701 research outputs found

    Transurethral resection and surveillance of bladder cancer supported by 5-aminolevulinic acid-induced fluorescence endoscopy

    Get PDF
    Purpose: We determined whether neoplastic disease, which was missed under white light can be found during transurethral resection of bladder cancer by 5-aminolevulinic acid-induced porphyrin fluorescence. Materials and Methods: 5-Aminolevulinic acid-induced fluorescence endoscopy was carried out in 328 cases. A 3% 5-aminolevulinic acid solution was instilled intravesically in a mean time of 2.8 h before endoscopy, The fluorescence was excited by a special incoherent light source which provided blue light in addition to white light. Results: In 82 (25%) cases additional neoplastic lesions were found only because of their red porphyrin fluorescence which was induced by 5-aminolevulinic acid. 31% of these neoplastic foci which were found in normal and nonspecific inflamed mucosa had a poorly differentiated histology. Conclusions: 5-Aminolevulinjc acid facilitates detection of neoplastic disease during transurethral resection of bladder cancer and increases the accuracy of diagnosis

    Inverting Singlet and Triplet Excited States using Strong Light-Matter Coupling

    Full text link
    In organic microcavities, hybrid light-matter states can form with energies that differ from the bare molecular excitation energies by nearly 1 eV. A timely question, given recent advances in the development of thermally activated delayed fluorescence materials, is whether strong light-matter coupling can be used to invert the ordering of singlet and triplet states and, in addition, enhance reverse intersystem crossing (RISC) rates. Here, we demonstrate a complete inversion of the singlet lower polariton and triplet excited states. We also unambiguously measure the RISC rate in strongly-coupled organic microcavities and find that, regardless of the large energy level shifts, it is unchanged compared to films of the bare molecules. This observation is a consequence of slow RISC to the lower polariton due to the delocalized nature of the state across many molecules and an inability to compete with RISC to the dark exciton reservoir, which occurs at a rate comparable to that in bare molecules

    Ultra‐Narrowband Blue Multi‐Resonance Thermally Activated Delayed Fluorescence Materials

    Get PDF
    Ultra-narrowband blue multi-resonance-induced thermally activated delayed fluorescence (MR-TADF) materials (V-DABNA and V-DABNA-F), consisting of three DABNA subunits possessing phenyl or 2, 6-difluorophenyl substituents on the peripheral nitrogen atoms are synthesized by one-shot triple borylation. Benefiting from the inductive effect of fluorine atoms, the emission maximum of V-DABNA-F (464 nm) is blueshifted from that of the parent V-DABNA (481 nm), while maintaining a small full width at half maximum (FWHM, 16 nm) and a high rate constant for reverse intersystem crossing (6.5 × 10⁔ s⁻Âč). The organic light-emitting diodes (OLEDs) using V-DABNA and V-DABNA-F as emitters are fabricated by vapor deposition and exhibit blue emission at 483 and 468 nm with small FWHMs of 17 and 15 nm, corresponding to Commission Internationale d’Éclairage coordinates of (0.09, 0.27) and (0.12, 0.10), respectively. Both devices achieve high external quantum efficiencies of 26.2% and 26.6% at the maximum with minimum efficiency roll-offs of 0.9% and 3.2%, respectively, even at 1000 cd m⁻ÂČ, which are record-setting values for blue MR-TADF OLEDs

    Exact solution of kinetic analysis for thermally activated delayed fluorescence materials

    Get PDF
    Research at Kyushu, Kyoto and St Andrews Universities was supported by EPSRC and JSPS Core to Core grants (JSPS Core-to-core Program; EPSRC grant number EP/R035164/1). Authors are also grateful for financial support from the Program for Building Regional Innovation Ecosystems of the Ministry of Education, Culture, Sports, Science and Technology, Japan, JST ERATO Grant JPMJER1305, JSPS KAKENHI JP20H05840, and Kyulux Inc.The photophysical analysis of thermally activated delayed fluorescence (TADF) materials has become instrumental to providing insight into their stability and performance, which is not only relevant for organic light-emitting diodes (OLED), but also for other applications such as sensing, imaging and photocatalysis. Thus, a deeper understanding of the photophysics underpinning the TADF mechanism is required to push materials design further. Previously reported analyses in the literature of the kinetics of the various processes occurring in a TADF material rely on several a priori assumptions to estimate the rate constants for forward and reverse intersystem crossing (ISC and RISC, respectively). In this report, we demonstrate a method to determine these rate constants using a three-state model together with a steady-state approximation and, importantly, no additional assumptions. Further, we derive the exact rate equations, greatly facilitating a comparison of the TADF properties of structurally diverse emitters and providing a comprehensive understanding of the photophysics of these systems.PostprintPostprintPeer reviewe

    Scale-up chemical synthesis of thermally-activated delayed fluorescence emitters based on the dibenzothiophene-S,S-dioxide core

    Get PDF
    We report a procedure to linearly scale-up the synthesis of 2,8-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)dibenzothiophene-S,S-dioxide (compound 4) and 2,8-bis(10H-phenothiazin-10-yl)dibenzothiophene-S,S-dioxide (compound 5) using Buchwald-Hartwig cross-coupling reaction conditions. In addition, we demonstrate a scaled-up synthesis of all non-commercially available starting materials that are required for the amination crosscoupling reaction. In the present article, we provide the detailed synthetic procedures for all of the described compounds, alongside their spectral characterization. This work shows the possibility to produce organic molecules for optoelectronic applications on a large scale, which facilitates their implementation into real world devices

    Thermally Activated Delayed Fluorescence Materials Based on Homoconjugation Effect of Donor–Acceptor Triptycenes

    Get PDF
    Donor–acceptor triptycences, TPA-QNX(CN)2 and TPA-PRZ(CN)2, were synthesized and their emissive properties were studied. They exhibited a blue-green fluorescence with emission lifetimes on the order of a microsecond in cyclohexane at room temperature. The long lifetime emission is quenched by O[subscript 2] and is attributed to thermally activated delayed florescence (TADF). Unimolecular TADF is made possible by the separation and weak coupling due to homoconjugation of the HOMO and LUMO on different arms of the three-dimensional donor–acceptor triptycene. Organic light emitting devices (OLEDs) were fabricated using TPA-QNX(CN)2 and TPA-PRZ(CN)2 as emitters which displayed electroluminescence with efficiencies as high as 9.4% EQE.Samsung (Firm)Japan Society for the Promotion of Scienc

    Design of multi-resonance thermally activated delayed fluorescence materials for organic light-emitting diodes

    Get PDF
    This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska Curie grant agreement no. 891606 (TADFNIR). We are also grateful for financial support from the University of St Andrews Restarting Research Funding Scheme (SARRF), which is funded through the Scottish Funding Council grant reference SFC/AN/08/020. J.W. thanks the China Scholarship Council (202006250026). We thank the Engineering and Physical Sciences Research Council for support (EP/P010482/1, EP/R511778/1 and EP/L017008/1).Two strategies to improve the performance of multiresonant thermally activated delayed fluorescence (MR-TADF) compounds are explored. These include incorporation of units to turn on aggregation-induced emission so as to permit use of MR-TADF compounds at high doping concentrations, and the use of heavy atoms to increase spin-orbit coupling to enhance reverse intersystem crossing rates. Preliminary photophysical investigations are presented.Postprin

    Tuning the upconversion photoluminescence lifetimes of NaYF4:Yb3+, Er3+ through lanthanide Gd3+ doping

    Get PDF
    The multiplexing capacity of conventional fluorescence materials are significantly limited by spectral overlap and background interference, mainly due to their short-lived fluorescence lifetimes. Here, we adopt a novel Gd3+ doping strategy in NaYF4 host materials, realized tuning of upconversion photoluminescence (UCPL) lifetimes at selective emissions. Time-correlated single-photon counting (TCSPC), was applied to measure the photoluminescence lifetimes accurately. We demonstrated the large dynamic range of lifetimes of upconversion nanoparticles with good upconversion quantum yields, mainly owing to the dominance of high efficient energy transfer upconversion mechanism. The exceptional tunable properties of upconversion materials allow great potential for them to be utilized in biotechnology and life sciences
    • 

    corecore