25 research outputs found

    Arthrobots

    Get PDF
    This paper describes a class of robots—“arthrobots”— inspired, in part, by the musculoskeletal system of arthropods (spiders and insects, inter alia). An exoskeleton, constructed from thin organic polymeric tubes, provides lightweight structural support. Pneumatic joints modeled after the hydrostatic joints of spiders provide actuation and inherent mechanical compliance to external forces. An inflatable elastomeric tube (a “balloon”) enables active extension of a limb; an opposing elastic tendon enables passive retraction. A variety of robots constructed from these structural elements demonstrate i) crawling with one or two limbs, ii) walking with four or six limbs (including an insect-like triangular gait), iii) walking with eight limbs, or iv) floating and rowing on the surface of water. Arthrobots are simple to fabricate, inexpensive, light-weight, and able to operate safely in contact with humans.Chemistry and Chemical Biolog

    Doctor of Philosophy

    Get PDF
    dissertationShape Memory Alloy (SMA) actuators are compact and have high force-to-weight ratios, making them strong candidates to actuate robots, exoskeletons, and prosthetics. However, these actuators are thermomechanical in nature and slow cooling rates can limit their performance. Electricity can resistively heat the SMA actuators very quickly to produce contraction. To improve the convective cooling, SMA wires have been embedded in vascular networks, allowing cold fluid to pass across the actuators and extend them faster. The vascular network can also deliver hot fluid to heat and contract the wire. To minimize the weight and size of the control hardware for the vascular and electrical networks, a scalable NxN architecture has been implemented that allows for 2N control devices to be shared amongst N2 actuators. This Network Array Architecture (NAA) allows each actuator to be controlled individually or in discrete subarrays. However, this architecture does not allow all combinations of actuators to be activated simultaneously; therefore a sequence of control commands may be required to achieve the complete desired actuation. This dissertation presents the development of an intelligent controller for large arrays of wet SMA actuators with electric and thermofluidic inputs. The controller uses graph theory to identify a sequence to control commands to optimize the performance of the actuators. By treating each actuator as binary (contracted / extended), the collected states of an actuator array can be represented as nodes of the graph and the discrete NAA control commands as the graph edges. By weighting the costs of the graph edges (actuation times, energy), graph theory algorithms can find a set of control commands to transition the array to the desired state with specific performance characteristics. NAA results in a multi-graph that has a large number of nodes (2NxN) and is highly interconnected, causing problems with scalability. The search algorithm has incorporated an expanding wavefront algorithm to construct only a small portion of the graph as needed. The computational cost to construct the graph has been minimized by using bitwise operations and the discrete nature of the array of binary actuators and the NAA control commands. The algorithm was implemented in MATLAB and it is able to identify the optimal solution for a 4x4 array with more than 14 million edges. By using an expanding wavefront, the algorithm, on average, explored less than 100 edges (<0.01%) in 0.03 seconds. A 6x6 array was optimized in 0.7 seconds, exploring just 2400 edges

    HydroDog: A Quadruped Robot Actuated by Soft Fluidic Muscles

    Get PDF
    This report presents the very first effort aimed to develop a legged terrestrial robot actuated by Hydro Muscles, which are elastic tubes actuated by fluid, constrained by fabric that extend and contract emulating life-like performance of biological muscles. The team designed and manufactured a 30-pound quadruped “dog” using versatile aluminum extrusions and minimally machined components. The team tested and observed a variety of bounding gaits that resulted from different skeletal/muscular geometries and actuation times. These tests yielded varying jump heights and robot forward velocities. Future projects should extensively research optimal leg kinematics to maximize the mechanical power the muscles apply on the robot

    HydroDog: A Quadruped Robot Actuated by Soft, Fluidic Muscles

    Get PDF
    This report presents the very first effort aimed to develop a legged terrestrial robot actuated by Hydro Muscles, which are elastic tubes actuated by fluid, constrained by fabric that extend and contract emulating life-like performance of biological muscles. The team designed and manufactured a 30-pound quadruped “dog” using versatile aluminum extrusions and minimally machined components. The team tested and observed a variety of bounding gaits that resulted from different skeletal/muscular geometries and actuation times. These tests yielded varying jump heights and robot forward velocities. Future projects should extensively research optimal leg kinematics to maximize the mechanical power the muscles apply on the robot

    HydroDog: A Quadruped Robot Actuated by Soft Fluidic Muscles

    Get PDF
    This report presents the very first effort aimed to develop a legged terrestrial robot actuated by Hydro Muscles, which are elastic tubes actuated by fluid, constrained by fabric that extend and contract emulating life-like performance of biological muscles. The team designed and manufactured a 30-pound quadruped “dog” using versatile aluminum extrusions and minimally machined components. The team tested and observed a variety of bounding gaits that resulted from different skeletal/muscular geometries and actuation times. These tests yielded varying jump heights and robot forward velocities. Future projects should extensively research optimal leg kinematics to maximize the mechanical power the muscles apply on the robot

    Functional Soft Robotic Actuators Based on Dielectric Elastomers

    Get PDF
    Dielectric elastomer actuators (DEAs) are a promising soft actuator technology for robotics. Adding robotic functionalities--folding, variable stiffness, and adhesion--into their actuator design is a novel method to create functionalized robots with simplified actuator configurations. We first propose a foldable actuator that has a simple antagonistic DEA configuration allowing bidirectional actuation and passive folding. To prove the concept, a foldable elevon actuator with outline size of 70 mm × 130 mm is developed with a performance specification matched to a 400 mm wingspan micro air vehicle (MAV) of mass 130 g. The developed actuator exhibits actuation angles up to ± 26 ° and a torque of 2720 mN·mm in good agreement with a prediction model. During a flight, two of these integrated elevon actuators well controlled the MAV, as proven by a strong correlation of 0.7 between the control signal and the MAV motion. We next propose a variable stiffness actuator consisting of a pre-stretched DEA bonded on a low-melting-point alloy (LMPA) embedded silicone substrate. The phase of the LMPA changes between liquid and solid enabling variable stiffness of the structure, between soft and rigid states, while the DEA generates a bending actuation. A proof-of-concept actuator with dimension 40 mm length × 10mm width × 1mm thickness and a mass of 1 g is fabricated and characterized. Actuation is observed up to 47.5 ° angle and yielding up to 2.4 mN of force in the soft state. The stiffness in the rigid state is ~90 × larger than an actuator without LMPA. We develop a two-finger gripper in which the actuators act as the fingers. The rigid state allows picking up an object mass of 11 g (108 mN), to be picked up even though the actuated grasping force is only 2.4 mN. We finally propose an electroadhesion actuator that has a DEA design simultaneously maximizing electroadhesion and electrostatic actuation, while allowing self-sensing by employing an interdigitated electrode geometry. The concept is validated through development of a two-finger soft gripper, and experimental samples are characterized to address an optimal design. We observe that the proposed DEA design generates 10 × larger electroadhesion force compared to a conventional DEA design, equating to a gripper with a high holding force (3.5 N shear force for 1 cm^2) yet a low grasping force (1 mN). These features make the developed simple gripper to handle a wide range of challenging objects such as highly-deformable water balloons (35.6 g), flat paper (0.8 g), and a raw chicken egg (60.9 g), with its lightweight (1.5 g) and fast movement (100 ms to close fingers). The results in this thesis address the creation of the functionalized robots and expanding the use of DEAs in robotics

    Dismantling Rubble Pile Asteroids with AoES (Area-of-Effect Soft-bots)

    Get PDF
    Area-of-Effect Softbots (AoES) are soft-robotic spacecraft that are designed with a large, flexible surface area to leverage the dynamical environment at rubble pile asteroids. In particular, this surface area allows AoES to use adhesive forces, both naturally arising from van der Waals forces between the AoES and the asteroid regolith, and by using active electroadhesion, as well as using SRP forces to provide fuel free orbit and hopping trajectory control. The main purpose of the bus structure is to house a digging and launching mechanism that can liberate and launch asteroid regolith off the surface of the asteroid to be collected in orbit
    corecore