up parameters of equivalent panels using information of as-built panels of 

existing aircraft. 

II. Match-Point Flutter Solution 

In theory, once an aeroelastic analysis model for NASTRAN is generated, it is relatively easy to manually modify 

the case control parameters for a flutter analysis. In practice, it takes experience to set up the required reduced 

frequency range and velocity range for a flutter analysis using the NASTRAN p-k method [3]. Finding a 

mathematically correct [or match-point] flutter solution might require multiple runs of the NASTRAN p-k method 

and manual post-processing of NASTRAN outputs. The goal of this section is to document the automation procedure 

used by ConceptFEA that simplifies the key inputs for a match-point flutter solution to the following conceptual-level 

inputs: a constant [flutter] Mach number M and a Mach range containing M. The outputs of the automated match-

point flutter solution procedure include the calculated flutter Mach Mf  and flutter altitude. 

For a specific operating condition (such as flying with full or zero fuel weight), the flutter boundary consists of 

Mach and altitude pairs (M, Z) such that M is the flutter Mach of the configuration at altitude Z. Each boundary point 

requires a match-point flutter solution of the flutter equation. The flutter equation for the p-k method can be written 

as follows [1-3]: 

 

[(
𝑉2

𝐿2 ) ∙ 𝐌 ∙ 𝑝2 + 𝐊 −
1

2
∙  ∙ 𝑉2 ∙ (𝐐𝐑(𝑀, 𝑘) +

𝑝

𝑘
𝐐𝐈(𝑀, 𝑘))] ∙ {𝐪} = 0       (1) 

 

Here M and K are the generalized mass and stiffness matrices, respectively; QR and QI are the real and imaginary 

parts of the generalized aerodynamic force matrix that depends on Mach number M and reduced frequency k. 

Parameter V is the velocity of undisturbed flow, L is the reference length,  is the air density, and p = g + i∙ω is a non-

dimensional Laplace [complex] parameter and is also referred to as an eigenvalue of Eq. (1). The imaginary part of p 

must satisfy the following consistency condition: 

 

𝑘 = (
𝐿

𝑉
) ∙ Im(𝑝), 𝑖. 𝑒. ,   𝑘 = (

𝐿

𝑉
) ∙ 𝜔           (2) 

 

 The NASTRAN p-k method requires users to specify L, , and M for flutter analysis. The reference length L is 

usually a half of the average chord length of the wing. If known in advance,  should be the air density of the flight 

altitude where flutter occurs and M should be the Mach number corresponding to the flutter speed at the flight altitude.  

 For numerical analysis requirements, the NASTRAN p-k method needs an error tolerance for solving Eq. (2) 

iteratively, a sequence of reduced frequencies {kj} for calculating the generalized aerodynamic force matrices QR and 

QI, and a sequence of velocities V1 < V2 < ∙∙∙ < Vn around the flutter velocity. The matrices QR(M,k) and QI(M,k) for 

an arbitrary k are computed using numerical interpolations of {QR(M, kj)} and {QI(M, kj)}, respectively. For each 

vibration mode included in flutter analysis, the NASTRAN p-k method outputs a sequence of eigenvalues ps = gs + 

i∙ωs corresponding to velocities Vs (s = 1,…,n). The curve representing {(Vs, gs)} is called the damping curve for the 
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vibration mode and any intersection point of the damping curve and g = 0 defines a possible flutter velocity Vf, which 

is the V-coordinate of the intersection point. In this paper, velocities Vs are replaced by their corresponding Mach 

numbers MVs with respect to the air density . For example, Fig. 1 shows the damping curves with respect to Mach 

number MV  (converted from V) for four vibration modes used in flutter analysis. Possible flutter Mach numbers are 

identified for mode 1 and mode 4, but the predicted flutter Mach Mf  is 1.2. When multiple intersection points exist, 

only the lowest Mach coordinate of the intersection points can be used as Mf. In general, for a constant M, the 

configuration only flutters at an air density lower than  if Mf  < M; while the configuration only flutters at an air 

density higher than  if Mf  > M. One can adjust   so that Mf  = M, then the corresponding flutter solution is called a 

match-point flutter solution. The name comes from the fact that the predicted flutter Mach number Mf  matches the 

Mach number M that defines the flutter Eq. (1). 

 

Fig. 1 Identification of flutter points using damping curves. 

 In summary, for the NASTRAN p-k method, a match-point flutter solution must yield Mf  with the following 

properties: (i) (Mf , 0) is an intersection point of a damping curve and g = 0, (ii) the damping curve must change sign 

from negative to positive when crossing the intersection point, (iii) Mf  is the smallest among all Mach numbers with 

the previous two properties, and (iv) Mf = M. For a match-point flutter solution, the corresponding air density  is 

called the flutter air density and the vibration mode corresponding to the damping curve that defines Mf  is called the 

flutter mode. The altitude corresponding to the flutter air density is called the flutter altitude.  

 Note that  and M are given before flutter analysis begins, it is unlikely that the flutter solution for Eq. (1) is a 

match-point flutter solution. For a constant Mach number M, one could adjust  iteratively to find a match-point flutter 

solution of Eq. (1). In the remaining part of this section, an iterative procedure using the NASTRAN p-k method is 

introduced to find the air density  such that Mf  = M. Moreover, the required inputs for the NASTRAN p-k method 

are reduced to a constant [flutter] Mach number M, a Mach range containing M, the number of points for damping 

curves, the number of vibration modes for flutter analysis, and an initial guess for flutter altitude. These inputs don’t 

require any in-depth knowledge about flutter analysis. 

 

Match-Point Iteration Procedure. Assume that 0 < Mmin < M < Mmax such that M  1, n is the number of points for 

damping curves, N > 0 is the number of vibration modes for flutter analysis, Z0 is an initial guess for the flutter altitude 

(which could be negative). Then a match-point flutter solution for M can be obtained by the following iteration 

procedure. 

1. Run a modal analysis for N flexible modes. 

2. Extract the natural frequencies f1 and fN (in Hz) of the first and Nth flexible modes. 

3. Calculate the air density  at altitude Z0. 

4. Let c be the speed of sound for density . 

5. Let Vmin = c∙Mmin, Vmax = c∙Mmax, and Vf = c∙M. 

6. Find exactly n velocities {Vs: 1  s  n} (including Vf) as evenly distributed in the interval [Vmin, Vmax] as possible 

but with some clustering around Vf  using the method in Appendix I. 

7. Let kmin = 2∙∙f1∙L/Vmax and kmax = 2∙∙fN∙L/Vmin. 
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8. Find a sequence of reduced frequencies {kj} from 0.001 to kmax using the method in Appendix II. 

9. Use the NASTRAN p-k method to find a flutter solution for the specified inputs L, M, N, , {kj}, and {Vs}. 

10. Find the predicted flutter Mach Mf  using the damping curves. 

11. If |Mf  – M| < 0.001∙M  is not true, use Eq. (3) to define next if feasible, reset  = next, and go back to Step 4. 

Details for exceptional cases in this step are described in Appendix III. 

 


next

= (
𝑀𝑓

𝑀
)

2

∙               (3) 

 

12. Output Mf  as the match-point flutter Mach,  as the flutter air density, and the altitude Z corresponding to  

as the flutter altitude. 

 

The relative error tolerance of 0.001 for matching the Mach numbers in Step 11 can be replaced by any other 

desired tolerance. In general, if the interval [Mmin, Mmax] is larger, then the iteration procedure is more efficient to find 

a match-point flutter solution (cf. Appendix III). But a larger [Mmin, Mmax] tends to reduce the damping curve 

resolution, which determines the numerical accuracy of using interpolation to compute Mf. The damping curve 

resolution is also controlled by n. Increasing n incurs more computational time. For the numerical results generated in 

this paper, Mmin = 0.9∙M, Mmax = 1.1∙M, n = 60, and N is the largest integer such that the first N flexible modes don’t 

contain any local vibration mode. In practice, the value of N is determined by visual inspection of vibration modes 

after the modal analysis for a sufficiently large number of modes.  

In general, Mf  is actually a decreasing function of ., i.e.,  

 

Mf(1) < Mf(2)  if 1 > 2              (4) 

 

If Eq. (4) holds true for a constant Mach number M, then the above iteration procedure is guaranteed to find a match-

point flutter solution for M. 

III. Flutter Prediction for Conceptual Design 

 For aeroelastic stability margin, the FAA regulations require that “the airplane must be designed to be free from 

aeroelastic instability for all configurations and design conditions within the aeroelastic stability envelopes, which 

include all combinations of altitudes and speeds encompassed by the VD / MD versus altitude envelope enlarged at all 

points by an increase of 15 percent in equivalent airspeed at both constant Mach number and constant altitude” (cf. 

FAR 25-629 (b)(1) [17]). It is feasible to verify aeroelastic stability in the aeroelastic stability envelope for a sized 

configuration with full fuel or zero fuel using ConceptFEA during conceptual design. 

Two aircraft concepts are used to demonstrate the complete aeroelastic stability analysis process starting from an 

OpenVSP model representing an aircraft concept to the final assessment of the flutter characteristics of the aircraft. 

The first concept, G450-like, is similar to the Gulfstream G450 business jet; and the second one, G450-AR24, replaces 

the wing of G450-like with a wing of aspect ratio 24. Subsection III.A documents the conceptual design and structural 

sizing of these two concepts. Results of match-point flutter solutions for Mach number from 0.4 to 1.2 are included in 

Subsection III.B. For these two concepts, a cruise Mach of 0.85 implies MD = 0.98 and the FAA aeroelastic stability 

envelope extends to Mach = 1.15∙MD = 1.124. Therefore, sensitivity analyses of flutter altitude for G450-AR24 near 

the maximum Mach in the aeroelastic stability envelope are also performed in Subsection III.C. The sensitivity is 

about the flutter altitude variation with respect to changes of structural and aero panel resolutions, the number of 

modes for flutter analysis, and bending stiffness scaling parameter. Moreover, the sensitivity results in Subsection 

III.C also show how the flutter characteristics of G450-AR24 are affected by wing sweep angle.  

A. G450 and Its High Aspect-Ratio Variant 

 Based on the Gulfstream G450 specification sheets [18], the G450-like concept is generated using OpenVSP (cf. 

Fig. 2(a)). Its FLOPS sizing is performed for a cruise Mach of 0.85, a design range of 3,000 nmi, and maximum 

payload of 6,095 lb (vs 6,000 lb for the actual G450). The resulting maximum take-off weight (MTOW) of G450-like 

is 74,600 lb (vs 74,600 lb for the actual G450), and zero fuel weight (ZFW) of G450-like is 48,150 lb (vs 49,000 lb 

for the actual G450). FLOPS weight estimates for the as-built wing and fuselage are 5,727 lb and 5,885 lb, 

respectively. The structural layout of G450-like follows a cutaway drawing of a Gulfstream G450. The sizing 

constraints are defined by a safety factor of 1.7 for stress tolerance under 2.5G, 1G, and -1G pitch maneuvers at cruise 

Mach of 0.85 with the start cruise weight of 72,339 lb. The minimum gauges for wing and fuselage equivalent panels 
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are 0.12 in and 0.15 in, respectively. Non-structural portions of wing and fuselage weights are automatically 

determined based on FLOPS empirical formulas (cf. Ref. [11]). The only exception is that the total non-structural 

mass of the wing is increased by 300 lb for a better match between the ConceptFEA and FLOPS wing weights. A 

mesh of 14,191 quadrilaterals and some triangles (cf. Fig. 2(b)) is used for finite-element analysis. For aerodynamics, 

791 aero panels are used for the wing and horizontal tail. A generic aluminum material (2024-T3), with yield stress 

of 47,000 psi, is used for all panels. The sized solution generated by ConceptFEA has a total wing weight of 5,571 lb 

and a total fuselage weight of 5,885 lb, which differ from FLOPS wing and fuselage weights by less than 2.7% and 

0.1%, respectively. 

 

Fig. 2 (a) OpenVSP geometry and (b) finite-element mesh of G450-like. 

 

Fig. 3 (a) OpenVSP geometry and (b) finite-element mesh of G450-AR24. 

 To generate a high aspect-ratio wing variant of G450-like, the wing planform is changed to a trapezoidal shape 

with wing sweep angle of 0.5. The reason for selecting a sweep angle of 0.5 is to use a minimum sweep angle that 

can still cruise at Mach number of 0.85 without excessive loss of performance. Such a wing planform is more likely 

to flutter as discovered during a concept exploration process and a fluttering concept helps to verify whether 

ConceptFEA can capture the flutter physics correctly. The resulting wing planform is completely determined after 

setting the tip airfoil chord length to 2 ft and wing aspect ratio to 24, which leads to a reasonable wing planform for 

G450-AR24 shown in Fig. 3(a). The increased lift-to-drag ratio of the high aspect-ratio wing saves 10% of the fuel 

for the same mission compared to the G450-like wing. This is mainly due to a significant increase of wing weight of 

G450-AR24 and the high cruise Mach for an unswept wing. For easy comparison, some of the conceptual design 

information of G450-like and G450-AR24 are listed in Table 1. 

Table 1 Comparison of G450-like and G450-AR24. 

  

Concept MTOW ZFW Fuel Wing Weight Wing Area Wing Span Aspect Ratio Lift/Drag

G450-like 74,600 lb 48,151 lb 22,436 lb 5,727 lb 893.6 ft
2 70 ft 5.8 16.4

G450-AR24 93,845 lb 69,539 lb 20,148 lb 26,922 lb 700.0 ft
2 130 ft 24 25.0
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 The structural layout of G450-AR24 is similar to G450-like (cf. Figs. 2(b) and 3(b)), except that the rib spacing is 

about 2 ft based on empirical data for rib spacing reported in Ref. [19]. The FLOPS sizing is performed for G450-

AR24 using the same speed, range, and payload requirements as G450-like. The structural sizing constraints of G450-

AR24 are identical to those of G450-like except for two modifications. To make the sized G450-AR24 easier to flutter, 

the safety factor for stress tolerance is reduced from 1.7 to the minimum FAA requirement of 1.5. Another 

modification is related to the non-structural component of the FLOPS wing weight. The FLOPS wing weight for 

G450-like is 5,727 lb, and its non-structural component is 894 lb. In contrast, the FLOPS wing weight for G450-AR24 

is 26,922 lb, and its non-structural component is 648 lb. Because the FLOPS non-structural component of wing weight 

is a function of wing area based on the existing aircraft weight data and G450-AR24 is totally outside of the database 

used to develop FLOPS weight equations, some redistribution of the FLOPS wing weight between structural and non-

structural components for G450-AR24 is required. An additional 10,000 lb of the structural portion of the FLOPS 

wing weight is bookkept as non-structural weight that must be carried by the wing structural panels during the 

structural sizing. 

 A structural mesh of 13,003 quadrilaterals and some triangles (cf. Fig. 3(b)) is used for finite-element analysis. 

Figure 4(a) shows 2,083 wing aero panels along with tail aero panels for aerodynamic analysis and Fig. 4(b) shows 

the attached fuel and FLOPS weights for the structural sizing model. ConceptFEA finds an optimal sizing solution 

that has maximum displacements of 11.8 ft, 4.7 ft, and 4.7 ft for 2.5G, 1G, and -1G pitch maneuvers, respectively.  

 

Fig. 4 (a) Aero panels and (b) attached point weights for structural sizing model of G450-AR24. 

The sized structure of G450-AR24 has a total wing weight of 19,120 lb and a total fuselage weight of 6,533 lb. 

Note that ConceptFEA’s conservative estimate of wing weight for G450-AR24 (assuming 40% of the as-built wing 

weight from FLOPS is non-structural weight) is still much lower than the detailed wing weight estimate of 26,922 lb 

from FLOPS. The simple wing weight estimate of FLOPS for G450-AR24 is 13,798 lb, which is about a half of the 

detailed wing weight. In contrast, the simple wing weight estimate of FLOPS for G450-like is 5,565 lb, which differs 

from the detailed wing weight of 5,727 lb by less than 4%. The wing weight of G450-AR24 generated by ConceptFEA 

is between the simple and detailed wing weight estimates from FLOPS. A reliable weight estimate for G450-AR24 

requires further research, but it is beyond the scope of this paper. The advantage of the ConceptFEA wing weight 

estimate is that all the assumptions used to derive the wing weight of 19,120 lb are explicitly stated for a FEM-based 

structural sizing model and a conceptual designer could determine whether more operating conditions, design 

constraints, or analysis fidelity should be used for a more reliable wing weight estimate. 

B. Flutter Boundary Prediction 

After structural sizing, a modal analysis is performed to see which modes are global vibration modes suitable for 

flutter analysis. A finite-element model using equivalent panels tends to have unrealistic local vibration modes that 

don’t exist in a detailed structure model using stiffened panels. Mathematically, one could artificially increase the 

bending stiffness scaling parameter  of PSHELL elements in NASTRAN to eliminate the local vibration modes. 

Practically,   is not a free design variable and depends on how stiffened panels are constructed (cf. Appendix IV). 

For all the flutter analysis results in this paper,   = 100 unless stated otherwise. 

For each concept, the number of modes, N, for flutter analysis is the largest integer such that the first N flexible 

modes are global vibration modes. Figure 5 shows the 14th and 15th flexible mode shapes for ZFW of G450-AR24. 

Because the 15th flexible mode is obviously a local vibration mode and the first 14 flexible modes are global modes 
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(by visual inspection), N = 14 is chosen for flutter analysis of G450-AR24 to exclude unrealistic local vibration modes. 

Similarly, N = 6 is selected for flutter analysis of G450-like. 

 

 

Fig. 5 (a) The 14th and (b) 15th flexible mode shapes for ZFW of G450-AR24 when   = 100. 

The G450 flight envelope in Fig. 6 is based on an online G450 Mach flight envelope figure [20]. All points but 

one on the flutter margin (i.e., aeroelastic stability margin) are generated by multiplying the Mach numbers 

corresponding to points on the right-hand side of the G450 flight envelope by 1.152, based on the FAA rules for dive 

Mach and flutter margin. The point on the flutter margin at altitude of about -10,000 ft is based on the margin 

requirement for dive Mach at sea level. In reality, many configurations and operating conditions have to be verified 

for the flutter margin requirement; however, for simplicity, only ZFW and MTOW for level flight are analyzed in this 

paper. Fourteen Mach numbers from 0.4 to 1.2 are selected to generate the flutter boundary curves. For each selected 

M, Mmin = 0.9∙M and Mmax = 1.1∙M. The damping curve resolution parameter n is 60 and the initial guess Z0 for flutter 

altitude corresponding to M = 0.4 is -90,000 ft. After generating the flutter boundary point for M = 0.4, the computed 

flutter altitude with respect to the previous Mach number is used as Z0 by the match-point iteration procedure for a 

new Mach number. Figure 6 shows the calculated flutter boundary curves for G450-like and G450-AR24 

configurations with zero and full fuel weights. The average wall time for a match-point flutter solution is about 3 mins 

for G450-like and 10 mins for G450-AR24 using a desktop computer with 32GB RAM and 3.6GHz Intel Xeon CPU 

(E5-1650 v4). 

 

 

Fig. 6 Flutter boundary curves for G450-like and G450-AR24. 

A configuration satisfies the flutter margin requirement if its flutter boundary curve does not intersect the region 

on the left-hand side of the flutter margin curve. Based on Fig. 6, ZFW and MTOW of G450-like satisfy the flutter 

margin requirement, while MTOW of G450-AR24 violates the flutter margin requirement and the flutter boundary 

curve for ZFW of G450-AR24 is perhaps too close to the flutter margin curve.  
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For MTOW of G450-AR24, the flutter boundary curve has a point at M = 1.16 instead of 1.2. This is due to failure 

of the match-point iteration procedure in search of a match-point flutter solution for M = 1.2. In this failed case, during 

the iterations, when a computed flutter Mach is less than 1.2, the air density  becomes an upper bound bu for the 

flutter air density. After a few iterations, predicted flutter Mach does not exist when  is low enough. This sets  as a 

lower bound bl for the flutter air density. Afterward, the match-point iteration procedure attempts to find the flutter air 

density in the interval [bl, bu] and the search fails when there is no match-point flutter solution for any  between bl 

and bu. 

Manual selections of M between 1.15 and 1.2 are used to define the flutter boundary curve for MTOW of G450-

AR24 between 1.15 and 1.2. The match-point iteration procedure finds the flutter altitude of 42,200 ft for M = 1.16. 

It appears that the wing twist flutter mode for MTOW of G450-AR24 is suppressed by the aero forces and does not 

flutter anymore when M  is between 1.17 and 1.2. Further study is needed to fully understand why a configuration 

would have no match-point flutter solution for a particular Mach number. 

C. Sensitivity Analysis of Flutter Altitude 

Sensitivity analysis is performed for ZFW of G450-AR24 at M = 1.15, with respect to structural and aero panel 

resolutions, the number of modes for flutter analysis, bending stiffness scaling parameter , and wing sweep angle. 

The sensitivity analysis results are summarized in Table 2. 

Table 2 Sensitivity Analysis Results for Flutter Altitude of ZFW of G450-AR24 at M = 1.15. 

  
 

 

Fig. 7 Flutter mode shapes for ZFW of G450-AR24 at M = 1.15 and 0.9. 

Number of Wing 

Aero Panels

Number of Quads 

in FEM Mesh

Number of Modes 

Used in Analysis

Bending Stiffness 

Scaling Parameter 

Sweep Angle 

(deg)

Flutter 

Mode ID

Flutter 

Mach

Flutter Speed 

(ft/sec)

Dynamic 

Pressure (psf)

Flutter       

Altitude (ft)

2083 13014 11 100 0.55 11 1.1506 1240 1349.3 10009

2083 13014 14 100 0.55 11 1.1495 1233 1282.8 11252

2083 13014 11 500 0.55 6 1.1497 1322 2672.7 -8873

2083 13014 14 500 0.55 6 1.1502 1320 2620.8 -8274

2083 13014 18 500 0.55 6 1.1499 1313 2483.6 -6724

3961 13014 14 100 0.55 11 1.1490 1222 1176.1 13411

5907 13014 14 100 0.55 11 1.1510 1229 1227.0 12446

9701 13014 14 100 0.55 11 1.1510 1226 925.9 13108

2083 33384 14 100 0.55 11 1.1493 1245 1423.8 8545

2083 13014 14 100 -10 1 1.1489 1213 1089.0 15328

2083 13014 14 100 -7.6 1 & 11 1.1507 1253 1513.6 6980

2083 13014 14 100 -5 11 1.1489 1240 1371.7 9483

2083 13014 14 100 10 11 1.1501 1282 1928.7 433

2083 13014 14 100 20 6 1.1499 1310 2421.9 -5995
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The wide variation of results in the sensitivity analysis indicates that more study is needed to bring the error 

margins of flutter altitude prediction within bounds useful for conceptual design. Additional design-of-experiment 

(DOE) runs with respect to the aero panel aspect ratio and minimum number of aero panels per chord are performed 

for M = 1.15 and M = 0.9. The flutter mode for M = 1.15 is a complicated wing twist mode (cf. Fig. 7(a)), whereas the 

flutter mode for M = 0.9 is mainly an in-plane bending mode (cf. Fig. 7(b)). The DOE results in Fig. 8 show that the 

aero panels have significant influence on the flutter altitude for the wing twist flutter mode, while the flutter altitude 

for M = 0.9 is almost unchanged for all DOE runs. Further study is required to fully understand how aerodynamic 

forces affect the flutter characteristics of G450-AR24 at M = 1.15. 

 

Fig. 8  Flutter altitude sensitivity with respect to aero panels for ZFW of G450-AR24. 

 

The most useful application of flutter analysis during aircraft conceptual design is to gain more insight about an 

aircraft concept and discover meaningful system-level trades for better flutter margins (such as the flutter altitude 

sensitivity with respect to   and wing sweep angle). Some general trends in Table 2 are worthy of note. The flutter 

altitude tends to increase as the number of modes increases; flutter altitude decreases as bending stiffness scaling 

parameter  increases or wing sweep angle increases; the first wing bending mode becomes more unstable as the wing 

sweep angle is more negative; eventually, the first wing bending mode becomes a divergent mode once the wing is 

swept forward enough. 

To understand how the bending stiffness scaling parameter affects the flexible modes, the 14th and 15th flexible 

mode shapes of ZFW of G450-AR24 for  = 500 are shown in Fig. 9. From Figs. 5 and 9, one can see that   has a 

significant effect on mode shapes. Moreover, for the first 14 flexible modes of ZFW of G450-AR24, the frequency 

range is from 1.0 Hz to 23.2 Hz when  = 100, while the frequency range is from 1.2 Hz to 26.2 Hz when  = 500. 

For higher-fidelity flutter analysis, it is necessary to use the equivalent plate theory in Appendix IV and actual stiffened 

panel constructions to derive the appropriate values of   for various wing and fuselage panels. 

 

 

Fig. 9 (a) The 14th and (b) 15th flexible mode shapes for ZFW of G450-AR24 when   = 500. 
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To better understand the interactions between the wing twist flutter mode and the wing bending divergence mode 

of ZFW of G450-AR24 at M = 1.15, more sweep angles between -10 and -5 are sampled for flutter analysis. A 

sweep angle of -7.6 is identified for which the configuration flutters and diverges almost simultaneously at M = 1.15 

with a flutter altitude of 6,980 ft. Figure 10 includes the corresponding V-g, V-f, and root locus plots, while the 

corresponding divergence and flutter mode shapes are shown in Fig. 11. To see the discontinuous jump in the damping 

curve before MV = 0.95 for the divergence mode, the Mach range for the match-point iteration procedure is expanded 

to the interval [0.92, 1.38] (instead of the default Mach range [0.9∙M, 1.1∙M] used for match-point flutter solutions). 

If the wing sweep angle is between -10 and -7.6, then the divergence mode 1 is dominant, while the flutter mode 11 

is dominant when the wing sweep angle is between -7.6 and 10. 

 

 
Fig. 10  (a) V-g, (b) V-f, and (c) root locus plots for ZFW of G450-AR24 (sweep angle = -7.6 and M = 1.15). 
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Fig. 11  Divergence and flutter mode shapes for G450-AR24 (sweep angle = -7.6 and M = 1.15). 

It is worth noting that a similar flutter mode switch between mode 11 and mode 6 occurs when the sweep angle 

changes from 10 to 20. In Fig. 10(a), mode 6 shows an unstable trend around MV = 1.25, but it is not a flutter mode 

for M = 1.15 when the sweep angle is -7.6. As the sweep angle moves from 10 to 20, mode 6 gradually becomes 

dominant; when the sweep angle is 20, mode 6 becomes the flutter mode for M = 1.15 (cf. Table 2). 

IV. Concluding Remarks 

 The proposed match-point iteration procedure finds a flutter boundary point efficiently and robustly. Together with 

ConceptFEA’s rapid structural sizing capability, a conceptual designer can generate flutter boundary curves in (M, 

Altitude)-plane starting from an OpenVSP geometry model for an aircraft concept within a few days. The flutter 

analysis results generated by ConceptFEA indicate that the automated flutter analysis process can correctly capture 

the flutter and divergence physics, at least for a few configurations studied by the authors. ConceptFEA is a 

conceptual-level analysis tool and there are many conceptual-level uncertainties not quantified in the flutter analysis 

process. Therefore, the flutter analysis results are more qualitative than quantitative. Further verifications are required 

to ensure that ConceptFEA is capable of accurately predicting known flutter behaviors of aircraft configurations. 

 Sensitivity analysis of the predicted flutter altitude of a high aspect-ratio wing configuration is conducted with 

respect to resolutions of aero and structural panels, the number of modes for flutter analysis, bending stiffness scaling 

parameter for equivalent panels, and wing sweep angle. All the results are credible qualitatively. Further research is 

required to understand why aero panel resolution affects the flutter altitude significantly for a wing twist flutter mode 

of the high aspect-ratio wing configuration. 

 ConceptFEA has been expanded to provide conceptual designers a tool for rapid flutter assessment starting from 

an aircraft concept in OpenVSP geometry. Such an analysis capability enables better collaborations between 

conceptual designers and technology developers. For example, a conceptual designer could get equivalent panels for 

both membrane and bending actions based on real-world examples of stiffened panels used for aircraft construction. 

This makes the FEA results for aircraft concepts more credible. For technology assessment, equivalent panels can be 

based on stiffened panels using new technologies for panel construction and panel materials. Then ConceptFEA 

analysis helps technology developers and technology investment decision makers understand the system-level impacts 

of technology research advancements. For technology requirement development, a conceptual designer could find out 

what kinds of equivalent panels can help achieve certain design goals (such as flutter speed greater than a target value) 

using ConceptFEA, and use the equivalent plate theory in Appendix IV to determine the requirements for stiffened 

panels. In all, ConceptFEA fosters more meaningful multidisciplinary interactions. 

Appendix I. Method for Selecting Velocities for Damping Curves 

 Given Vmin < Vf  < Vmax (in/sec) and an integer n ≥ 10, generate exactly n velocities {Vs: 1  s  n} (including Vf) 

as follows. 

1. Find a pair of numbers δ1 and δ2 with the following properties: 

(i) n1 = (Vf  – Vmin)/δ1 > 1 is a positive integer. 

(ii) n2 = (Vmax – Vf)/δ2 > 1 is a positive integer. 

(iii) n1 + n2 = n – 5. 

(iv) |δ1 – δ2| has the minimum value among all possible pairs satisfying the previous three conditions. 

2. Set Vs = Vmin + (s –1)∙δ1  for 1  s  n1. 

3. Set Vs = Vf  – δ1/2  for s = n1+1.  

4. Set Vs = Vf  – δ1/4  for s = n1+2.  
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5. Set Vs = Vf  for s = n1+3.  

6. Set Vs = Vf  + δ2/4  for s = n1+4.  

7. Set Vs = Vf  + δ2/2  for s = n1+5.  

8. Set Vs = Vf  + (s–n1–5)∙δ2  for n1+6  s  n.  

 

 This numerical method generates {Vs: 1  s  n} that includes Vf  and is as evenly distributed on the interval [Vmin, 

Vmax] as possible with 4 points clustered around Vf . The reason to use n instead of velocity spacing to generate {Vs: 1 

 s  n} is for ease of use. It is much easier to understand how n (instead of velocity spacing) could increase the 

computational cost or affect the damping curve resolution for flutter analysis. Numerically, increasing n leads to more 

accurate calculation of the predicted flutter Mach and more evenly distributed velocities. 

For Vmin = 13374 in/sec, Vf  = 14859.5 in/sec, Vmax = 16345.5 in/sec, and n = 20, the above method yields n1 = 7 

and n2 = 8. The generated velocities {Vs: 1  s  n} (all rounded to integers except Vf) = {13374, 13586, 13798, 14011, 

14223, 14435, 14647, 14753, 14806, 14859.5, 14906, 14952, 15045, 15231, 15417, 15602, 15788, 15974, 16159, 

16345}, which includes Vf. 

Appendix II. Method for Selecting Reduced Frequencies 

 Given kmin < kmax, generate a sequence of reduced frequencies {kj} as follows. 

1. Set k1 = 0.001 (the default minimum reduced frequency set by NASTRAN) and j = 2. 

2. If 0.005 < kmin  < 0.04, set kj = kmin and increase j by 1. 

3. Set kj = 0.05 and increase j by 1. 

4. If 0.06 < kmin  < 0.09, set kj = 0.075 and increase j by 1. 

5. Set kj = 0.1 and increase j by 1. 

6. If  kmax < 1, set δ = kmax/10; otherwise, set δ = 0.1. 

7. For the next ten reduced frequencies, set kj = kj-1 + δ and increase j by 1. 

8. Set δ = 0.2 and counter s = 0. 

9. While kj-1 < kmax do the following: 

(i) Set kj = kj-1 + δ and increase j by 1. 

(ii) Increase s by 1. 

(iii) If s = 6, increase δ by 0.1 and reset s = 0. 

  

 The reduced frequencies for all modes involved in flutter analysis are in the interval [kmin, kmax]. The sequence {kj} 

generated by this numerical method covers the interval [0.001, kmax] with a point near kmin (if kmin < 0.1) and the spacing 

between two consecutive points is gradually increasing. This method aims to attain a good balance between the 

computational cost (the number of reduced frequencies in {kj}) and a reasonable discretization of the reduced 

frequency interval used in flutter analysis. In Step 9, the spacing between two consecutive kj’s is increased by 0.1 after 

being used 6 times. One can use a different method to manage the spacing between kj’s. The goal is to avoid generating 

too many kj’s if kmax is relatively large. 

If kmin = 0.0127 and kmax = 1.6274, the above method yields {kj} = {0.001, 0.0127, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9, 1.0, 1.1, 1.3, 1.5, 1.7}. 

Appendix III. Method for Updating Air Density 

For simple cases, Eq. (3) is sufficient for a converged match-point flutter solution in a few iterations. However, if 

the damping curves have no intersection point with g = 0 (i.e., Mf  does not exist), then the challenge is how to update 

 without losing track of where the flutter air density is located. Moreover, Eq. (4) might fail in some cases and 

Subsection III.B has such an example. The following numerical method for updating air density ensures the 

termination of the match-point iteration procedure in Section II and guarantees a match-point flutter solution if Eq. 

(4) holds. 

1. Initialization: Set bl = 0, bu = 10,000. (This step is only executed once when this method is first used.) 

2. Compute the next air density as follows. 

(i) If Mf  does not exist, set next = ∙(Mmax/M)2. 

(ii) If a damping curve starts with a positive damping coefficient, set next = ∙(Mmin/M)2.  

(iii) If it is not any of the two previous cases, set next = ∙(Mf /M)2.  

3. Update the bounds for the flutter air density as follows.  

(i) If next >  and bl < , then reset bl = . 



 

 

American Institute of Aeronautics and Astronautics 
 

 

14 

(ii) If next <  and bu > , then reset bu = . 

4. Terminate the match-point iteration procedure if |bu – bl| is sufficiently small (e.g., less than 10-6). 

5. Modify next as follows to avoid adverse effects of numerical errors. 

(i) If next < 0.5∙, then reset next = 0.5∙. 

(ii) If next > 1.5∙, then reset next = 1.5∙. 

(iii) If next  bl and bu < 10,000, then reset next = 0.5∙(bl + bu). 

(iv) If next  bl and bu = 10,000, then reset next = 1.05∙bl. 

(v) If next ≥ bu and bl > 0, then reset next = 0.5∙(bl + bu). 

(vi) If next ≥ bu and bl = 0, then reset next = 0.95∙bu. 

6. Replace  by next. 

 

 The initial upper bound 10,000 can be any sufficiently large number. The monotonicity assumption about Mf  given 

in Eq. (4) might be violated in practice due to numerical analysis errors. So the lower and upper bounds for the flutter 

air density, as well as the modifications of next in Step 5, make the match-point iteration procedure very robust. The 

exceptional cases in Step 2 can occur if  is far away from the flutter air density. 

Appendix IV. Equivalent Plate Theory 

 For a comprehensive survey of studies conducted since 1914 on the use of equivalent-plate stiffnesses in modeling 

the overall, stiffness-critical response of stiffened plates and shells, see the paper by Nemeth [21]. The theory in this 

appendix is only about membrane and bending equivalences of a metallic uniaxial stiffened panel using the same 

isotropic material for stiffeners and panel. For simplicity, the isotropic material is assumed to have Young’s modulus 

of 1 and Poisson ratio of 0. 

 Figure 12 shows a cross section of an integral blade stiffened panel, where dS is the spacing between stiffeners, hS 

is the thickness of the equivalent-stiffener layer, and AS is the area of stiffener cross section. 

 

 

Fig. 12  The cross section dimensions of an integral blade stiffened panel. 

 Equivalent plate theory aims to replace a stiffened panel by an equivalent [flat] panel with total thickness of 

(h(skin)+hS) such that the stiffened and equivalent panels have similar stiffness properties. Four formulas for thickness 

hS of equivalent-stiffener layer are given in Ref. [21] and each formula is suitable for certain dominant physical 

characteristic response involved in finite-element analysis. For equivalence based on membrane action, hS is defined 

by the following formula (cf. Eq. (48) in Ref. [21]). 

ℎ𝑆 =  
𝐴𝑆

𝑑𝑆
                (5) 

 

For an integral blade stiffener in Fig. 12, AS = H(stiffener)∙h(web). The membrane equivalence can be attained by 

using (h(skin)+hS) as the physical thickness of the equivalent panel, but the bending stiffness of the equivalent panel 

is usually different from the bending stiffness of the stiffened panel. 

 The NATRAN PSHELL element allows a membrane-equivalent panel to minic the bending stiffness of the 

stiffened panel. The adjusted bending stiffness 𝐷11
∗  of a membrane-equivalent panel with thickness (h(skin)+hS) is 

defined by NASTRAN using a scaling parameter . 
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   𝐷11
∗ (equivalent panel) =  ∙

(ℎ(skin)+ℎ𝑆) 3

12
          (6) 

 

Therefore, for a proper value of , the bending stiffness of the membrane-equivalent panel in NASTRAN can be the 

same as the maximum bending stiffness of the stiffened panel.  

Because the material is assumed to have Young’s modulus of 1 and Poisson ratio of 0, the maximum bending 

stiffness Dyy of a uniaxial stiffened panel is defined by the following integral. 

 

𝐷𝑦𝑦 =  
1

𝑑𝑆
∙ ∬ 𝑧2

𝑅
𝑑𝑦𝑑𝑧              (7) 

 

Here R denotes a region consisting of the cross sections of a stiffener and a segment of the base plate with length dS. 

For the integral blade stiffened panel in Fig. 12, R is the green region on (y,z)-plane. The location of z = 0 defines the 

reference axis for the bending stiffness. For convenience, the neutral axis of any stiffened or unstiffened panel is used 

as the reference axis for bending stiffness. Under this assumption, z = 0 corresponds to the neutral axis of the stiffened 

panel. Define the bending stiffness scaling parameter  as follows. 

  

     =
12∙𝐷𝑦𝑦

(ℎ𝑆+ℎ(skin))3               (8) 

  

Then a membrane-equivalent panel in NASTRAN with its bending stiffness scaling parameter  defined by Eq. (8) 

has similar properties as the stiffened panel with respect to membrane and bending actions. 

 The uniaxial stiffened panel analysis tool in HyperSizer [22] can be used to calculate  and verify the equivalences. 

For any uniaxial stiffened panel, construct the stiffened panel in HyperSizer with an isotropic material that has 

Young’s modulus of 1 and poisson ratio close to zero. The material can be arbitrarily defined with (stiffness for 

tension) = (stiffness for compression) ≈ 2∙(stiffness for in-plane shear). Then the off-diagonal entries in the membrane 

and bending stiffness matrices are close to zero. Next, construct the equivalent panel with (h(skin)+hS) as the physical 

thickness. Rerun the component analysis for the equivalent panel. Then the following equalities must hold.  

 

𝐴11(stiffened panel) = 𝐴11(equivalent panel) = ℎ(skin) + ℎ𝑆       (9) 

 

Here A11 is the 1st diagonal entry of the membrane stiffness matrix generated by HyperSizer. Moreover, the bending 

stiffness entry D11(stiffened panel) generated by HyperSizer with respect to neutral axis (which is labeled as the 

symmetric D11 in HyperSizer) is Dyy and  

 

 =
12∙𝐷𝑦𝑦

(ℎ(skin)+ℎ𝑆)3 =
12∙𝐷11(stiffened panel)

(𝐴11)3 =
𝐷11(stiffened panel)

𝐷11(equivalent panel)
       (10) 

 

So  defined by Eq. (8) does scale the bending stiffness of the membrane-equivalent panel to the maximum bending 

stiffness of the stiffened panel. 

An integral blade stiffened panel example is given on page 653 of Ref. [23]. In this example, h(skin) = 0.049 in, 

h(web) = 0.153 in, H(stiffener) = 1.026 in, and dS = 2.194 in. The HyperSizer component analysis yields h(skin)+hS = 

A11 = 0.12055, hS = 0.0715, and  = 12∙D11(stiffened panel)/(A11)3 = 100.6. Of course, one could also compute AS and 

Dyy manually; then, use Eqs. (5), (7), and (8) to get the same hS  and . 
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