
INTELLIGENT CONTROL OF SHAPE MEMORY ALLOY  
 

ACTUATOR ARRAYS WITH ELECTRIC AND  
 

THERMOFLUIDIC INPUTS
 
  
 
 
 
 
 

by 
 

Leslie James Flemming 
 
 
 
 
 
 
 

A dissertation submitted to the faculty of 
The University of Utah 

in partial fulfillment of the requirements for the degree of 
 
 
 
 
 
 
 

Doctor of Philosophy 
 
 
 
 
 
 
 

Department of Mechanical Engineering 
 

The University of Utah 
 

August 2012 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276266432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Copyright  Leslie James Flemming 2012 

All Rights Reserved 



STATEMENT OF DISSERTATION APPROVAL 

The dissertation of Leslie James Flemming 

has been approved by the following supervisory committee members:

 

Stephen A. Mascaro , Chair 6/14/2012 

 
Date Approved

Stacy M. Bamberg , Member 6/14/2012 

 
Date Approved

Mark A. Minor , Member 6/14/2012 

 
Date Approved

Eric R. Pardyjak , Member  

 
Date Approved

David E. Johnson , Member  

 
Date Approved

and by Timothy Ameel , Chair of 

the Department of Mechanical Engineering 

and by Charles A. Wight, Dean of The Graduate School.

 

 



 
 

 

ABSTRACT

Shape Memory Alloy (SMA) actuators are compact and have high force-to-weight 

ratios, making them strong candidates to actuate robots, exoskeletons, and prosthetics. 

However, these actuators are thermomechanical in nature and slow cooling rates can limit 

their performance. Electricity can resistively heat the SMA actuators very quickly to 

produce contraction. To improve the convective cooling, SMA wires have been 

embedded in vascular networks, allowing cold fluid to pass across the actuators and 

extend them faster. The vascular network can also deliver hot fluid to heat and contract 

the wire. To minimize the weight and size of the control hardware for the vascular and 

electrical networks, a scalable NxN architecture has been implemented that allows for 2N 

control devices to be shared amongst N2 actuators. This Network Array Architecture 

(NAA) allows each actuator to be controlled individually or in discrete subarrays. 

However, this architecture does not allow all combinations of actuators to be activated 

simultaneously; therefore a sequence of control commands may be required to achieve 

the complete desired actuation. 

This dissertation presents the development of an intelligent controller for large arrays 

of wet SMA actuators with electric and thermofluidic inputs. The controller uses graph 

theory to identify a sequence to control commands to optimize the performance of the 

actuators.  By treating each actuator as binary (contracted / extended), the collected states 

of an actuator array can be represented as nodes of the graph and the discrete NAA 

control commands as the graph edges. By weighting the costs of the graph edges 

(actuation times, energy), graph theory algorithms can find a set of control commands to 

transition the array to the desired state with specific performance characteristics. NAA 

results in a multi-graph that has a large number of nodes (2NxN) and is highly 



 
 

iv 
 

interconnected, causing problems with scalability. The search algorithm has incorporated 

an expanding wavefront algorithm to construct only a small portion of the graph as 

needed.  The computational cost to construct the graph has been minimized by using 

bitwise operations and the discrete nature of the array of binary actuators and the NAA 

control commands. The algorithm was implemented in MATLAB and it is able to 

identify the optimal solution for a 4x4 array with more than 14 million edges. By using 

an expanding wavefront, the algorithm, on average, explored less than 100 edges 

(<0.01%) in 0.03 seconds.  A 6x6 array was optimized in 0.7 seconds, exploring just 

2400 edges. 



 
 

 

TABLE OF CONTENTS

ABSTRACT ......................................................................................................................  iii 

ACKNOWLEDGEMENTS .............................................................................................. vii 

1 INTRODUCTION ............................................................................................................1 

1.2  References .............................................................................................................4 

2 DISCRETE CONTROL OF THERMOFLUIDIC INPUTS   FOR WET SMA 
ACTUATOR ARRAYS ...................................................................................................8 

2.1 Abstract .......................................................................................................................8 
2.1 Introduction ................................................................................................................9 
2.2 Background ...............................................................................................................11 

2.2.1  Wet Shape Memory Alloy (SMA)...................................................................11 
2.2.2  Bundling Large Number of Wet SMA Actuators ............................................12 
2.2.3  Binary Representation of SMA Actuator Array ..............................................15 
2.2.4  Operating the Actuators Mechanically in Series .............................................15 

2.3 Discrete Control Logic .............................................................................................17 
2.3.1  NAA Discrete Control .....................................................................................17 
2.3.2  Fluidic Resistance / Actuation Rates / Time Constants ...................................18 
2.3.3  Control Command Forecasting ........................................................................21 
2.3.4  Standard Control Algorithm ............................................................................22 
2.3.5  Superfluous Control Algorithm (SCA)............................................................25 
2.3.6  Series Algorithm ..............................................................................................27 

2.4 Simulations ...............................................................................................................31 
2.5 Conclusions ..............................................................................................................34 
2.6 References ................................................................................................................36 

3 ANALYSIS OF HYBRID ELECTRIC / THERMOFLUIDIC INPUTS FOR WET 
SHAPE MEMORY ALLOY ACTUATORS .................................................................39 

3.1 Abstract .....................................................................................................................39 
3.2 Introduction ..............................................................................................................40 
3.3 Background ...............................................................................................................41 

3.3.1  Wet SMA Actuators ........................................................................................41 
3.4 Wet SMA Actuator Modeling ..................................................................................43 

3.4.1  Computational Fluid Dynamic (CFD) Modeling ............................................43 
3.4.2  Temperature–Strain Model of SMAs ..............................................................44 

3.5 Simulations ...............................................................................................................45 
3.5.1  Case Study 1 – Electric Heating, Varied Power Input ....................................46 
3.5.2  Case Study 2 – Electric Heating, Varied Fluid Flow ......................................48 



 
 

vi 
 

3.5.3  Case Study 3 – Variation of Fluid Flow Rates ................................................50 
3.5.4  Case Study 4 – Variation of Fluid Temperature ..............................................52 
3.5.5  Case Study 5 – Heating Combinations – Zero Flow Cooling. ........................52 
3.5.6 Efficiency vs. Speed Analysis of Heating and Cooling Processes. ....................54 

3.6 Conclusions ..............................................................................................................56 
3.7 References ................................................................................................................57 

4 OPTIMAL CONTROL OF WET SHAPE MEMORY ALLOY ACTUATOR  
ARRAYS USING GRAPH THEORY ...........................................................................60 

4.1 Abstract .....................................................................................................................60 
4.2 Introduction ..............................................................................................................61 
4.3 Background ...............................................................................................................63 

4.3.1 Wet SMA Actuator ............................................................................................63 
4.3.2 Network Array Architecture (NAA) ..................................................................64 
4.3.3 Control Logic for NAA ......................................................................................66 

4.4 Optimization of the Wet SMA Actuator Array ........................................................67 
4.4.1 Graph Theory Structure of NAA ........................................................................68 
4.4.2 Graph Theory Algorithms ..................................................................................73 

4.5 Scalability and Simultaneous Operation...................................................................74 
4.5.1 Expanding Wavefront ........................................................................................74 
4.5.2 Control Command Reduction ............................................................................76 
4.5.3 Simultaneous Operation of Fluid and Electric Inputs ........................................78 

4.6 Simulations and Analysis .........................................................................................80 
4.6.1 Analysis of Expanding Wavefront and Command Reduction ...........................80 

4.7 Conclusion ................................................................................................................83 
4.8 References ................................................................................................................84 

5 CONCLUSIONS.............................................................................................................88 

APPENDIX: NAA GRAPH THEORY ALORITHMS .....................................................91 

 
 
 
 



 
 

 

ACKNOWLEDGEMENTS

My thanks go first to my wife, Sarah, for her love and support. I look forward to the 

adventures ahead of us. I would also like to thank my family for their support over this 

long journey. 

Thanks to my advisor, Stephen Mascaro, for his support as I pursued my degree. I look 

forward to sharing the experiences and knowledge gained under his guidance with my 

future students. I also deeply appreciate the ideas and hard work contributed by my 

colleagues and instructors at the University of Utah. 

This work is supported by the National Science Foundation: Award 1031848. 
 

 



 
 

CHAPTER 1  

INTRODUCTION

Robotic systems such as prosthetics, exoskeletons and haptic devices will be wearable 

and impact a large number of people on a personal level. Prosthetic limbs restore 

functionality to amputees [1] and facial prostheses could reproduce facial expressions to 

restore dignity to those with facial disfigurements [2]. As well as augmenting strength, 

exoskeletons can be used to manipulate joints to restore mobility to individuals with 

muscular and neurological problems [3, 4]. Wearable haptic devices will allow people to 

interact with virtual environments and teleoperate other robotic systems [5]. 

The wearability of robotic systems is enhanced when robot actuation closely matches 

the characteristics of human actuation according to metrics such as DOF, size, strength, 

speed, and range of motion [6, 7]. Safety from mechanical, electrical, thermal, chemical, 

and audible hazards/discomforts must also be considered in the design of wearable 

robotics [8]. Additionally, prosthetics and exoskeletons require a long-lasting untethered 

energy source [9]. 

Shape Memory Alloys (SMA) refer to a group of materials that have the ability to 

return to a predetermined shape when heated and this characteristic can be utilized to 

produce actuation. SMAs have been described as artificial muscles, where heating will 

make them contract and cooling will allow them to extend. SMA "muscles" are normally 

compact because they are extremely strong with a maximum stress of about 200MPa 

(800 times greater than human muscle [10]). Therefore a small amount of material can 

produce the force, but generally they have strains on the order 4% (1/5 of human muscle). 



2 
 

To overcome this limitation, mechanical advantage can amplify the displacement while 

sacrificing some of the force. Additionally, they operate silently without vibrations. 

SMA actuators have been used in a variety of robotic applications such as robotic 

hands [11] and faces [12], prostheses [13-17], surgical devices [18], and tactile displays 

[19-21]. One of the greatest limitations of SMA actuators has been their relatively low 

bandwidth (typically 1 Hz or less). The impediment to high frequency operation has been 

the cooling time constant. For example, a 0.8 mm diameter nickel titanium (NiTi) SMA 

wire can be electrically activated in about 50 ms, while the cooling time using free 

convection in air is about 1 second [22]. It has been observed that the time constant of 

relaxation improves up to four times if subjected to forced convection [23]. If an effective 

cooling mechanism is designed to rapidly remove heat from the wire, a substantial 

improvement in the relaxation time can be achieved, allowing for higher cycling rates. 

Furthermore, if such a cooling system could be achieved without the addition of bulky 

fans or fluidic tanks, SMA actuators could be more effectively used for the applications 

mentioned above. Some researchers have designed actuators where the SMA itself is a 

fluid-filled tube [24] or the SMA is nestled between fluid-filled tubes [18]. However in 

these configurations, only part or none of the SMA surface is actually in direct contact 

with the fluid. Electrothermal cooling with Peltier modules has also been implemented 

[25], but this solution is inefficient. Another idea that has recently achieved publicity is a 

fuel-powered SMA actuator [26], where a catalyst coated SMA wire is heated by a local 

fuel-cell reaction; however this technique has yet to match the speed of electric heating 

and offers no solution to fast cooling. 

In order to improve the convection rate, [27] developed vasculated robotic flesh, where 

a robot is endowed with a network of “blood vessels” for removing thermal energy to 

embedded SMA actuators. These wet actuators consist of compliant vessels containing 

Shape Memory Alloy (SMA) wires. In addition to cooling, the vascular network can 



3 
 

deliver hot fluid in conjunction with electricity to contract the SMA wires. These wet 

SMA actuators have a theoretical power-to-weight ratios on the order of 90 W/kg (100 

times greater than DC motors), with bandwidths of at least 5 Hz using a combination of 

electric heating and fluidic cooling [28]. Fluidic heating and cooling has a theoretical 

speed and efficiency of 2.5 Hz and 0.18% respectively. Fluidic activation is less efficient 

than electricity, but a chemical energy source used to heat the fluid can have up to 100 

times the energy density of batteries. 

Since SMA actuators are so compact, creating SMA bundles [29] and arrays [30] is a 

natural extension to these artificial muscles. However, the control devices, especially the 

fluidic valves, can be orders of magnitude larger and heavier than the SMA wire. To 

overcome this problem, wet SMA actuator arrays have been designed and implemented 

by [31, 32], where networks of fluidic valves are used to direct hot and cold water to any 

actuator in the array, while networks of electrical switches control electric current to any 

actuator. The architecture allows an NxN array of actuators to be controlled with 2N 

fluidic valves and 2N electric switches. This architecture does place the constraints on 

controlling the array actuators. Energy can be delivered/removed to each actuator 

individually or to certain subsections of the array [33]. The number of subarrays is small, 

(2N-1)2, relative to the possible desired heat transfer processes combinations and it is 

unlikely that a single subsection will deliver/remove the energy to produce the desired 

actuation of the array. Therefore, it may take multiple control commands (subarrays) to 

produce the complete desired actuation. 

This dissertation presents development of an intelligent controller for arrays of SMA 

actuators with multiple energy domain inputs. Chapter 2 examines and develops the 

discrete control of wet SMA actuator array using thermofluidic inputs. Chapter 3 uses 

computation fluid dynamics to characterize the performance of a wet SMA actuator with 

both electric and thermofluidic inputs. Chapter 4 presents an optimal control strategy 



4 
 

using graph theory (path planning) to maximize the performance to the actuator array 

using both electric and thermofluidic inputs. Finally, Chapter 5 will examine some of the 

intricacies of the developed intelligent controller and future work to address them. 

1.2 References 

[1] E. Schaffalitzky, P. Gallagher, M. Maclachlan and N. Ryall, “Understanding the 
benefits of prosthetic prescription: exploring the experiences of practitioners and 
lower limb prosthetic users,” Disability & Rehabilitation, vol. 33, issue 15, pp. 
1314-1323, 2000. 

[2] J. Pacey-Lowrie, “Working with prosthetic,” Optician, vol. 234, issue 6121, pp. 26-
27, 2007. 

[3] K. Kiguchi, R. Esaki, and T. Toshio, “Development of a wearable exoskeleton for 
daily forearm motion assist,” Advanced Robotics, vol. 19, issue 7, pp. 751-771, 
2005. 

[4] M. Samer, Y Amirat, and H. Rifai, “Lower-Limb Movement Assistance through 
Wearable Robots: State of the Art and Challenges”, Advanced Robotic, vol. 26, 
issue 1/2, pp. 1-22, 2012. 

[5] L. Sangyoon and G. Kim, “Effects of haptic feedback, stereoscopy, and image 
resolution on performance and presence in remote navigation,” International 
Journal of Human-Computer Studies, vol. 66, issue 10, pp. 701-717, 2008. 

[6] L. Tommaso, N. Vitello, S. Rossi, A. Persichetti, F. Giovacchini, S. Roccela, F. 
Vecchi, and M. Carrozzo, “Measuring human–robot interaction on wearable robots: 
A distributed approach,” Mechatronics, vol. 21, issue 6, pp. 1123-1121, 2011.  

[7] S. Yong-Ho, J. Il-Woong and Y. Hyun, “Motion capture-based wearable interaction 
system and its application to a humanoid robot, AMIO,” Advanced Robotics, vol. 
21, issue 15, pp. 1725-1741, 2007. 

[8] A. Ivorra, C. Daniels, and B. Rubinsky, “Minimally obtrusive wearable device for 
continuous interactive cognitive and neurological assessment,” Physiological 
Measurement, vol. 29, issue 5, pp. 543–554, 2008 

[9] K. Shorter, G. Kogler, E. Loth, W. Durfee, and E. Hsiao-Wecksler, “A portable 
powered ankle-foot orthosis for rehabilitation,” Journal of Rehabilitation Research 
& Development, vol. 48, issue 4, pp. 459-472, 2011. 

[10] I. W. Hunter and S. Lafontaine, "Comparison of muscle with artificial actuators," in  
Proc. IEEE Solid-State Sensors and Actuator Workshop, Hilton Head Island, SC, 
USA, pp. 178-185, 1992. 



5 
 
[11] F. Garcia-Cordova, J. Lopez-Coronado, and A. Guerrero-Gonzalez, "Design of an 

anthropomorphic finger using shape memory alloy springs," in Proc. IEEE 
International Conference on Systems, Man and Cybernetics, Tokyo, Japan, pp. 242-
247, 1999. 

[12] H. Kobayashi, H. Akasawa, and F. Hara, "Study on new face robot platform for 
robot-human communication," in Proc. IEEE International Robot and Human 
Communication Workshop, Pisa, Italy, pp. 242-247, 1999. 

[13] C. Pfeiffer, K. DeLaurentis, and C. Mavroidis, "Shape memory alloy actuated robot 
prostheses: initial experiments," IEEE International Conference on Robotics and 
Automation, Detroit, MI, USA, vol. 3, pp. 2385-2391. 1999. 

[14] C. Pfeiffer, C. Mavroidis, K. DeLaurentis, and M. Mosley, "Shape memory alloy 
actuated robot prostheses: initial prototypes," American Society of Mechanical 
Engineers,Bioengineering Division, Nashville, TN, USA, 1999. 

[15] K. Andrianesis and A. Tzes, "Design of an anthropomorphic prosthetic hand driven 
by shape memory alloy actuators," in Proc. 2nd Biennial IEEE/RAS-EMBS 
International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, 
AZ, USA, pp. 517-522, 2008.  

[16] T. Dutta and T. Chau, "A feasibility study of Flexinol as the primary actuator in a 
prosthetic hand," in Proc. Canadian Conference on Electrical and Computer 
Engineering, Piscataway, NJ, USA, vol. 3, pp. 1449-1452, 2003. 

[17] K. O'Toole, M. McGrath, and D. Hatchett, "Transient characterization and analysis 
of shape memory alloy wire Bundles for the actuation of finger joints in prosthesis 
design," Mechanika, vol. 68, pp. 65-69. 

[18] K. Ikuta, M. Tsukamoto, and S. Hirose, "Shape memory alloy servo actuator system 
with electric resistance feedback and application for active endoscope," in Proc. 
IEEE International Conference on Robotics and Automations, Philadelphia, PA, 
USA, pp. 427-430, 1988. 

[19] P. M. Taylor, A. Moser, and A. Creed, "The Design and control of a tactile display 
based on shape memory alloys," in Proc. IEEE International Conference on 
Robotics and Automation, Albuquerque, NM, USA, pp. 1318-1323, 1997. 

[20] S. Tachi, M. Nakatani, H. Kajimoto, K. Vlack, D. Sekijuchi, and N. Kawakami, 
"Control method for a 3d form display with coil-type shape memory alloy " in Proc. 
IEEE International Conference on Robotics and Automation, 2005. 

[21] M. Nakamura and L. Jones, "An actuator for the tactile vest - a torso-based haptic 
device," in Proc. 11th Symposium on Haptic Interfaces for Virtual Environment and 
Teleoperator Systems, Los Alamitos, CA, USA, pp. 333-339, 2003. 



6 
 
[22] I. W. Hunter, S. Lafontaine, J. M. Hollerbach, and P. J. Hunter, "Fast reversible 

NiTi fibers for use in microrobotics," in Proc. IEEE Conference on Micro Electro 
Mechanical Systems, Nara, Japan, pp. 166-170, 1991. 

[23] A. Shahin, P. Meckl, J. Jones, and M. Thrasher, "Enhanced cooling of shape 
memory alloy wires using semiconductor `heat pump' modules," Journal of 
Intelligent Material Systems and Structures, vol. 5, pp. 95-104, 1994. 

[24] J. Boyd, C. Tesluk, and A. Duncan, "Shape memory alloy heat pipe," Proc. SPIE 
Conference on Smart Materials and Structures, San Diego, CA, USA, pp. 44-447, 
1997. 

[25] B. Selden, K. Cho, and H. Asada, "Segmented binary control of shape memory 
alloy actuator systems using the peltier effect," in Proc. IEEE International 
Conference on Robotics and Automation, New Orleans, LA, USA, pp. 4931-4936, 
2004. 

[26] V. Ebron, Z. Yang, D. Seyer, M. Kozlov, J. Oh, H. Xie, J. Razal, L. Hall, J. 
Ferraris, A. MacDiarmid, and R. Baughman, "Fuel-powered artificial muscles," 
Science, vol. 311, pp. 1580-1583, 2006. 

[27] S. Mascaro and H. Asada, "Wet shape memory alloy actuators for active vasculated 
robotic flesh," in Proc. IEEE International Conference on Robotics and 
Automation, Taipei, Taiwan, vol. 1, pp. 282-287, 2003. 

[28] L. Flemming and S. Mascaro, "Analysis of hybrid electric/thermofluidic control for 
wet shape memory alloy actuators," in Proc. ASME Dynamic Systems and Controls, 
Hollywood, CA, pp. 129-135, 2009. 

[29] K. De Laurentis, A. Fisch, J. Nikitczuk, and C. Mavroidis, "Optimal design of 
shape memory alloy wire bundle actuators," in Proc. IEEE International 
Conference on Robotics and Automation, Washington, DC, USA, pp. 2363-2368, 
2002. 

[30] R. Mukherjee, T. Christian, and R. Thiel, "An actuation system for the control of 
multiple shape memory alloy actuators," Sensors and Actuators A: Physical, vol. 
55, pp. 367-382, 1996. 

[31] S. Mascaro and H. Asada, "Vast DOF wet shape memory alloy actuators using 
matrix manifold and valve system," ASME International Mechanical Engineering 
Congress, Dynamic Systems and Control Division, Washington, DC., USA, pp. 
577-582, 2003. 

[32] L. Flemming and S. Mascaro, "Wet SMA actuator array with matrix 
vasoconstriction device," in Proc. ASME International Mechanical Engineering 
Congress and Exposition, Dynamic Systems and Control Division, Orlando, FL, 
USA, , pp. 1751-1758, 2005. 



7 
 
[33] L. Flemming and S. Mascaro, "Control of a scalable matrix vasoconstrictor device 

for wet actuator arrays," in Proc. IEEE International Conference on Robotics and 
Automation, Rome, Italy, pp. 648-653, 2007. 

 



 
 

 

CHAPTER 2 

DISCRETE CONTROL OF THERMOFLUIDIC INPUTS 
 

 FOR WET SMA ACTUATOR ARRAYS 

2.1 Abstract 

Shape Memory Alloys (SMA) can be implemented as high force-to-weight ratio 

actuators. The linear actuation of SMA wire is thermomechanical in nature. The heating 

of SMA wire produces a contraction and can be completed in milliseconds with Joule 

heating. However, unforced air convection cooling, which results in extension, can be 

slower by multiple orders of magnitude. To increase the cooling rate, SMA wires have 

been embedded in a compact vascular network, which allows cold fluid to flow across the 

actuators. Not only can the vascular network remove thermal energy from the SMA wire, 

it can also deliver hot fluid to convectively heat the SMA. Fluidic heating is 

advantageous compared to electric heating because the wire and surrounding fluid can 

remain hot for an extended time, allowing the wire to remain contracted without further 

energy input.  

In order to maintain the high force-to-weight ratio of the SMA actuators, a scalable 

Matrix Vasoconstriction Device (MVD) was developed to control the fluid flow to the 

vascular network. The MVD uses a network architecture that has 2N+1 valves controlling 

the fluid flow to N2 SMA actuators. However, the network architecture does come at a 

cost. The control of the actuators is now linked and not all of the actuators can be 

controlled simultaneously. The MVD has 2(2N-1)2 control commands where each 

actuator can be operated individually or in certain subarrays simultaneously. The wet 

SMA actuators in the array will operate as independent binary actuators or with multiple 



 

 

9

binary actuators connected mechanically in series to produce a range of discrete 

displacements. 

This paper presents scalable algorithms to operate the MVD as it controls the hot and 

cold fluid flow to an NxN array. The wet SMA actuators in the array will operate as 

independent binary actuators or with multiple binary actuators connected mechanically in 

series to produce a range of discrete displacements. The series algorithms use a method 

of forecasting the intermediate states of the array to keep the algorithms scalable.  Using 

these algorithms with array sizes up to 6x6, the MVD can continuously operate with an 

actuation rate of 3.2 times that of a single actuator. This work will serve as the foundation 

for future research that uses both electric and thermofluidic networks to optimize the 

speed and efficiency of wet actuator arrays.  

2.1 Introduction 

As robots, exoskeletons, and haptic devices become more complex with large numbers 

of degrees of freedom (DOF); there will be a need for compact actuators to power these 

DOF. Humanoid robots such as the Honda Asimo [1] and the Sony SDR-X [2] are 

operating with about 30 DOF, which is an order of magnitude less than the human body 

[3]. These robots are also significantly heavier than a human of comparable size due to 

heavy electric motors, gearing and batteries. When operating at their fastest rates, these 

robots have only enough power to operate for about 30 minutes. As well as augmenting 

strength, exoskeletons can be used to manipulate joints to restore mobility to individuals 

with muscular and neurological problems [4],[5]. Wearable haptic devices will allow 

people to interact with virtual environments and teleoperate other robotic systems [6]. In 

order for these robotic systems to approach the mobility, dexterity and power of humans, 

hundreds or even thousands of compact high power-to-weight ratio actuators may be 

needed. 

Shape Memory Alloys (SMA) actuators have high force-to-weight ratios and have been 



 

 

10

described as artificial muscles because they are able to contract and extend like biological 

muscles. SMAs are able to strain 4-8% and are capable of strengths of 200 MPa (800 

times stronger than human muscles) [7]. SMA wires contract and extend as the crystalline 

structure changes, which is heavily dependent on temperature. Increasing the temperature 

of the SMA wire above its transformation temperature will produce a contraction, and 

allowing it to cool back down will result in extension. Contraction can be done quickly 

with resistive heating, but the extension resulting from cooling with free convection can 

be multiple orders of magnitude slower [8]. Cooling rates of SMA have been improved 

by forced convection, water baths, and conduction with Peltier modules [9]-[11]. 

Biological muscles are supported by a circulatory system that delivers energy, removes 

waste and regulates temperature. Using this as inspiration, a vascular network has been 

used [12]-[21] to deliver/remove heat from embedded SMA wires. These wet SMA 

actuators have improved cooling rates over free air convection and can be modulated 

based on flow rates and fluid temperature. Simulation of a wet SMA actuator using 

electricity to heat and 25 C fluid to cool has produced cycle rates of 4.5 Hz and an 

efficiency (mechanical power out/electric power in for a complete contraction/extension 

cycle) of 0.5%. Thermofluidic heating with 90 C fluid and 25 C fluid to cool, at 5 mL/s, 

has a simulated cycle rate of 2.4 Hz and an efficiency of 0.15% [16]-[19]. These are an 

order of magnitude faster than unforced air convection cooling rates (5.5 s) that the 

manufacturer has documented [8]. Although the efficiency of the electrically heated 

system is ~3 times greater than that of the thermofluidic heated system, the energy 

density of the thermofluidic power source, such as propane, may be 100 times greater 

than the electrical power source (batteries). Therefore, thermofluidic heating may have up 

to 30 times more actuation per unit mass than the electrical system. The focus of this 

paper will be the control of the vascular system to heat and cool the wet SMA actuators 

with fluid. 

The size and weight of the control hardware for the fluidic system is multiple of orders 



 

 

11

larger than the electrical system. To overcome this, an electric network array architecture 

(NAA) has been implemented that shares power transistors amongst the actuators 

requiring attention at any given time [13],[14]. This scalable architecture allows N2 

actuators to be controlled with 2N transistors. In the fluidic domain, scalability is more 

critical because of the size and weight of the valves. NAA has been implemented 

fluidically using a Matrix Vasoconstriction Device (MVD) which controls the hot and 

cold fluid flow through the array [15]. NAA allows each actuator to be controlled 

individually or in certain subarrays simultaneously, but not all combinations are 

controllable. 

 SMA actuators have nonlinear characteristics and are difficult to control; therefore for 

this work they will be treated as binary actuators, completely contracted or extended. To 

achieve a range of desired displacements and forces, SMAs have been bundled together 

in arrays so they can be connected in series and/or parallel [16]-[24].  

This paper will present the development of a controller that maximizes the actuation 

rate of an NxN wet SMA actuator array. The possible MVD control commands are 

described and their influence on the fluid propagation through the system is identified. 

Two methods of identifying the best control command will be defined to maximize the 

actuation rate. Finally, the actuators will be linked mechanically in series and an 

algorithm to identify the most time effective control commands will be presented. 

2.2 Background 

2.2.1 Wet Shape Memory Alloy (SMA) 

SMA is a smart material that can be used to create high force-to-weight ratio actuators. 

The shape memory effect allows these alloys to recover a predefined shape after being 

deformed (strained). This work uses Dynalloy Flexinol© [8], a nickel – titanium (NiTi) 

alloy in straight wire form, which produces a linear actuation when activated. This alloy 

has two crystalline structures that occur at different temperature and stress levels. The 



 

 

12

soft martensite structure occurs below the transformation temperature of approximately 

55 ºC and can be strained to 4-8%. When the wire is heated above 75 ºC, the stronger 

predefined austenite crystal structure is recovered, producing a linear contraction of the 

wire. SMAs can be heated (contracted) very quickly with electricity, but the unforced 

convective cooling (extension) may take multiple orders of magnitude longer than the 

heating process. Controlling the exact temperature of the SMA wire, and therefore the 

strain of the wire, is extremely difficult. Thus for many applications the SMA actuators 

are treated as binary, either completely contracted (1) or extended (0). 

 In order to improve the cooling rate, SMA wires are embedded in compliant vessels 

(Figure 2.1), allowing cold fluid to pass over the wire while maintaining the mechanical 

and electrical connections. The fluid can also be used to convectively heat the wire above 

the transformation temperature.  

2.2.2 Bundling Large Number of Wet SMA Actuators 

Even with the additional mass of the tubing and fluid, the wet SMA actuators still have 

higher force-to-weight ratios than traditional actuators. However, they still have limited 

displacements. To overcome this limited displacement, it has been suggested [22]-[24] 

 

 

Figure 2.1: Wet SMA actuator. An SMA wire is in embedded in a compliant vessel with 
connections that allow for electricity and/or fluid to be used to heat the wire to produce 
contraction. Cold fluid can also be pumped through the vessel to cool the wire, resulting 
in extension.  

SMA WireModular Connector

Fluid
In

Fluid
Out

Compliant Membrane

Electrical Contact



 

 

13

that compact actuators can be bundled together in arrays, where the actuators are 

connected in series/parallel to produce the desired actuation. However, the valves and 

transistors necessary to control the fluid flow and electric current respectively are 

multiple orders heavier and larger than the wet SMA actuators themselves. Network 

Array Architecture (NAA) [11] assumes that on average, only a small percentage of the 

actuators must operate at a given time and that the transistors/valves could be shared by 

multiple actuators, allowing the system to be more scalable. With this architecture, N2 

actuators can be controlled by 2N control elements. NAA (Figure 2.2A) was implemented 

successfully using electricity to resistively heat the SMA actuators. However, the fluidic 

NAA implemented in the Matrix Manifold Valve (MMV) system [13] was unsuccessful, 

demonstrating parasitic effects because of the compliance of the tubing and high fluidic 

resistance of solenoid valves [15]. Figure 2.2B shows the Collocated NAA, a modified 

version of the original NAA, where single throw – multipole valves are arranged 

orthogonally and collocated on the source side of the actuators. This architecture was 

successfully implemented in the Matrix Vasoconstriction Device (MVD) [15]. In order to 

eliminate the fluidic resistance of the solenoid valve, a pneumatic constrictor valve was 

developed that crushes the wet SMA actuator vessel and when released, it does not 

contribute any fluidic resistance to the system. The constrictors were constructed to be 

single throw - multi pole “valves”, which allowed them to be collocated at the source side 

of the system, eliminating alternative paths through the system. A 4x4 MVD, shown in 

Figure 2.3, has been used to control 500 mm long wet SMA actuators that can contract 

and extend at a rate of 1 Hz. Since the MVD only controls the fluid distribution through 

the system, two additional vasoconstrictor valves are added to the system to select 

between the hot and cold water sources. 

 



 

 

Figur
(swit
electr

Figur
array
force
force

re 2.2: Ne
ches/valves)
ric systems, 

re 2.3: Proto
y. This proto
 for each we
 capacity of 

R
ow

 S
w

it
ch

es

A

B

C

Electric

A) NA

resist

capacit

etwork Arr
) to deliver/r
B) Collocate

otype of a 4
type uses on
et SMA actu

f 150 N.  

Colum

1

ass

AA

ance

tance

ray Archite
remove energ
ed NAA for 

4x4 Matrix 
nly hot and 
uator is a 1 k

mn Switches

2 3

sembly

sink

ecture (NA
gy from the 
fluid system

Vasoconstri
cold water t
kg mass han

R
ow

 V
al

ve
s

A

B

C

Hot
Fluid

Co
Flu

Diode

Switch

M
an

if
ol

d

AA) shares 
actuator arr

m. 

iction Devic
to heat and c
nging vertica

 

Column
Valves

123

old
uid

B) Col

Sing
quad p

the contr
ray. A) Stand

ce (MVD) a
cool the SM
ally. The arr

llocated NA

gle throw /
ole switch

1

 
rol hardwar
dard NAA fo

 
nd wet SMA

MAs. The bia
ray has a tota

AA

14

re 
or 

A 
as 
al 



 

 

15

2.2.3 Binary Representation of SMA Actuator Array 

Since the actuators of the array are being treated as binary, the state of the array at any 

given time can be represented by N2 digits or as a single N2 bit binary number. Therefore 

the following 2x2 array, [1 0; 0 1], can be represented by the 4 bit binary number [1001]. 

By using a binary representation of the system, the computational cost of the control 

algorithm can be significantly reduced using bitwise operations. For example, if the state 

of each actuator of a 4x4 array were stored as an integer, it would take 16 individual 

comparisons (operations) of each actuator state. On the other hand, assuming that at least 

a 16 bit processor is being used, the bitwise comparison of the two 16 bit binary numbers 

would take only single math operation. For example, if the origin (starting state) of a 2x2 

array is [1001] and the destination (state) is [0111], the actuators that need to change 

states can be identified by simply taking a bitwise OR of the two states. The result of is 

[1110], identifying that the first three actuators of the array need to change states. 

Additional bitwise algorithms will be discussed later in this paper to identify control 

commands to maximize performance. These bitwise operations are only between the state 

of the array and the control commands that the MVD can produces; this work does not 

implement any fluidic logic relative to fluid flow/pressures. 

2.2.4 Operating the Actuators Mechanically in Series 

NAA provides a scalable hardware solution to deliver/remove thermal energy to/from 

the array of wet SMA actuators, but each actuator can only produce a binary output, 

limiting the applications where it can be implemented. However, if a column of equal 

length actuators were joined mechanically in series, their combined displacement can 

take on N+1 discrete positions between 0 and N (Figure 2.4). Joining a column of 

actuators in series does reduce the number of output possibilities of the entire array to 

N(N+1), but there may be multiple actuator combinations that can produce the desired 

output. If the desired output of an entire column is d (desired actuation) and the number 

of actuators in the column is N, then the number of possible combinations (C) of a single  



 

 

16

 
Figure 2.4: Two states of a 4x4 array of actuators where the columns of actuators are 
connected in series. State 1 has all actuators extended for a total displacement of [0 0 0 0] 
and State 2 has 7 actuators contracted for a displacement of [3 0 2 2]. Note that the 
connections are only mechanically in series; the electric and fluid connections are still 
made across rows and columns according to NAA. 

column is described by: 

!)!(

!

ddN

N
CdN 

  (2.1) 

For N = 4 and d = 2, the possible combinations are: 

 

Accounting for the N columns of the array, the maximum number of possible 

Column 
Displacements

Mechanical
connections

D1

D2

D3

D4

A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

C4

B1C1

B2C2

B3
C3

B4
C4

A1

A2

A3

A4

D1

D2

D3

D4

State 1 State 2

COLD & 
Extended

HOT &
Contracted

0     0    0     0 3     0     2     2



















0

0

1

1



















0

1

0

1



















1

0

0

1



















0

1

1

0



















1

0

1

0



















1

1

0

0



 

 

17

destinations, Dmax, that can produce a 1xN desired displacement command is defined by: 

N

NfloorNfloorN

N
D 











)!2/())!2/((

!
max

 (2.2) 

where floor(x) is a function that results in the largest integer not greater than x.  

For a 4x4 array, where the desired total displacement of each of the columns is 2, each 

column has 6 possible combinations and the array has a total of 64 or 1296 possible states 

resulting in the same desired displacement. Identifying the optimal state of the array 

becomes unmanageable when N is greater than 4, but an algorithm for operating the wet 

actuators in series has been developed based on forecasting how fluid flow will influence 

the system, and it will be presented in the following section. 
 

2.3 Discrete Control Logic 

2.3.1 NAA Discrete Control 

Each valve of the NAA can be operated in saturation and can therefore be represented 

as a binary device that is either open (1) or closed (0). With NAA, N valves are arranged 

into sets of row and column valves. Each set of valves can take on 2N configurations like 

an N bit number. Table 2.1 shows the configurations that a set of 4 rows and column 

switches can be in. When there are zero valves open, 0000, there is no complete circuit 

between the source and the sink, resulting in no energy flow through the array. Therefore 

0000 would not produce any change in the system and leave 2N-1 valid configurations. 

Since the NAA arranges the row and column valves orthogonally to one another, at least 

one row and one column valve must be open in order to complete a circuit between the 

source and sink. Therefore, there are (2N-1)2 discrete configurations of open valves that 

can complete the circuit and deliver/remove energy to various subsections of the array. 

Table 2.2 shows the size and the number of occurrences for similarly size subarrays. The 

NAA subarrays/control commands can also be tabled as N2 bit binary numbers. The  

 



 

 

18

            Table 2.1: Binary number representation of valves (open=1, closed=0). 
Number of  

Closed Valves 
Column Configurations 

0 0000      
1 1000 0100 0010 0001   
2 1100 1010 1001 0110 0101 0010 
3 1110 1101 1011 0111   
4 1111      

 

Table 2.2: Size and number of submatrix control commands of a 4x4 NAA. 

Submatrix 1x1
1x2
2x1

1x3
3x1

1x4
4x1

2x2
2x3
3x2

2x4
4x2

3x3
3x4
4x3

4x4 Total 

Occurrences 16
24
24

16
16

4 
4 

36
24
24

6 
6 

16
4 
4 

1 225

 

fluidic NAA can deliver either hot or cold fluid for a total of 2(2N-1)2 discrete control  

commands that can deliver or remove thermal energy to/from the SMA wires.  

Since the MVD control commands can only deliver or remove thermal energy to/from 

certain subsections of the array, it may take a sequence of control commands to produce 

the required heat transfer, as seen in Figure 2.5. The best solution will be based on 

material explored in the following section. 

2.3.2 Fluidic Resistance / Actuation Rates / Time Constants 

The convective heating and cooling of the SMA wire is a function of the fluid 

temperature along the length of the wire. In order for the fluid surrounding the wire to 

change temperature, the original volume of fluid must be displaced by the new volume of 

fluid, which takes a discrete amount of time based on the volumetric flow rates. Figure 

2.6 shows a schematic of the MVD wet actuator array assembly and an 

equivalent electrical circuit model. Since the actuators are the primary source of fluidic 

resistance and are operating in parallel, a constant pressure source will deliver the most 

effective fluid flow. The manifold resistance is lumped into the actuator resistances. The 

constrictors are shown as single-throw single-pole switches for convenience, but the  



 

 

Figur
hardw
to ach

 

Figur
throw
such 
resist
that o

letter

simul

throu

releas

The

resist

mani

re 2.5: Requ
ware of the M
hieve the req

re 2.6: MVD
w single-pole

that the tu
tance to the 
of each of th

rs and num

ltaneously 

ugh B1 and 

sed. 

e total equiv

tance of the

fold path (R

Requ
Heat Tr

- +

- +
+
- +

uired heat tra
MVD, a seq
quired heat t

D wet SMA
e constrictor
ubing and m
system. The
e actuators. 

mbers refer 

to complet

B2, the row

valent fluidic

e inlet pipin

Ra), divided b

uired
ransfer
- -

- -
+
- -

C

C

C

ansfer proces
quence of thr
transfer proc

A array sche
rs and the M
manifold ar
e fluidic res

to the row

te the circ

w constricto

c resistance 

g (Ri) plus

by the numbe

RReq 

Step 1

C C

C C

C C

C

C

C 1

ss vs. output
ree control c
cess. 

ematic and 
MVD introdu
re the only 
sistance of th

w and colum

cuit. For e

or B and co

(Req) of the 

the lumped

er of actuato

d

R
R a

i 

Step 2

H

H

H

t of MVD. D
commands w

equivalent f
uce no fluid 

component
he manifold

mn valves. 

example, in

olumn const

system can 

d resistance 

ors being driv

Step 3

HH
1

Due to the s
will need to b

 
fluid circuit
resistance t

ts that intro
d is lumped 

Both must 

n order to

trictors 1 an

be defined b

of a single 

ven (d). 

(2.3) 

3

H

He+

Co-

HH

CoC

Ze

1

 
shared contro
be complete

: The single
to the system
oduce fluidi
together wit

be release

o have flow

nd 2 must b

by the fluidi

actuator an

eat

ool

Hot

old

ero

19

ol 
ed 

e-
m, 
ic 
th 

ed 

w 

be 

ic 

nd 



 

 

20

Req decreases as the number of driven actuator increases and therefore the total fluid 

flow rate increases. Because of the multiple connectors used to connect the tubing, the 

values of Ra and Ri were determined experimentally to have a linear relationship between 

pressure and flow rate, with a value of 1.5x1010 N·s/m5 and 5.3x109 N·s/m5 respectively: 

P = QR (2.4) 

where P (N/m2) is pressure, Q (m3/s) is flow rate and R (N·s/m5) is the lumped fluidic 

resistance (tubing and connectors) of the actuator. Therefore with 100 kPa pressure 

source, the flow rate for a single actuator is 5 mL/s. 

Equation (2.5) models (ad) the number of actuations per actuation time of a single 

actuator (τ1) for the MVD array, 























dR

R

R

R

d
a

a

i

a

i

d
1

1

1
1 


 (2.5) 

where τ1 is a function of the actuator dimensions, fluid properties, SMA properties, 

pressure source and inlet resistance.  
 
Figure 2.7A shows how the ratio of Ri to Ra influences the actuation rate of a single  

 
actuator (a1) in the MVD system with respect to a1,0, the actuation rate of a single  
 
actuator where Ri is equal to zero. As the ratio of Ri to Ra decreases, the actuation rate  
 
increases, and the fastest actuation rate occurs when Ri = 0 (the actuator is connected  
 
directly to the pressure source.) Figure 2.7B shows how ad, the actuation rate of the array  
 
with respect to actuation of a single actuator in the array (a1), increases as the number of  
 
driven actuator (d) increases. As d approaches infinity, ad approaches an asymptotic value  
 
of (Ra/Ri+1)/1. If Ri = 0, then ad = d/1 and the actuation time for any number of driven  
 
actuators would remain constant (τ1). For the prototype MVD, the Ri/Ra is 0.35, resulting  
 
in a1 = 1/τ1 and a16 = 3.26/τ1. Since control commands that deliver fluid to larger  
 
subarrays have the higher actuation rates, identifying and controlling the largest 



 

 

21

 

 
Figure 2.7: A) Actuation rate of a single actuator (a1) vs. Ri/Ra. B) Actuation rate of the 
array (ad) vs. number of driven actuators (d). The actuation rate a1 is relative to the 
actuation time (τ1,0) of a single actuator attached to a manifold with zero fluidic 
resistance. The actuation rates ad is relative to the actuation time (τ1) of a single actuator 
in the array with a manifold that has fluidic resistance. 

submatrices will maximizes the actuation rate of the SMA array. Re-examining Figure 

2.5, the proposed solution uses an algorithm of identifying the largest submatrix and then 

working towards the smallest. The following section outlines the algorithm to identify the 

best MVD control commands. 

2.3.3 Control Command Forecasting 

As presented earlier and shown in Figure 2.5, there may not be a complete solution  

using a single control command from the origin to the destination, but a sequence of 

control commands will produce the actuations required to arrive at the destination. To 

identify the sequence of control commands for fastest actuation, a forecasting method has 

been implemented. From any given state, there are only 2(2N-1)2 control commands that 

0 0.1 0.2 0.3 0.4 0.5
0.6

0.7

0.8

0.9

1

R
i
/R

a

   
A

ct
ua

tio
n 

R
at

e 
(a

1) 
  

w
ith

 r
es

pe
ct

 to
 
 1

,0

(A)

 

 

R
i
 / R

a
  = 

0 5 10 15
0

5

10

15

Number of Driven Actuators (d)

 A
ct

ua
tio

n 
R

at
e 

(a
d
) 

w
ith

 r
es

pe
ct

 to
 
 1

(B)



 

 

22

can be applied. Some of these operations will produce zero actuations (complete 

superfluous flow), others will produce a partial actuation, and one may produce the 

complete actuation to the destination. A forecasting method is used to determine what 

would happen if a particular control command were applied to the origin or intermediate 

state. If the complete actuation is not achieved with a single control command, then from 

the conclusions in the previous section, the control command corresponding to the largest 

subarray would be identified in order to maximize the actuation rate. This control 

command would be applied to get to an intermediate state and the process would repeat 

until the destination was achieved. 

Since both the states of the actuators and the control commands can be represented by 

binary numbers, bitwise operations can be used to forecast the potential intermediate 

states of the system that can be achieved using each control command. Three bitwise 

operators are used in the forecasting process: AND, OR, NOT. 

2.3.4 Standard Control Algorithm  

Since the MVD system has a single fluidic inlet, the best control command can only 

provide either hot or cold fluid; therefore both positive and negative heat transfer 

processes must be evaluated and compared to identify the largest control command. 

Figure 2.8 outlines the standard algorithm that identifies valid control commands that 

only deliver fluid to actuators that require their state to change. Any control command 

that would result in any fluid flow that does not produce an actuation is termed 

superfluous and is not valid for this algorithm. For example, if hot fluid were commanded 

to a subarray of actuators, one or more of which were already contracted, some or all of 

the flow would be superfluous, and the command would be invalid for this algorithm. 

Examining the HOT fluid side of the flow chart, the first bitwise AND ensures that there 

is no superfluous flow (valid if all zeros). If there is no superfluous flow, the second 

bitwise AND determines if the flow will move the system towards the destination (valid  



 

 

23

 
Figure 2.8: Standard control algorithm for MVD. This algorithm uses bitwise operations 
to identify the largest control command without superfluous flow that drives the array 
toward the destination. The control command submatrix list is sorted in a descending 
order, so that the algorithm can stop once a valid control command is found. This results 
in the fastest actuation rate. 

if answer equals MVD submatrix(i)). If the forecasted state is not closer to the 

destination, then the algorithm iterates and another control command is tested. For all the 

search algorithms, the MVD submatrices have been presorted from the largest to the 

smallest, therefore once a valid control command has been identified, the control 

command is guaranteed to have the fastest actuation rate.  

However, there may be other control commands of similar size that are also valid and 

may be preferred. In Figure 2.9, there are two solutions presented that produce the 

required heat transfer process. Both solutions have identified a 2x2 heating control  



 

 

24

 
Figure 2.9: Secondary sum squared selection process for submatrices of similar size. Both 
control commands A & B have the same actuation rate, however the remaining heat 
transfer process for B can be achieved faster than for A, because of the larger remaining 
subarray with higher flow rates. 

command as the first command of the solution. However, the total actuation time for A 

takes 0.73τ1 longer than solution B. To identify the control command that will minimize  

the complete actuation sequence, a secondary selection process needs to be completed for 

each step when multiple solutions of similar size are found (1x4 vs. 2x2). A forecasted 

error (remaining required heat transfer processes) is simulated by applying the valid 

solution to the required heat transfer process. From this forecasted error, a weight is 

calculated by summing the rows and columns individually, then squaring these values 

and adding them together for a total weight. By selecting the solution with the maximum 

total sum squared weight, the contracted actuators and extended actuators will be grouped 

into larger subarrays. These larger subarrays will allow faster control commands to be 

identified as the system progresses to the destination. Solution B has the largest sum 

squared total weight and the option for a 1x3 control command in the remaining steps, 

while solution A is limited to 1x2 or 2x1 control commands in the remaining steps. If 

both positive and negative heat transfer is required and two control commands of the 

Desired
Heat Transfer

+ -
+ -
+
+

+ +
+

+
+

Step a
Largest 

Heat Solution

Remaining
Heating
Steps

B

A a
a

a a
a

a
a

d
b
b
d

b b
c

c

a
a

a a
a
1 a

a
b

b
b
b

b b
c

c

a
b
c
d

2x2
1x2
1x1
1x1

SizeStep

1.78
1.26
1.00
1.00

Time
(τ1)

5.04

a
b
c

2x2
1x3

SizeStep 

1.78
1.53

4.31

2
1
0
1

2  1   1  0  

4
1
0
1

4  1   1  0 6
6

12

sumsum2

sum
sum2

30

0  1  3  0

0
1
2
1

0
1
2
1

10
6

160  1 9  0

sumsum2

sum
sum2

+
+
+
+

+ +
+

+

Heating Secondary Sum 
Squared Selection
(Forecasted Error)

Time
(τ1)

Complete 
Solution Time

1x1 1.00

+
+
+
+

+ +
+

+

Heat step aa
Heat step bb

Legend

c Heat step c
d Heat step d

Heat +

Cool-



 

 

25

similar size are identified, then the sum squared weight is calculated for both the positive 

and negative heat transfer processes independently and again the control command with 

the largest summed squared value is selected. 

The HOT and COLD fluid forecasting of each control command is done 

simultaneously with a slight variation to the COLD forecast. The NOT of the 

origin/intermediate state is taken to identify the actuators that are extended. For example, 

if the system is represented by [1100], the first two actuators are contracted. By taking 

the NOT of the number, [0011], the last two actuators can be identified as extended. 

2.3.5 Superfluous Control Algorithm (SCA) 

Superfluous fluid flow to a single actuator results in no actuation, and a waste of 

thermal energy. However, when the actuator is part of an array, certain control commands 

would result in a combination of superfluous and nonsuperfluous flows. In these cases, 

superfluous flow can be tolerated (and even beneficial) because it allows for a larger 

subarray to be controlled, increasing the total flow rate and improving the average 

actuation rate. The Superfluous Control Algorithm (SCA), Figure 2.10, identifies control 

commands that address larger subarrays, and these control commands will on average 

have higher actuation rates than the standard method. Examples A and B in Figure 2.11 

shows how superfluous flow would involve fewer steps and the task is completed faster 

than the non-superfluous actuation of the standard algorithm. Example C cannot use 

superfluous flow, because the first actuator would be heated and result in undesired 

actuation and the SCA would revert to the standard control algorithm. Simulation of both 

algorithms will be examined in the following section. 

2.3.6 Series Algorithm  

When a row of actuators are joined mechanically in series, the reference command for  

the system will be a 1xN array specifying the desired total displacement of each column 

of actuators. Since the number of combinations that will produce the desired 



 

 

26

   

 
Figure 2.10: Superfluous Control Algorithm (SCA). This algorithm uses bitwise 
operations to identify the largest control command that drives the array toward the 
destination. This algorithm will allow superfluous flow, which is faster but uses more 
thermal energy. The control command submatrix list is sorted in a descending order, so 
that the algorithm can stop once a valid control command is found.   



 

 

27

 
Figure 2.11: Comparison of standard and superfluous control algorithms for the MVD. 
Examples A & B show examples where superfluous flow results in faster actuation times. 
Example C shows a case where superfluous flow is not valid because it would result in 
the upper left actuator changing to an undesired state.  

displacements may be very large, it is not feasible to test all of them. Unlike operating the 

actuators individually, where both origin and destination are known, only the total 

displacement of each column is known. For example, the column may have a desired 

displacement equal to 2; any combinations of contracted actuators, (A1, A2, A3 and A4) 

that add up to a displacement of 2 is a valid destination. Figure 2.12 will be used to 

visually work through an example that consists of 2 columns with 4 actuators each. The 

columns have a current displacement of {1 1} and it is desired to transition to a 

displacement of {3 3}. There are three combinations of control commands for each 

column where hot water is driven across the actuators that will produce the desired 

displacements. However, if a combination of commands a & d were to be applied, it 

would take at least a sequence of two 2x1 control commands to accomplish this task 

because they cannot be performed simultaneously. For this example, there are 9 different 

combinations, 3(column 1) x 3(column 2), that will produce the desired displacement.  

However, all but the combination c & f require a sequence of control commands. If c & f 

are used, it would take a single 2x2 control command to produce the desired 

displacements. These combinations can be used to generate possible destinations for the  

Time

Time

Time

1 0
0 0

1 1
1 1

0 1
0 0

H H
H

C +
C

H C C
C C

H

0 0
0 0

0 1
1 1

H H H
H H

Current Desired Step 1 Step 2 Step 3
Standard

1 1.3 1.8 

H H
H H

Step 1 Step 2Total TotalExample 

A

Superfluous

2.3  1.8 

1 0
0 1

1 1  1.8 

B

1  3  1  2.8 

1 1.3 
H HC

2.3 

Contracted 1 Extended 0State Hot H Cold C Zero Flow



 

 

28

 
Figure 2.12 Optimizing the control algorithm for actuator connected in series. A 
combination/sequence of CMD options will transition the system from the current 
displacement to the desired displacement. Only options c & f can be done simultaneously 
in a single control command. 

array, and then the standard or the superfluous control algorithms can be used to 

determine an optimal sequence of commands. This method becomes unmanageable 

because each combination would need to be tested against all of the possible control 

commands. 
 
 To overcome the large number of combinations for series operation, a subset of control  
 
commands can be identified and used to minimize the computational cost of the  
 
algorithm. Instead of identifying all of the control commands that can produce the desired  
 
displacements and their associated operational cost, a method of forecasting possible  
 
destinations will be used. The array of actuators can only be changed by applying one of  
 
2(2N-1)2 control commands. Therefore, by forecasting the response of the array to all of  
 
the control commands, the intermediate states of the array can be determined. From these  
 
intermediate states, the intermediate displacement can be calculated. The control  
 
command that results in the smallest total displacement error is the optimal control  
 
command, and the forecasting process is repeated until the desired displacement is  
 
achieved. Figure 2.13 shows how forecasting works with the system from Figure 2.12.  
 
Five of the possible MVD control commands are shown, along with the forecasted state 

Column 1
CMD Options

H
H

H

H

a b c

H

H

H

H
H
H

Column 2
CMD Options

d e fCurrent
State
1 0
0 1
0 0
0 0

Combination
a & f

H
H

a

H
H

d

Combination
c & f

H
H

f

H
H

c

Current
Displacement

1     1

Desired
Displacement

3     3

Contracted1

Extended0

State

Hot

Cold

Zero

H

C

Flow
H
H



 

 

29

 

 
Figure 2.13: Forecasting possible destinations to optimize actuation rates and minimize 
search algorithm. The forecasted state is the predicted state of the array when the control 
commands are applied to the current state. The control command resulting in the 
forecasted state with the smallest total error is the one that will maximize the 
performance of the array.  

of the array if each command were applied. CMD A produces zero actuation and the error 

to desired destination is unchanged, but the remaining four control commands result in 

actuation and reduce the error to the desired displacement. CMD E produces a complete 

solution and achieves the desired displacements. This algorithm uses bitwise operations 

and a solution can be found with at most 2N iterations.  

Multiple MVD control commands may advance the system towards the desired 

displacement by the same amount, and like the case presented in Figure 2.9, one of the 

control commands may result in a preferred forecasted state. However, unlike the 

previous case where the exact required heat transfer process was known, there may be 

multiple solutions that result in the desired displacement. Instead of using the heat 

transfer processes the intermediate state of the array will be used to identify the preferred 

state. Figure 2.14 shows the origin, current displacements and the desired displacements. 

From this information, the algorithm can identity two 2x2 hot MVD control commands  

H H

CMD B CMD C CMD D 

MVD Control Commands
CMD E

Contracted1

Extended0

HotH

ColdC

Zero

State

H H H H H

H H

1 0

1 1

1 0

1 1

1 0

0 1

Forecasted State

0 0

0 0

1 0

0 0

1 1

0 0

1 0

0 1

1 1

1 1

2     1 3     1 2     2
Forecasted Column Displacement

3     3

3 2 2
Total Error

0

Current
Displacement

1 0

0 1

Current
State

0 0

0 0

1     1

Desired
Displacement

3     3

H

CMD A

1 0

0 1

0 0

0 0

1     1

4

Legend

Flow



 

 

30

 
Figure 2.14: Secondary sum squared selection process for control commands of similar 
size. Both CMD A & B are the same size, but the destination (intermediate) state of B 
allows for larger control commands to be completed from this new intermediate state, 
which may result in faster actuation from this intermediate state.  

that can transition the array towards the desired displacements the fastest. To compare 

these two intermediate states and identify a preferred one, the sum of each row and 

column are calculated and then squared. These values are then summed for a total system 

weighting for each possible intermediate state. The maximum sum squared value 

identifies the preferred destination. Although destination B has only a slightly higher 

weighting (51) than A (44), the contracted and extended actuators of B are arranged in 

larger subarrays and this allows larger control commands to be applied from this state.  

This sum squared weighting works well when comparing multiple hot or multiple cold 

control commands, but it will always select the hot command when comparing two 

similar sized hot and cold commands. To properly identify the best intermediate state, the 

sum squared weighting of both the intermediated state and the NOT of the intermediate 

state must be used to identify the optimal control command as seen in Figure 2.15. In this 

example, command C would be preferred because it allows either of the actuators on the 

right side of the array to be heated to achieve the desired displacement.  

 

Current

1 1
0 0
1 0
0 0

0 0
1 1
0 0
0 0

Desired
Displacement

3   2   4   3

CMD A

H
H

H
H

CMD B

H H

H H

Destination A

Destination B

2

2

3

2

2

4

1

2

3    1    2    3  

4

16

1

4

4

4

9

4

9    1    4    9 23
21
44

sum sum2

sum sum2

sum
sum2

30

1   1    4    3
27

25
521   1   16   9

sum
sum2

1 1
0 0
1 1
0 1

0 0
1 1
1
1

0
0

1 1
1 1
1 0
1 1

0 0
1 1
0
0

0
0

Size of 
CMDs
from A

2x2
3x1
1x3

3x1
1x2
2x1

3x2
4x1
1x4

3x2
1x3

HOT COLD

HOT COLD

Size of 
CMDs
from B

Error

2   1   2   2



 

 

31

 
 

 
Figure 2.15: Evaluating similar hot and cold operations. If only the forecasted state with 
the largest sum squared value is used, the hot control command would always be 
preferred. By including the NOT of the forecasted state, CMD C can be identified as the 
preferred control command, because it offers more options from the forecasted 
(intermediate) state.   

2.4 Simulations 

 To examine the performance of the MVD control algorithms, randomly generated NxN 

desired actuations are used as reference commands to the algorithm, which then 

determines the control commands that will maximize the actuation rate. Since the MVD 

may not be able to produce the complete NxN desired actuation in a single step, two 

methods of managing the reference commands will be used. 1) For each reference 

command, the system will be allowed to apply a sequence of control commands until the 

desired actuation is complete. A new reference command will be not be generated until 

the previous desired actuation is complete. 2) Reference commands will be generated on 

regular time intervals, regardless of whether the previous desired actuation is complete or 

not. A queue will be used to store the desired actuations (of individual actuators) that are 

not completed prior to the next interval. The algorithm examines all of the desired 

actuations in the queue in order to identify a control command that maximizes actuation 

Contracted1 Extended0State HotH ColdC ZeroFlow

Desired
Displacement

0   1

CMD B

H

NOT Forecast B

6

Forecast B

1 1
0 0

6

0 0
1 1

12+ =

Current

1 0
0 0

CMD A

H
H

4

1 0
0 1

4

0 1
1 0

8+ =

NOT Forecast AForecast A

C

CMD C

160

Forecast C

0 0
0 0

1 1
1 1 16+ =

NOT Forecast C



 

 

32

rates. The queue does not place preference on when the desired actuations were issued. 

The 4x4 prototype actuator array will be the basis for simulation, unless noted otherwise.  

To examine the maximum theoretical actuation rate, ad, the second method will be 

used. An NxN desired actuation will be added to the queue on a regular interval of τ1, the 

time for a single actuator in MVD system to be activated individually. The simulation 

will vary the average number of actuators changing states per reference command.  

Figure 2.16 shows the simulated response of the prototype MVD system, using the 

standard algorithm. When the average number of actuators changing states-per-unit time 

(τ1) is 2.8 or 3.0, the average number of reference commands added to the queue is equal 

to the number of control commands sent to the MVD, therefore the system is considered 

stable. At a value of 3.2, the system appears to be marginally stable, having regions of 

slow increase and decrease in the number of commands in the queue. When the number 

of reference commands per unit time (τ1) averages 3.4, the number of commands in the 

queue continues to increase and this is defined as unstable. This does match up well with 

the maximum theoretical value of ad, 3.27 (a16/a1 = 2.42/0.74). The large number of 

 

   
Figure 2.16: Number of Reference Commands in Queue vs. Time (τ1). The numbers on 
right hand side of the graph are the average number of actuators being driven per 
reference command occurring every τ1, ad. When the number of reference commands 
remains constant, the actuator array is able meet the desired performance. 

0 0.5 1 1.5 2

x 10
4

0

1000

2000

3000

4000

5000

6000

2.8
3.0

3.2

3.4

Time(1
)

N
um

be
r 

of
 R

ef
er

en
ce

 C
om

m
an

ds
 in

 Q
ue

ue



 

 

33

simulations in Figures 2.16, as well as 2.17 and 2.18, are used to validate stability trends. 

2.17 shows how varying size of the MVD affects the response of the system. As the size 

of the array increases, there is an improvement of the performance. This is due to the 

increase in the number of possible MVD control commands with larger ad and the 

increase in fluid flow rate for control commands that address larger subarrays.  

This simulation was also used to compare the standard and superfluous control  

algorithms. Figure 2.18 shows that the standard algorithm is shown to be marginally  

stable at 3.2 desired actuations per unit time, where the performance of the SCA is stable 

and has completed 1766 more control commands, a 2.8% increase in actuation rate. At 

3.4 reference commands per unit time, the SCA has completed 1920 more reference 

commands than the standard method, for a 6.6% increase in actuation rate. The series 

algorithm is used in conjunction with the standard algorithm and the SCA to identify a 

 

 

Figure 2.17: Comparing the system response to varying size of arrays. The numbers on 
right hand side of the graphs are the average number of actuators being driven per 
reference command occurring every τ1 (ad). As the size of the array increases, ad also 
increases because of the larger number and size of the subarrays that the MVD can 
produce. 

0 2500 5000
0

1000

2000

3

3.2

3.4

3x3

0 2500 5000
0

1000

2000

3

3.2

3.44x4

0 2500 5000
0

1000

2000

3

3.2

3.45x5

0 2500 5000
0

1000

2000

3

3.2

3.4
6x6

N
um

be
r 

of
 R

ef
er

en
ce

 C
om

m
an

d 
in

 Q
ue

ue

Time(1)



 

 

34

 
Figure 2.18: System response to A) standard control algorithm B) superfluous control 
algorithm). The numbers on the right hand side of the graphs are the average number of 
actuators being driven per reference command (occurring every τ1), ad. The superfluous 
control algorithm results in higher actuation rates, but also uses more net thermal energy 
per actuation. 

destination with the desired displacement, and therefore has similar results to these 

simulations. Figure 2.19 shows how the secondary sum squared selection process 

improves the performance of the system. Subplots A-C show the control commands to 

three reference commands using the maximum (best) and minimum (worst) sum squared 

values. The optimal solution eliminates at least 1 control command from each of these 

sequences. The optimal control commands are 14%, 12% and 33% faster than the worst 

solution, respectively. However, in about 87% of cases there is only a single solution to 

the reference command. Figure 2.19D shows 7 out of 50 control commands (marked by 

the black arrow heads) that can be optimized, which results in a 2% decrease in total 

actuation times for a 4x4 array. 

2.5 Conclusions 

This paper presents methods for controlling an array of wet SMA actuators utilizing a 

scalable Matrix Vasoconstriction Device (MVD) to control hot and cold fluid flow to N2 

wet SMA actuators with only 2N+1 control valves. An algorithm was developed to 

search through the 2(2N-1)2 possible control commands to identify those which maximize 

the actuation rate. Furthermore, a Superfluous Control Algorithm (SCA) was developed, 

0 1 2

x 10
4

0

2000

4000

3.2

3.3

                                                                  Time(1
)

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

0 1 2

x 10
4

0

2000

4000

3.2
3.3

                                                                                           

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

N
um

be
r 

of
 R

ef
er

en
ce

 C
om

m
an

d 
in

 Q
ue

ue
  

(A)                                              (B)



 

 

35

 
Figure 2.19: Secondary sum squared selection. A-C) shows the best (max) and worst 
(min) complete solution for three different origin-destination sets. The first control 
command for both the best and worst control commands are the same size, but at least 
one of the proceeding best control commands is larger than the worst control commands. 
Therefore, by using the best control command, the actuation time can be minimized. D) 
shows how often secondary sum squared selection occurs.  

allowing for an even faster actuation rate by identifying control commands that deliver 

fluid (thermal energy) to larger subarray resulting in a faster actuation rate. However, 

these larger subarrays will have superfluous fluid flow across at least one of the SMA 

actuators that is already in the desired state. Therefore the SCA improves the average 

actuation rate of the entire array at the expense of reducing the average energy efficiency 

of the entire array.  Using the SCA with array sizes up to 6x6, the MVD can continuously 

operate with an actuation rate of 3.2 times that of a single actuator.  

Finally, the algorithms were adapted for the case in which a whole column of actuators 

are connected mechanically in series to allow for incremental actuation of a robotic joint. 

In this case, there are potentially a large number of destinations that would all result in 

the desired displacement. The algorithms were modified to use the intermediate state as a 

method of forecasting.  For a 5x5 array (N=5), there could be up to 105, unique 

destinations that could result in the same displacement for actuators connected in series. 

1 2 3 4 5
0

5

Steps
1 2 3 4 5

0

5

Steps
1 2 3 4 5

0

5

Steps

0 50 100 150 200

0

5

10

Steps

Control Cmd 1-50

 

 
N

um
be

r 
of

 D
riv

en
 A

ct
ua

to
rs

Best (max) Worst (min)

A) Control Seq. 16            B) Control Seq. 17            C) Control Seq. 628

D) Control Commands for 50 Origin‐Destination Sets



 

 

36

Rather than working backward from the 105 possible destinations, the forecasting method 

works forward from the 2(22-1)2 = 1922 control commands to optimize the actuation rate. 

Future work will seek to frame the control of the wet actuator array as an optimal 

control problem where a weighted cost function of time and energy will be used to 

manage both electrical and thermofluidic inputs to the wet SMA actuators. If 

thermofluidic heating is used, chemical energy sources, such as propane, can be used to 

heat the fluid, and offer a greater number of actuations per unit mass of energy stored 

than an electrical energy source [16]. However electricity can be used to heat the SMA 

wire in a fraction of the time required for fluidic heating. The speed and efficiency of 

electric vs. fluidic activation are quantitatively characterized in [18] through dynamic 

modeling. Therefore [21] has implemented fluidic and electric control networks 

concurrently, allowing the controller to optimize the performance of the array based on a 

weighted combination of time and energy costs. Performance can also be improved by 

delivering electricity to one subarray while concurrently delivering fluid to another, 

which requires additional intelligent algorithms to coordinate. While this work has been 

motivated by research with SMA actuator arrays, it is anticipated that these control 

algorithms could also be applied to a more general class of actuators arrays with 

networked inputs. 

2.6 References 

[1] M. Hirose and K. Ogawa, "Honda humanoid robots development," Philosophical 
Transactions of the Royal Society London, Series A (Mathematical, Physical and 
Engineering Sciences), vol. 365, pp. 11-19, 2007. 

[2] T. Ishida, Y. Kuroki, J. Yamaguchi, M. Fujita, and T. T. Doi, "Motion 
entertainment by a small humanoid robot based on OPEN-R," in Proc. IEEE/RSJ 
International Conference on Intelligent Robots and Systems, pp. 1079-1086, 2001. 

[3] L. Sherwood, Human physiology 7th ed., Belmont, CA, Cengage Learning, 2008. 



 

 

37

[4] K. Kiguchi, R. Esaki, and T. Toshio, “Development of a wearable exoskeleton for 
daily forearm motion assist,” Advanced Robotics, vol. 19, issue 7, pp. 751-771, 
2005. 

[5] M. Samer, Y Amirat, and H. Rifai, "Lower-Limb Movement Assistance through 
Wearable Robots: State of the Art and Challenges”, Advanced Robotics, vol. 26, 
issue 1/2, pp.1-22, 2012.  

[6] L. Sangyoon and G. Kim, “Effects of haptic feedback, stereoscopy, and image 
resolution on performance and presence in remote navigation,” International 
Journal of Human-Computer Studies, vol. 66, issue 10, pp 701-717, 2008. 

[7] I. Hunter and S. Lafontaine, "A comparison of muscle with artificial actuators," in 
Proc. IEEE Solid-State Sensors and Actuator Workshop, Hilton Head, SC, USA, 
pp. 175-185, 1992. 

[8] "Technical Characteristics of Flexinol Actuator Wires," Dynalloy Inc., Available: 
http://www.dynalloy.com/pdfs/TCF1140.pdf 

[9] M. Nakatani, H. Kajimoto, K. Vlack, D. Sekiguchi, N. Kawakami, and S. Tachi, 
"Pop up!: 3D form display with coil-type shape memory alloy," Journal of the 
Institute of Image Information and Television Engineers, vol. 60, pp. 183-191, 
2006. 

[10] A. Shahin, P. Meckl, J. Jones, and M. Thrasher, "Enhanced cooling of shape 
memory alloy wires using semiconductor 'heat pump' modules," Journal of 
Intelligent Material Systems and Structures, vol. 5, pp. 95-104, 1994. 

[11] B. Selden, K. Cho, and H. Asada, "Segmented binary control of shape memory 
alloy actuator systems using the peltier effect," in Proc. IEEE International 
Conference on Robotics and Automation, New Orleans, LA, USA, pp. 4931-4936, 
2004. 

[12] S. Mascaro and H. Asada, "Wet shape memory alloy actuators for active vasculated 
robotic flesh," in Proc. IEEE International Conference on Robotics and 
Automation, Taipei, Taiwan, pp. 282-287, 2003. 

[13] S. Mascaro and H. Asada, "Vast DOF wet shape memory alloy actuators using 
matrix manifold and valve system," in Proc. ASME International Mechanical 
Engineering Congress, Washington, DC, USA, pp. 1992-1997, 2003. 

[14] S. Mascaro, K. Cho, and H. Asada, "Design and control of vast DOF wet SMA 
array actuators," in Proc. of the IEEE International Conference on Intelligent 
Robots and Systems, Las Vegas, NV, USA, pp. 577-582, 2003. 

[15] L. Flemming and S. Mascaro, "Wet SMA actuator array with matrix 
vasoconstriction device," in Proc. ASME International Mechanical Engineering 
Congress and Exposition, Orlando, FL, USA, pp. 1751-1758, 2005. 



 

 

38

[16] L. Flemming and S. Mascaro, "Control of a scalable matrix vasoconstrictor device 
for wet actuator arrays," in Proc. IEEE International Conference on Robotics and 
Automation, Rome, Italy, pp. 638-653, 2007. 

[17] J. Ertel and S. Mascaro, “Thermomechanical modeling of a wet shape memory 
alloy actuator,” in Proc. ASME International Mechanical Engineering Congress and 
Exposition, Chicago, IL, USA, pp. 1317-1324, 2006. 

[18] L. Flemming and S. Mascaro, "Analysis of hybrid electric/thermofluidic control for 
wet shape memory alloy actuators," in Proc. ASME Dynamic Systems and Controls, 
Hollywood, CA, USA, pp. 1041-1047, 2009. 

[19] J. Ertel and S. Mascaro, “Dynamic thermomechanical modeling of a wet shape 
memory alloy actuator,” Transactions of the ASME Journal of Dynamic Systems, 
Measurements and Control, vol. 132, no. 4, pp. 1-9, 2010.  

[20] L. Flemming, D. Johnson and S. Mascaro, “Optimal control of multi-input SMA 
actuator arrays using graph theory,” in Proc. IEEE International Conference on 
Robotics and Automation, Shanghai, China, pp. 780-785, 2011.  

[21] L. Flemming, D. Johnson and S. Mascaro, “Optimal control of multi-input SMA 
actuator arrays using graph theory: expanding wavefront & simultaneous 
operation,” in Proc. IEEE/RSJ International Conference on Robots and Systems, 
San Francisco, CA, USA, pp. 780-785, 2011. 

[22] R. Mukherjee, T. Christian, and R. Thiel, "An actuation system for the control of 
multiple shape memory alloy actuators," Sensors and Actuators A: Physical, vol. 
55, pp. 367-382 1996. 

[23] K. De Laurentis, A. Fisch, J. Nikitczuk, and C. Mavroidis, "Optimal design of 
shape memory alloy wire bundle actuators," in Proc. IEEE International 
Conference on Robotics and Automation, Washington, DC, USA, pp. 2363-2368, 
2002. 

[24] C. Lee and C. Mavroidis, "Analytical dynamic model and experimental robust and 
optimal control of shape-memory-alloy bundle actuators," in Proc. ASME 
International Mechanical Engineering Congress and Exposition, New Orleans, LA, 
USA, pp. 491-498, 2002. 

 



 
 

CHAPTER 3 

ANALYSIS OF HYBRID ELECTRIC / THERMOFLUIDIC INPUTS 

FOR WET SHAPE MEMORY ALLOY ACTUATORS 

3.1 Abstract 

A wet Shape Memory Alloy (SMA) actuator is characterized by an SMA wire 

embedded within a compliant fluid-filled tube. Heating and cooling of the SMA wire 

produces a linear contraction and extension of the wire. Thermal energy can be 

transferred to and from the wire using combinations of resistive heating and free/forced 

convection. This paper analyzes the speed and efficiency of a simulated wet SMA 

actuator using a variety of control strategies involving different combinations of electrical 

and thermofluidic inputs. A computational fluid dynamics (CFD) model is used in 

conjunction with a temperature-strain model of the SMA wire to simulate the thermal 

response of the wire and compute strains, contraction/extension times and efficiency. The 

simulations produce cycle rates of up to 5 Hz for electrical heating and fluidic cooling, 

and up to 2 Hz for fluidic heating and cooling. The simulated results demonstrate 

efficiencies up to 0.5% for electric heating and up to 0.2% for fluidic heating. Using both 

electric and fluidic inputs concurrently improves the speed and efficiency of the actuator 

and allows for the actuator to remain contracted without continually delivering energy to 

the actuator, because of the thermal capacitance of the hot fluid. The characterized speeds 

and efficiencies are key requirements for implementing broader research efforts involving 

the intelligent control of electric and thermofluidic networks to optimize the speed and 

efficiency of wet actuator arrays. 



40 
 

3.2 Introduction 

In order for robots and exoskeletons to be able to mimic humans and other creatures, 

they must have similar degrees of freedom (DOF) allowing them to produce the desired 

range of motion. These DOF must also be manipulated with a wide range of forces to 

accomplish specific tasks. Many of the current humanoid robots such as the Honda 

Asimo [1] and the Sony SDR-X [2] operate with about 30 DOF, which is still an order of 

magnitude less than that of the human body [3]. Heavy electric motors, gears and 

batteries make these robots significantly heavier than a human of comparable size and 

when operating at the fastest rates, these robots have only enough power to operate for 

about 30 minutes. To emulate human motion and strength/power capabilities, these 

robots will need to incorporate hundreds or even thousands of high power-to-weight ratio 

actuators. Possible solutions include Shape Memory Alloy (SMA) wires [4] and electro-

active polymers [5], which have been described as artificial muscles because they are 

able to contract and extend when activated. SMA wires contract and extend as their 

crystalline structure changes due to temperature. They are capable of strengths 800 times 

stronger than human muscle (200 MPa) and strain between 4 and 8% [4]. Resistive 

heating can contract the wire extremely fast, but unforced convective cooling results in 

slow extension. The cooling rate can be improved by a factor 100 if the SMA actuator is 

operated in a water (with glycol) bath [6]. However, this adds mass to the actuator and 

requires additional electrical energy to heat the wire, decreasing the efficiency of the 

actuator. Heat conduction with Peltier modules has also resulted in improved bandwidths 

[7],[8], but is also inefficient. Fluidic heating and cooling has produced 1 Hz cycle rate 

and has a theoretical efficiency of 3% [9].  

Biological muscles are supported by a circulatory system that delivers energy, removes 

waste and regulates temperature. Using this as inspiration, robotic vascular networks 

[10]-[19] have been implemented to deliver/remove heat from SMA actuators. The 

thermofluidic heating of these wet SMA actuators has been modeled using lumped 



41 
 

parameters [15],[17]. This model does not account for two major factors. First, the 

developing flow is not modeled as the fluid is cycled on and off. Second, the lumped 

parameters do account for the boundary layers that develop in the fluid flow. 

This paper will examine the performance of a wet SMA actuator that is operated by 

electric and fluidic inputs. The unsteady heat transfer process will be modeled using 

computational fluid dynamics (CFD). The simulated temperatures of the SMA wire are 

then used as inputs to a thermomechanical model to simulate the mechanical actuation. 

Electric current (heat generation), flow rates, and fluid temperature will be varied to 

examine their effects on the contraction/extension times and energy efficiency. 

3.3 Background 

3.3.1 Wet SMA Actuators  

SMAs are smart materials that can be implemented as high force-to-weight ratio 

actuators. The shape memory effect allows these alloys to recover a predefined shape 

(contraction) after being deformed (strained/extension). This research uses Dynalloy 

Flexinol® [6], a nickel – titanium (NiTi) alloy, in straight wire form. When the SMA is 

below its transformation temperature (<70C), it can be strained by 4-5% with external 

stress of less than 70 kPa. As the SMA is heated above its transformation, it will recover 

its predefined shape and can exert an external force per cross sectional area of wire of 

greater than 175kPa. SMAs can be heated very quickly with electricity to produce the 

contraction, leading to very high power-densities for contraction alone. However, the 

cooling rate is a function of heat transfer coefficients and may be multiple orders of 

magnitude slower than the heating process. Thus the power density is typically much 

smaller when the cooling time is taken into consideration. Another challenge in actuating 

SMAs is that they are nonlinear. Controlling the exact the strain of the SMA wire is 

extremely difficult; thus for many applications the controlled state of the wire is treated 

as binary, either completely contracted (1) or extended (0). With this constraint on the 



42 
 

operation of the actuators, the primary concern is to deliver / remove enough thermal 

energy to achieve the complete transition from contracted to extend or vice versa.  

Water baths have been used to improve the cooling rates of SMAs; however this 

increases the overall mass of the system and requires more heat to contract the SMA [20]. 

Another solution to this problem is the wet SMA actuator (Figure 3.1), where a SMA 

wire is embedded in a compliant fluid-filled vessel [10]. This assembly improves the 

cooling rates while minimizing the volume of the water. Additionally, hot fluid can be 

used to contract the actuator instead of or in addition to electricity. While many of the 

technical challenges in implementing both electric and fluidic controls have been 

overcome, there has not yet been any thorough characterization of wet SMA actuators 

when various ranges and combinations of electric and thermofluidic inputs are used.  

For the simulations in this paper, the wet SMA actuator is modeled as 254 mm long 

and is constructed of 0.254 mm diameter Flexinol® wire and 1.6 mm ID x 3.2 mm OD 

silicone tubing. The actuator is arranged vertically with a 0.45 kg mass hanging from it as 

a constant bias force (4.14 N) to stretch out the wire during the cooling process. The 

remaining material properties are presented in Table 3.1. 

 

 
Figure 3.1: Wet SMA actuator – an SMA wire is in embedded in a compliant vessel with 
connections that allow for electricity and fluid to be used to heat the wire to produce 
contraction. Cold fluid can also be pumped through the vessel to cool the wire, resulting 
in extension.  

SMA WireModular Connector

Fluid
In

Fluid
Out

Compliant Membrane

Electrical Contact



43 
 

Table 3.1: Wet SMA actuator characteristics 

Property Wire Fluid Tube Air Units 
Outer Diameter 0.254 1.588 3.175  mm 
Inner Diameter  0.254 1.588 3.175 mm 

Length 254 254 254  mm 
Density 6450 988 1400 1.225 kg/m3 

Specific Heat 837 4182 692 1006 J/kg-K 
Thermal 

Conductivity 
17.99 0.6 1.26 0.0242 J 

Flexinol® wires properties from [6], Silicone tube properties from Matweb.com [21], 
fluid (water) and air default properties from Fluent 6.3® [22]. 

3.4 Wet SMA Actuator Modeling 

3.4.1 Computational Fluid Dynamic (CFD) Modeling 

The heating/cooling simulations of the wet SMA actuator have been done in 

Fluent®6.3 [22], a computational fluid dynamics (CFD) package by ANSYS. The ideal 

wet SMA actuator is a concentric annulus that is axi-symmetric along the center of wire. 

Therefore a two-dimensional axi-symmetric mesh was used, as shown in Figure 3.2, 

which greatly reduces the number of elements in the CFD model. The model was axially 

(longitudinally) divided into 1000 equal segments of 0.254 mm each. The radial direction 

was divided into 30 segments, with a finer mesh along the surfaces of the materials to 

  

 
Figure 3.2: A section of the mesh of wet SMA actuator used in Fluent 6.3©. The axial 
(longitudinal) dimension is 254 mm and was divided into 1000 segments. The radial 
dimensions, wire, fluid and tube, were divided into 30 segments, with a finer mesh along 
the boundary between materials.  

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

                               Axial Dimension(mm)

R
ad

ia
l D

im
en

si
on

(m
m

)

0 0.5
0

0.05

0.1

0.15

0.2

0.25

Close up

Wire/Fluid boundary

Axis of Symmetry

Tube

Wire

Wire
Fluid

Fluid



44 
 

allow for detailed information about the thermal and fluidic boundary layers. With the 

lowest fluid flow rate of 2 mL/s, the Reynolds (Re) number is 1780, while all other larger 

flow rates will have a greater Re value. Therefore, in Fluent the k-epsilon viscous 

modeling option was turned on to model turbulent flow (Re > 2000). The energy 

modeling and unsteady (transient) options were also turned on to simulate the changes in 

temperature in the model. The resistive heating was modeled with uniform heat 

generation in the volume of the wire. The fluid was modeled with a constant pressure 

source and uniform velocity at the inlet of the tube. The fluid flow in the concentric 

annulus model develops a parabolic velocity profile 10 mm into the tubing and continues 

along the length of the tubing. The surface between external surface of the tube and air 

was model was held constant at 25 ºC. All other Fluent 6.3 parameters were unchanged 

from their default values. After each iteration of the CFD model, the temperature of each 

element is exported for use in the temperature–strain model. 

3.4.2 Temperature–Strain Model of SMAs 

Using the temperature-strain relationship developed by [15],[17], which is shown in 

equations 1 and 2, the strain of individual elements of SMA wire from the mesh can be 

calculated. Equation 3.1 calculates the martensite fraction (Rm) of the SMA based on the 

temperature of the element (T), the average transformation temperature (Tavg) and the 

standard deviation of Tavg (σT). This equation applies to both the heating and cooling, 

which each have different transformation parameters (shown in Table 3.2), accounting 

for the hysteresis of the transformation effect that occurs between heating and cooling. 

Equation 3.2 takes the martensite fraction and calculates the strain of each element of the 

wire. The components of equation 2 account for the nonlinearity of the relationship 

between martensite fraction, stress, and strain. 

 



45 
 



















 


2
erf1

2

1

T

avg
m

TT
R


 

(3.1) 

 





















 

 

)( amma EERE 


 

 
 
 

y
m   

 

(3.2) 

 

)(

)((

atma

tm
y
m

EERE

EEeRm


  

d
m

y
m  

 

)(

))()((

adma

dt
d
mtm

y
m

EERE

EEeEEeRm




 

d
m 

 

Figure 3.3 plots the strain vs. temperature relationship using equations (1) and (2) and 

the parameters in Table 3.2, which were empirically experimentally determined in 

[15],[17]. During the heating phase, the wire begins to contract at 50 ºC and fully 

contracts at 90 ºC. As the SMA is then cooled, it begins to extend at 60 ºC and fully 

extends at 38 ºC.  

3.5 Simulations 

For the simulations in this paper, the 254 mm long actuator will be attached to a 

simulated mass of 0.45 kg (4.41 N), whose weight will act as the bias force to extend the 

wire. In Figure 3.3, the strain of the SMA wire is simulated as the temperature is 

uniformly increased from 25 to 90C and cooled back down to 25 C. At 90C, the  

 

Table 3.2: Austenite and Martensite characteristics 
for temperature-martensite fraction equation  

Austenite Phase   Units 
 Modulus of Elasticity Ea 37.5 GPa 
 Mean Transformation Temperature Ta-avg 78 ºC 
 Stdev. of Ta σa 9 ºC 
Martensite Phase    
 Modulus of Elasticity Em 12.2 GPa 
 Mean Transformation Temperature Tm-avg 55 ºC 
 Stdev of Tm σm 6 ºC 
 Yeild Strain – Fully Twinned  εd

m 0.0417  
 Minimum Strain – Detwinned εy

m 0.0040  



46 
 

 
Figure 3.3: Temperature vs. strain of a uniformly-heated SMA wire. The temperature-
strain model is able to account for the hysteresis of the SMA wire and the bias force used 
to extend the wire during cooling. 

simulation shows that the increase in temperature results in a 4.1% strain (~10 mm). For 

the rest of this paper, full contraction will be defined as the point at which 95% of the 

strain has occurred. For all case studies, the wet SMA actuator is filled with water and all 

components have an initial temperature of 25C. 

3.5.1 Case Study 1 – Electric Heating, Varied Power Input 

This case study varies the electrical power applied to the SMA wire to generate heat 

within the wire. The resistance for the 0.254 mm diameter SMA wire is 18.5 Ω/m and for 

the 254 mm long actuator, the total resistance is 4.4 Ω. In Fluent, the resistive heating 

was modeled as uniform heat generation, which for the following simulations ranged 

from 4 to 10 GW/m3, corresponding to a range of 3.4 to 5.4 Amps of current. The heating 

process is shown in Figure 3.4 and contraction times range from 0.06 to 0.28 seconds.  

For this case study, the electricity is kept on until the displacement comes to a steady 

state as defined by 95% contraction. In reality, if the electricity remains on, the wire 

continues to be heated and if the temperature becomes too high, the wire may be 

damaged and stop demonstrating the shape memory effect. Figure 3.5 shows the average 

30 40 50 60 70 80 90

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Temperature (C)

 P
er

ce
nt

 S
tr

ai
n

Heating
Cooling



47 
 

  

 

Figure 3.4: Strain vs. time for varying electric heat generation. Electric current (3.4 to 5.4 
Amps) is used to resistively heat (4 to 10 GW/m3) the wire and produce a strain of 4.1%. 
This strain corresponds to approximately 90 C, and if the electric current remains on, the 
wire will continue to heat without additional strain. Overheating the wire may damage the 
crystalline structure and shape memory effect.  

 
Figure 3.5. Average Temperature profile, at the middle of the wire, in the radial direction, 
for electric heating (5 Amps, zero fluid flow). The boundary layer demonstrates that a 
lumped parameter model is not sufficient to model the wet SMA actuator.  

temperature profile of the wet SMA actuator in the radial direction at times of 0.04 and 

0.08 seconds. Due to the rate of the heating, a thermal boundary layer is formed in the 

fluid and it is evident that a lumped parameter model (i.e. a model where the cross section 

is treated as having uniform temperature) will not accurately model a wet SMA actuator 

that is heated electrically. In Figure 3.6, both the heating and cooling processes are  

0 0.1 0.2 0.3 0.4

-4

-3

-2

-1

0

Time (s)

 P
er

ce
nt

 S
tr

ai
n

10 GW/m3

 8 GW/m3

 6 GW/m3

 4 GW/m3

0 0.5 1 1.5
20

40

60

80  Surface between
  wire and fluid

 Surface between
  fluid and tube

Surface between
   tube and air

Radial Dimension (mm)

T
em

pe
ra

tu
re

 (
C

)

 

 
0.08 s

0.04 s



48 
 

 
Figure 3.6: Strain vs. time for electric heat generation and passive convective cooling 
(zero fluid flow). For these simulations, the SMA wire was heated to 4% strain, and then 
allowed to cool back down and extend back to its original length of 254 mm with a bias 
force of 4.4 N.  

shown. For this simulation, there is zero fluid flow (25 C) during the heating and cooling 

processes, and the electricity is simply turned on for heating and off for cooling. The 

cooling process is slower than the heating and will depend on the temperature of the 

fluid. This method of heating and cooling cannot be sustained, because the fluid would 

continue to heat and no longer be able to remove thermal energy from the wire. In Figure 

3.7, the electrical energy input and the change in internal energy of the SMA wire are 

shown. The difference between these two is the amount energy that is transferred to the 

fluid. Because higher electrical power inputs result in faster heating, less energy is 

actually transferred to the fluid during the contraction. Therefore the fluid stays cooler 

and results in a faster extension as well. 

3.5.2 Case Study 2 – Electric Heating, Varied Fluid Flow 

The electric power input for this case is held constant at 10 GW/m3 (5.4 amps) and the 

fluid flow is varied between zero flow, intermittent flow and continuous flow (5 mL/s). 

The intermittent fluid flow is defined as off during the heating process and then turned on 

(5 mL/s) for the cooling process. Figure 3.8 shows the simulated results, with the cooling  

0 0.1 0.2 0.3 0.4 0.5

-4

-3

-2

-1

0

Time (s)

 P
er

ce
nt

 S
tr

ai
n

10 GW/m3

 8 GW/m3

 6 GW/m3

 4 GW/m3



49 
 

 

Figure 3.7: Energy vs. power input for electric heating and zero fluid flow. During the 
heating of the wire to produce contraction, the internal energy of the wire increases by 
3.8 J. The wire is also convectively heating the water surrounding it. When the wire is 
heated at a slower rate, with less power input, more energy is lost to the fluid, making the 
actuator less efficient. 

 

Figure 3.8: Strain vs. time for electric heating (10 GW/m3) with varied cold fluid (25 C) 
flow. The complete actuation cycle was modeled for three cases. Case 1 is zero fluid flow 
during the entire cycle, Case 2 is zero fluid flow during the heating process and 5 mL/s 
flow during the cooling process, and Case 3 is 5 mL/s flow during the entire cycle.  

4 5 6 7 8 9 10

4

6

8

10

12

14

E
ne

rg
y 

(J
)

Power input

Energy input
Change in energy of wire

0 0.05 0.1 0.15 0.2

-4

-3

-2

-1

0

Time (s)

 P
er

ce
nt

 S
tr

ai
n

Zero Flow
Off / On Flow
Continous Flow



50 
 

times ranging from about 0.15s to 0.20s. These are ~30 times faster than the published 

cooling rate of 5.5s in air [6]. As stated above, the zero flow case is not a viable long term 

operating process because the heat lost by the wire during cooling is absorbed by the 

fluid, increasing the fluid temperature. Therefore the fluid will eventually need to be 

replaced. The continuous flow requires more time/energy to produce the contraction, but 

appears to be a viable solution in cases where the fluid flow cannot be controlled or 

turned on and off at the desired rate. 

3.5.3 Case Study 3 – Variation of Fluid Flow Rates 

Case 2 has shown that the wet SMA actuator has improved cooling rates compared to 

dry SMAs operated in air, simply by having cold liquid in the compliant tubing. The 

compliant tubing also allows for hot fluid to be used to deliver thermal energy to the 

actuator. For this case study, the pressure source is varied from 25kPa to 6.25kPa and is 

delivering 90 ºC fluid to the actuator. The simulated fluid flow rates for these pressures 

vary from 5 mL/s down to 2 mL/s. Unlike the electrical heating process, where there is 

uniform heating along the length of the wire, the hot fluid must propagate through the 

tube before heating occurs. The approximate time for the fluid to propagate through the 

entire length of the actuator varies from 0.1 to 0.25 seconds. This propagation time has 

been defined as the time necessary to replace the volume of the fluid (volume of fluid/ 

volumetric flow rate). Because the wet SMA actuator is a concentric annulus, the fluid 

flow has a parabolic shape with zero velocity along the walls. This fluidic boundary layer 

induces a thermal boundary layer (Figure 3.9) and results in slower heat transfer. Figure  

3.10 shows the temperature profile along the longitudinal dimension of the actuator. The 

temperature along the fluid-wire edge is approximately 7 ºC lower than the centerline 

temperature. This is the primary reason a lumped parameter model in [15],[17] is invalid. 

The lumped parameter model segmented the wire, fluid and tube longitudinally, but in 

the radial direction each component was lumped together in a single cross section. These  



51 
 

 
Figure 3.9: Temperature profile in the radial direction for fluidic heating (90 ºC at 5 
mL/s) at 30 mm from the inlet of the actuator. The fluidic and thermal boundary layers 
that develop in the wet SMA actuator (concentric annulus) limit the heat transfer process 
between the fluid and the wire. 

 

 
Figure 3.10: Temperature profile in the longitudinal direction for fluidic heating (90 ºC, 
~5 mL/s) for the actuator. A 7 degree Celsius temperature differential is observed 
between the fluid centerline and the wire edge.  

  

0 0.5 1 1.5
20

40

60

80

100

Radial Dimension (mm)

T
em

pe
ra

tu
re

 (
C

)

 

 
 Surface between
  wire and fluid

 Surface between
  fluid and tube

Surface between
   tube and air

0.03s

0.04s

0.05s

0.05s

0.03s

0 20 40 60 80 100
20

40

60

80

100

Longitudinal Dimension (mm)

T
em

pe
ra

tu
re

 (
C

)

 

 
Fluid centerline

Wire edge

Wire centerline



52 
 

lumped volumes of the actuator had a uniform temperature and therefore the model was 

not able to correctly simulate the heat transfer process along surfaces. The strain vs. time 

plots for the various flow rates are shown in Figure 3.11. As expected, lower flow rates 

result in longer contraction times. In general, the contraction times for the 90 ºC fluid are 

approximately twice the time it takes for the fluid to propagate through the actuator. 

Figure 3.11 shows the complete heating and cooling cycle producing cycle times from 

0.4 to 0.8 seconds. 

3.5.4 Case Study 4 – Variation of Fluid Temperature 

For this case study, the temperature of the fluid is varied from 75 ºC to 90 ºC to 

the temperature effects on the contraction times and strain. The results from this 

simulation are shown in Figure 3.12. As expected, the contraction times increase as the 

temperature of the fluid decreases, however, the strains only decrease by 0.2%. It is not 

until the inlet fluid temperature is less than 75 ºC that the strain is significantly reduced. 

 

 

Figure 3.11: Strain vs. time for fluidic heating (90 ºC) and cooling (25 ºC). Hot fluid is 
delivered to the wet SMA actuator using a constant pressure source, resulting in flow 
rates between 2-5 mL/s. When the actuator is fully contracted, the source is switched over 
to cold fluid. 

0 0.2 0.4 0.6 0.8

-4

-3

-2

-1

0

Time (s)

 P
er

ce
nt

 S
tr

ai
n

5 mL/s
4 ml/s
3 mL/s
2 ml/s



53 
 

 

Figure 3.12: Strain vs. time for varied fluid temperature (5 mL/s).). Hot fluid is delivered 
to the wet SMA actuator using a constant pressure source of 25 kPa, resulting in a flow 
rate of 5 mL/s. When the actuator is fully contracted, 95% of steady state, the source is 
switched over to cold fluid. The 90 °C continues to heat the wire even after the cold fluid 
begins to flow due to the fluid propagation time and the hysteresis of the SMA wire. 

3.5.5 Case Study 5 – Heating Combinations – Zero Flow Cooling. 

 In previous case studies, the wet SMA actuator was heated either electrically or 

fluidically to achieve the contraction. However, both electricity and hot fluid can 

beapplied simultaneously. Figure 3.13 shows three possible scenarios for actuation: 

1.electric heating only (10 GW/m3) with zero fluid flow, 2. fluidic heating only (90 °C at 

5 mL/s) followed by zero flow, and 3. simultaneous electric and fluidic heating (4 

GW/m3, 90 °C at 5 mL/s) followed by zero flow. For the simultaneous operation, the 

electric power input was reduced so that total contraction time is equal to the fluid 

propagation time. Once the contraction is complete, all of the inputs to the actuator are 

turned off and the system is allowed to return to a steady state. The electrically heated 

actuator relaxes to its initial length as heat is transferred to the fluid, while the fluidically 

heated actuator remains contracted. The simultaneous fluid/electric heated actuator has a 

faster contraction time than the fluid only actuator, and remains contracted. Although  

heat transfer continues to occur between the water and wire, the temperature of the wire 

does not drop below Tm (martensite transformation temperature) in the time shown, and  

 

0 0.1 0.2 0.3 0.4 0.5

-4

-3

-2

-1

0

Time (s)

 P
er

ce
nt

 S
tr

ai
n

75C
80C
90C

90 ˚C

80 ˚C
75 ˚C



54 
 

 

Figure 3.13: Strain vs. time for varied heating methods followed by zero flow. Without 
continuous energy input, the electrically driven actuator will cool and return to it 
extended state. However, the fluidically driven actuator will remain contracted because of 
the thermal capacitance of the hot fluid. 

the wire remains contracted. Experimental results show that actuator with hot fluid will 

remain contracted for 20 seconds without external inputs. 

3.5.6 Efficiency vs. Speed Analysis of Heating and Cooling Processes. 

For each of the processes examined above, there are thermal energy losses. In the case 

of the electric heating, some of the energy goes to heating the cold fluid. In the case of 

fluidic heating, much of the energy in the hot fluid can be recovered by recycling the hot 

fluid. However some of the energy in the hot fluid goes into heating the wire and tube. 

During the cooling process all of the thermal energy is transferred back to the cold fluid 

or the environment and is unrecoverable. In Figure 3.14, the efficiency vs. cycle rates are 

shown for the various processes. The efficiency of the actuator is defined as the 

mechanical work out divided by the thermal energy input for the complete contraction-

extension cycle. The electrically driven actuator has up to three times higher efficiencies 

than that of the fluidically driven actuator, which is a somewhat surprising result The 

thermofluidic heating has a lower efficiency because more thermal energy is transferred 

to the tube and environment during the fluidic heating process as compared to the energy  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-4

-3

-2

-1

0

Time (s)

 P
er

ce
nt

 S
tr

ai
n

Electric heating zero flow
Fluidic heating then zero flow
Fluidic and Electric then zero flow



55 
 

  

Legend  

Case 1 

Case 3 

Case 4 

Case 5 

Figure 3.14: Efficiency vs. cycle rate (legend shown in Table 4.3). (Pe) is the electric 
power delivered during Joule heating of the SMA actuator. Q and Tf are the fluid flow 
rate and fluid temperature respectively. The electrically-heated actuation is up to 2 times 
as fast and 2.5 times as efficient as the fluidically-heated actuation.   

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Cycles per second (Hz)

%
 E

ff
ic

ie
nc

y

P
e
= 10 GW/m3, Q= 0

P
e
= 8 GW/m3, Q= 0

P
e
= 6 GW/m3, Q= 0

P
e
= 4 GW/m3, Q= 0

Q= 5mL/s @ T
f
= 90C

Q= 4mL/s @ T
f
= 90C

Q= 3mL/s @ T
f
= 90C

Q =2mL/s @ T
f
= 90C

Q= 5mL/s @ T
f
= 90C

Q= 5mL/s @ T
f
= 80C

Q= 5 mL/s @ T
f
= 75C

Q= 5mL/s @ T
f
= 90C and P

e
= 4e9 GW/m3

Q= 5mL/s @ T
f
=25C and P

e
= 10e9 GW/m3

P
e
= 10e9 GW/m3, Q= 0 then Q= 5mL/s



56 
 

to the fluid during the longer contraction time. Therefore, the faster the energy is lost to 

the fluid during electrical heating process. This is primarily because of the increased 

contraction time during fluidic heating. The efficiency of the electrically driven actuator 

decreases with smaller power inputs, because more thermal energy is transferred 

delivered to the SMA wire, the more efficient the actuator is.  

With the electric heating and varied flow (case study 2), the intermittent flow method 

has improved speed over the zero flow method because of the improved convection 

during the cooling process. This is more energy efficient than the continuous flow 

method because it has a lower convection rate during the heating process. 

3.6 Conclusions  

This paper has presented the simulated dynamic performance of a wet SMA actuator in 

response to various electrical and thermofluidic control inputs. The various heating 

processes were able to increase the temperature of the wire to produce ~4% contraction in 

the simulated 254 mm long actuator. Electrical heating of 10 GW/m3 followed by fluidic 

cooling (25 ºC, 5 mL/s) was characterized by a maximum efficiency of 0.5% and 

maximum cycle rate of 5 Hz. Fluidic heating (90 ºC, 5 mL/s) followed by fluidic cooling 

was slower and less efficient, characterized by a maximum efficiency of 0.2% and a 

maximum cycle rate of 2 Hz. While the electric heating was expected to be faster than 

fluidic heating, it was somewhat surprising that it was also more efficient. While the 

electric heating does waste energy by heating the surrounding fluid, it turns out that 

fluidic heating is less efficient due to the heat lost to the surrounding tube/environment. 

Although the efficiency for the fluidic heating is about 40% of the efficiency for 

electrical heating, a chemical energy source (e.g., propane) used to heat the fluid would 

have 100 times the energy density of electric batteries, which would still give a clear 

advantage to fluidic heating in terms of the mass of energy storage required to operate the 

system for a fixed number of actuations. 



57 
 

During simulations, both fluidic and thermal boundary layers have been observed in the 

CFD model. These boundary layers limit the thermal interaction of the fluid with the wire 

and the tube. Future actuator designs may address these boundary layers that limit the 

performance of the wet SMA actuator by careful consideration of factors such as wire 

and tube dimensions, surface roughness, and fluid viscosity. Additional work will need to 

examine if a nondimensionalized model can be created and optimized. 

These wet SMA actuators have been bundled together in arrays to create large degree-

of-freedom actuation systems. Actuators in the array can be connected in series and 

parallel to produce larger displacements and forces [11]-[14],[18],[23]-[25]. The array 

implementing wet SMA actuators is controlled by a scalable network array architecture 

that shares 2N control devices for N2 actuators. This architecture minimizes the total 

weight of the array in order to maintain the high force-to-weight ratio advantage of the 

actuators; however it does place the constraint on the array that only certain combinations 

of actuators in the array can be simultaneously addressed. For this reason, a series of 

sequential operations may be required to produce the desire actuation for the entire array. 

Given the constraints of the network control architecture and the speed/efficiency 

characterization presented in this paper, an optimal control algorithm has been developed 

that can maximize the performance of the array using a cost function that represents a 

weighted combination of actuation time and energy. The algorithm uses graph theory 

(.i.e. path planning) to identify an optimal sequence of control commands to produce the 

desired actuation with minimized time and energy [18],[19]. 

3.7 References 

[1] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development of Honda 
humanoid robot,” in Proc. IEEE International Conference on Robotics and 
Automation, vol. 2, pp. 1321-1326, 1998. 



58 
 
[2] T. Ishida, Y. Kuroki, and J. Yamaguchi, “Mechanical system of a small biped 

entertainment robot,” in Proc. IEEE/RSJ Intl. Conference on Intelligent Robots and 
Systems, vol. 2, pp. 1129-1134, 2003. 

[3] L. Sherwood, Human physiology 7th ed., Belmont, CA, Cengage Learning, 2008. 

[4] I. Hunter and S. Lafontaine, “A comparison of muscle with artificial actuators,” in 
Proc. IEEE Solid-State Sensor and Actuator Workshop, pp. 178-185, 1992. 

[5] A Ramaratnam and N. Jalili, “Feasibility study of actuators and sensors using 
electro-active polymers reinforced with carbon nanotubes,” in Proc. SPIE 
Conference on Smart Structures and Materials, pp. 349-356, 2004. 

[6] “Technical Characteristics of Flexinol Actuator Wires,” Dynalloy Inc., Available: 
http://www.dynalloy.com/pdfs/TCF1140RevD.pdf 

[7] A. Shahin, P. Meckl, J. Jones and M. Thrasher ”Enhanced cooling of shape memory 
alloy wires using semiconductor 'heat pump' modules,” Journal of Intelligent 
Material Systems and Structures, vol. 5, pp. 95-104, 1994. 

[8] B. Selden,, K. Cho, and H. Asada, “Segmented binary control of shape memory ally 
actuator systems using the Peltier Effect,” in Proc. IEEE International Conference 
on Robotics and Automation, pp. 4931-4936, 2004. 

[9] O. Rediniotis, D. Lagoudas-Dimitris, H. Jun, and R. Allen, “Fuel-powered compact 
SMA actuator,” in Proc. SPIE Conference on Smart Structures and Materials, vol. 
4698, pp. 441-453, 2002. 

[10] S. Mascaro and H. Asada, “Wet shape memory alloy actuators for active vasculated 
robotic flesh,” in Proc. IEEE International Conference on Robotics and 
Automation, vol. 1, pp. 282-287, 2003. 

[11] S. Mascaro and H. Asada, "Vast DOF wet shape memory alloy actuators using 
matrix manifold and valve system," in Proc. ASME International Mechanical 
Engineering Congress, Washington, DC, USA, pp. 1992-1997, 2003. 

[12] S. Mascaro, K. Cho and H. Asada, “Design and control of vast DOF wet SMA array 
actuators,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and 
Systems, vol. 2, pp. 1992-1997, 2003. 

[13] L. Flemming and S. Mascaro, “Wet SMA actuator array with matrix 
vasoconstriction device,” in Proc. ASME International Mechanical Engineering 
Congress and Exposition, pp. 1751-1758, 2005. 

[14] L. Flemming and S. Mascaro, "Control of a scalable matrix vasoconstrictor device 
for wet actuator arrays," in Proc. IEEE International Conference on Robotics and 
Automation, Rome, Italy, pp. 648–653, 2007. 



59 
 
[15] J. Ertel and S. Mascaro, “Thermomechanical modeling of a wet shape memory 

alloy actuator,” in Proc. ASME International Mechanical Engineering Congress 
and Exposition, Chicago, IL, pp. 1317-1324, 2006. 

[16] L. Flemming and S. Mascaro, "Analysis of hybrid electric/thermofluidic control for 
wet shape memory alloy actuators," in Proc. ASME Dynamic Systems and Controls, 
Hollywood, CA, USA, pp. 1041-1047, 2009. 

[17] J. Ertel and S. Mascaro, “Dynamic thermomechanical modeling of a wet shape 
memory alloy actuator,” ASME Journal of Dynamic Systems, Measurements and 
Control, pp.1-9, 2010. 

[18] L. Flemming, D. Johnson, and S. Mascaro, “Optimal control of multi-input SMA 
actuator arrays using graph theory,” in Proc. IEEE International Conference on 
Robotics and Automation, Shanghai, China, pp. 6109–6114, 2011. 

[19] L. Flemming, D. Johnson, and S. Mascaro, “Optimal control of multi-input SMA 
actuator arrays using graph theory: expanding wavefront & simultaneous 
operations,” in Proc. IEEE International Conference on Robots and Systems, San 
Francisco, CA, USA, pp. 780-785, 2011. 

[20] M Nakatani, H Kajimoto, K. Vlack, D. Sekiguchi, N Kawakami, and S Tachi ”Pop 
up!: 3D form display with coil-type shape memory alloy,” Journal of the Institute of 
Image Information and Television Engineers, vol. 60, pp. 183-191, 2006. 

[21] “Matweb silicone rubber data sheet”, Matweb.com, Available: 
http://www.matweb.com/search/DataSheet.aspx?MatGUID=cbe7a469897a47eda56
3816c86a73520&ckck=1 

[22] Ansys Fluent 6.5 Installation guide, Ansys Inc., Available: 
http://www1.ansys.com/customer/content/documentation/120/ai_instl.pdf 

[23] R. Mukherjee, T. Christian, and R. Thiel, "An actuation system for the control of 
multiple shape memory alloy actuators," Sensors and Actuators A: Physical, vol. 
55, pp. 367-382 1996. 

[24] K. De Laurentis, A. Fisch, J. Nikitczuk, and C. Mavroidis, "Optimal design of 
shape memory alloy wire bundle actuators," in Proc. IEEE International 
Conference on Robotics and Automation, Washington, DC, USA, pp. 2363-2368, 
2002. 

[25] C. Lee and C. Mavroidis, "Analytical dynamic model and experimental robust and 
optimal control of shape-memory-alloy bundle actuators," in Proc. ASME 
International Mechanical Engineering Congress and Exposition, New Orleans, LA, 
USA, pp. 491-498, 2002. 

 



 
 

CHAPTER 4  

 OPTIMAL CONTROL OF WET SHAPE MEMORY ALLOY 

ACTUATOR ARRAYS USING GRAPH THEORY

4.1 Abstract 

Shape Memory Alloy (SMA) actuators are compact and have high force-to-weight 

ratios, making them strong candidates to actuate robots, exoskeletons, and prosthetics. 

However, the dynamics of these actuators are thermomechanical in nature and slow 

cooling rates can limit their performance. To improve the convective cooling, SMA wires 

have been embedded in vascular networks, allowing cold fluid to pass across the 

actuators and extend them faster. The vascular network can also deliver hot fluid to heat 

and contract the wire. In addition to the fluidic network, an electrical network operating 

in parallel can resistively heat the SMA to produce contraction. To minimize the weight 

and size of the vascular and electrical networks, a scalable NxN architecture has been 

implemented that allows for 2N control devices (valves, transistors) to be shared amongst 

N2 actuators. This Network Array Architecture (NAA) allows each actuator to be 

controlled individually or in discrete subarrays. However, this architecture does not allow 

all combinations of actuators to be activated simultaneously; therefore a sequence of 

control commands may be required to achieve the complete desired actuation. 

In order to find an optimal sequence of control commands, graph theory algorithms 

have been implemented. By treating each actuator’s state as binary (fully contracted or 

extended), the collected states of the actuator array can be represented as nodes of the 

graph and the control commands as the graph edges. By properly weighting the time and 

energy costs of the graph edges, search algorithms can be used to find an optimal set of 



61 
 

control commands for desired state changes. NAA results in a multigraph that has 2NxN 

nodes and is highly interconnected. This article formulates the control of NAA actuators 

systems as a scalable graph theory problem, and characterizes the ability of search 

algorithms to optimize a weighted combination of speed and energy usage, while 

minimizing computational search cost. The algorithm was implemented in MATLAB and 

it is able to identify the optimal solution for a 4x4 array with more than 14 million edges. 

By using an expanding wavefront, the algorithm, on average, explored less than 100 

edges (<0.01%) in 0.03 seconds.  A 6x6 array was optimized in 0.7 seconds, exploring 

just 2400 edges.  

4.2 Introduction 

A primary challenge to maximize the wearability of robotics [1],[2], prosthetics[3],[4] 

and exoskeletons [5], is the need to actuate many degrees of freedom (DOF) with 

minimal bulk. Wearability is enhanced when robotic actuation closely matches the 

characteristics of human actuation according to metrics such as strength, speed, range of 

motion, power density, degrees-of-freedom, and use of a long-lasting untethered energy 

source.  

A prime example would be the human hand, which has 21 degrees-of-freedom in the 

fingers and thumb alone [6]. It is extremely difficult to design a robotic/prosthetic hand to 

mimic the range of motion of a human hand. Another engineering challenge is to actuate 

the mechanical hand with similar power density of skeletal muscles (50 to 100 W/kg) [7]. 

Although DC motors can produce a wide range of motion and torques, their typical 

power density is approximately 10 W/kg. Therefore, in order for a mechanical hand to 

match the capabilities of its biological counterpart, it would need to be 5 to 10 times 

heavier using DC motors. Pneumatic and hydraulic actuators can match or exceed the 

power density of human muscles, but they involve the hazards of high operating 

pressures and require a tethered source of pressurized fluid or a heavy/noisy compressor. 



62 
 

Piezoelectric actuators also have a power density comparable to human muscle [8], but 

they require potentially hazardous operating voltages and create only microscale 

displacements, which would be impractical to leverage into useful motion for a prosthetic 

or exoskeleton. 

A novel solution to advancing wearable robotics is to implement large networks of high 

force-to-weight wet Shape Memory Alloys (SMA) "muscle" actuators. The principal 

dynamics of a SMA actuator are thermomechanical, and a biologically inspired vascular 

network has been developed to deliver/remove thermal energy by thermofluidic and 

electric methods [9]. The system dynamics of wet SMA actuators are highly nonlinear 

and therefore difficult to control with classical control methods [10]-[19]. However, by 

using a discrete control logic approach, the nonlinear dynamics can be neglected and the 

actuators can be treated as binary (fully contracted/extended). Also, by networking large 

numbers of these binary actuators mechanically in series or parallel, a more realistic 

means of actuation can be achieved [20]-[30]. 

The weight of transistors and valves necessary to control the electric and fluid flow to 

the wet SMA actuators can be multiple orders larger than the weight of the SMA itself. 

Therefore, a scalable control architecture that has 2N control devices controlling the flow 

to an array of N2 actuators has been implemented [25]. This reduction in control hardware 

allows actuators to be extended or contracted individually or in certain combinations 

simultaneously. However, it may take multiple steps of discrete control commands to 

produce the complete desired actuation for the entire array [28]. 

Graph theory has been shown to be an effective way of optimally controlling the 

discrete nature of an array of actuators and control hardware [16]. However, the complete 

graph scales poorly because it has a large number of states and is highly interconnected 

[29],[30]. Previously, a 4x4 array was the largest array that the graph theory algorithms 

could be tested on.  



63 
 

The objective of this article is to present optimal control algorithms for controlling 

arrays of wet actuators by applying graph theory. Additional algorithms will be 

introduced that address the scalability of the NAA graph, allowing for larger arrays of 

actuators to be controlled. In Section 4.2, the characteristics of wet SMA actuators arrays 

will be presented. In Section 4.3, the control of NAA will be formulated as a graph theory 

problem, which will be used to search for sequences of control commands that optimize 

the actuation time and energy usage. To improve the total actuation speed, the algorithms 

will also include the operation of the fluidic and electric network in parallel. In Section 

4.4, the issue of scalability of the NAA graph will be addressed by implementing an 

expanding wavefront which uses lazy evaluation to construct only the portions of the 

graph that are being searched. Finally, in Section 4.5, the performance of the new graph 

theory algorithms will be examined through simulation. 

4.3 Background 

4.3.1 Wet SMA Actuator 

SMAs are a class of smart materials that are able to return to a predefined shape after 

being deformed [31]. This deformation and recovery of strain is achieved by a 

thermomechanical process, where the SMA is strained while it is cold (e.g., <~70 ºC) and 

then restored by heating it above its transformation temperature (e.g., ~70 ºC). These 

characteristics allow SMA to be implemented as compact, high force-to-weight ratio 

actuators. Because the thermomechanical process is nonlinear, they are difficult to model 

and control. This research will treat the actuators as binary (fully contracted (1) or 

extended (0)) and the control strategy will be concerned only with delivering/removing 

the energy necessary to transition between these two states. In order to achieve higher 

resolution displacements/forces, the actuators can be bundled together and operated in 

series/parallel respectively. 

Joule heating of SMA wire can produce very quick contractions (milliseconds); 



 

howe

magn

coolin

To m

in a c

fluid 

wire.

opera

4.3.2 

Wh

contr

actua

for an

weigh

actua

actua

  

Figur
SMA
allow

ever the exte

nitude longer

ng process [

maintain a hig

compliant ve

is used to im

 Figure 4.1

ating in serie

Network Arr

hile the wet

rol devices 

ator itself. A

n NxN array

ht of the sy

ators in a com

ators in a co

re 4.1: Robo
A actuators 
wing electrici

ension proce

r [31]. Force

[32], but the

gh force-to-w

essel [9], all

mprove the c

 shows a ro

es to produce

ray Architectu

t SMA actu

(valves, tran

Arranging the

y of actuator

ystem. Figur

mmon row a

ommon colum

otic hand ac
have an SM
ity and fluid

ess using unf

ed convectio

se add a sign

weight ratio 

lowing a sm

convection c

obotic hand

e discrete dis

ure (NAA) 

uator assemb

nsistors) are

e actuators i

rs to be cont

re 4.2A sho

are connecte

mn are also 

ctuated by w
MA wire em
d to deliver/re

forced air co

on and water

nificant amo

for the actu

mall amount 

cooling, whil

d that is act

splacements

bly does res

e still many

in a Networ

trolled by 2N

ows a schem

ed to a cons

connected t

wet SMA act
mbedded in
emove therm

onvection ca

r baths have 

ount of size 

uators, SMA 

of fluid to 

le hot fluid c

tuated by th

 of the finge

solve the is

y times hea

rk Array Ar

N control de

matic of the

stant voltage

together, wh

tuators conn
n a complian
mal energy. 

an take mult

been used to

and mass to

wire has be

flow over th

can convecti

hese wet SM

ers. 

ssue of cool

avier than th

rchitecture (N

evices, redu

e electrical n

e source by a

here each co

 
nected in ser
nt tube wit

6

iple orders o

o improve th

o the actuato

een embedde

he wire. Col

ively heat th

MA actuator

ling rate; th

he wet SMA

NAA) allow

ucing the tota

network. Th

a switch. Th

olumn can b

ries. The we
th connector

64 

of 

he 

or. 

ed 

ld 

he 

rs 

he 

A 

ws 

al 

he 

he 

be 

et 
rs 



65 
 

connected to the sink (ground) by another switch. In order to send energy to a specific 

actuator, the intersecting row and column switches must be closed to complete the circuit. 

The diodes in the circuit ensure that the current cannot take an undesired route to ground. 

Each actuator can be activated individually, or a subarray of actuators can be activated 

simultaneously by closing multiple rows and/or columns. However, actuators on the 

diagonal (e.g., A1 & B2) cannot be activated simultaneously without permitting energy to 

flow into adjoining actuators as well (e.g., A2 & B1). Therefore, it may take a sequence 

of control commands to achieve the complete desired actuation of the array. The fluidic 

network, shown in Figure 4.2B, is controlled in a similar manner to the electrical 

network, with an additional valve to switch between the hot and cold fluid sources. 

However, to prevent parasitic effects due to the capacitance of the fluidic vessels and 

  

 
Figure 4.2: Network Array Architecture (NAA): A) Electric B) Fluidic. The electric NAA 
uses power transistors as switches to complete the circuit from source to ground. The 
fluidic NAA uses single-throw multiple-pole constrictor valves to control fluid flow 
through the array. The constrictors are used instead of solenoid valves because they can 
be collocated at one end of the array and do not introduce any fluid resistance when open. 
The collocation of the valves on the inlet side of the array eliminates parasitic fluidic 
dynamics associated with the basic NAA.  

Column Switches

R
ow

 S
w

it
ch

es

A

B

C

1 2 3

Electric

Column
Valves

R
ow

 V
al

ve
s

A

B

C

Hot
Fluid

123

Cold
Fluid

Diode

Switch

assembly

sink

M
an

if
ol

d

A) NAA B) Collocated NAA

resistance

capacitance

Single throw /
quad pole switch

    



 

high 

collo

4.3.3 

The

treate

switc

(e.g.,

(0000

which

confi

throu

on th

ortho

conne

sink. 

fluidi

contr

 

Figur
rows 
vario

fluid resista

cated NAA 

Control Log

e control log

ed as a bina

ches (valves)

 0000, 1000

0), there is 

h will not 

gurations fo

ugh the actua

he sink side 

ogonal to one

ect a subarr

Figure 4.3 

ic and electr

rolled simult

re 4.3: Contr
and column
us subarrays

ance of solen

[27]. 

gic for NAA 

gic for NAA

ary device w

) on the sou

0, 0100, 11

no flow (el

produce a

or each set 

ator(s) to gr

must be co

e another, th

ay (e.g., 1x

shows a few

ric NAA. D

taneously an

rol comman
ns switches t
s.  

noid valves, 

A is described

which is eit

urce and the 

00, 1111). 

lectric/fluidi

any change

of switches

ound, at lea

onnected (clo

here are (2N-

1, 1x2, 2x1,

w examples 

ue to the ar

nd therefore 

nds examples
that can be c

the fluidic n

d in detail in

ther connec

sink side of

When the s

ic) through 

e in the s

s. In order f

ast one switc

osed). Since

1)2 configura

, 2x2, …, N

of control c

rchitecture o

it may take

s. There are 
closed to allo

network mu

n [28]. Each 

cted (1) or d

f the array c

set of switc

the system 

system. The

for energy t

ch on the sou

e the two se

ations of the

NxN) of actu

command co

of NAA, not

e a sequence

 (2N-1)2 com
ow thermal 

ust be constr

control devi

disconnected

can be in any

hes are all 

from sourc

erefore, the

to flow from

urce side an

ets of contro

e control dev

uators from 

onfigurations

t all the actu

e of control 

mbinations o
energy to be

6

ructed using 

ice of NAA 

d (0). The N

y of 2N state

disconnecte

ce to ground

ere are 2N-

m the sourc

nd one switc

ol devices ar

vices that wi

the source t

s for both th

uators can b

commands t

 
of intersectin
e delivered t

66 

a 

is 

N 

es 

ed 

d, 

-1 

ce 

ch 

re 

ill 

to 

he 

be 

to 

ng 
to 



 

produ

The

at any

and c

will b

Pre

both 

the ch

energ

effici

to he

an el

   

Figur
actua
Q and
actua
actua

uce the desir

e fluidic net

y point in ti

can operate 

be discussed

evious work 

fluid and ele

haracteristic

gy input. Th

ient than and

at the fluid 

ectric batter

re 4.4: Simu
ator [34]. (Pe

d Tf are the f
ator is up to
ator. 

red actuation

twork allows

ime. The flu

in parallel. T

d in section 4

4.4 Optim

[33]-[35] ha

ectricity to d

s (speed, eff

he results sh

d twice as fa

(e.g., propan

y. Although

ulated efficie
e) is the elec
fluid flow ra
o 2 times a

n.  

s either hot o

uidic and ele

The algorith

4.5. 

mization of t

as characteri

deliver therm

ficiency) of a

ow that the 

ast as the flui

ne) can have

h the fluidic 

ncy vs. spee
ctric power d
ate and fluid 
as fast and 

or cold fluid

ectrical netw

hm which al

the Wet SMA

zed the perfo

mal energy to

a single wet 

electrical n

idic network

e up to 100 t

heating is n

ed of electric
delivered for
temperature
2.5 times a

d to be deliv

works are ind

llows for thi

A Actuator A

formance of w

o produce ac

t SMA actua

network (Pe)

k (Q, Tf). Ho

times the en

not as fast or

cally and flu
r Joule heati
e respectivel
as efficient a

vered to the a

dependent o

is simultaneo

Array 

wet SMA ac

ctuation. Figu

ator with diff

 is up to 2.5

owever, the e

nergy density

r efficient, a

uidically hea
ing of the S
ly. The electr
as the fluid

6

actuator arra

f one anothe

ous operatio

ctuators usin

ure 4.4 show

ferent rates o

5 times mor

energy sourc

y than that o

approximatel

 
ated prototyp
MA actuato
rically heate

dically heate

67 

ay 

er 

on 

ng 

ws 

of 

re 

ce 

of 

ly 

pe 
or. 
ed 
ed 



68 
 

30 times more total actuations can be completed per unit mass of energy storage. The 

NAA controller must use these characteristics to identify the optimal control command 

sequence. The previous work only modeled a single actuator and did not account for any 

energy losses associated with heating the fluid or delivering the hot fluid to the actuator  

manifold. Therefore, for the simulations in this paper, it will be assumed that fluidic 

heating has a 3:1 advantage (rather than a 30:1 advantage) over electric heating in terms 

of the energy cost. This will offer a worst case perspective of the algorithms that follow. 

Figure 4.5 shows the fluid flow rate, electric current, the actuator efficiency, the total 

actuation energy cost, and the total actuation time for the prototype. The total energy cost  

and actuation times are calculated based on the flow rate through the each actuator, and 

are expressed with respect to the actuation time and energy cost of a single wet SMA 

actuator driven fluidically (1, 1). Therefore, the cost to actuate a single actuator 

electrically will be 0.41 and 31, which is 2.5 times faster and 3 times the energy cost of 

a fluidically driven actuator.  

The cold fluid reservoir is assumed to maintain a constant temperature of 25 ̊C by free 

convection with the atmosphere, and therefore no energy is used to maintain this 

temperature. However, in the following algorithms, a pseudo-energy will be assigned to 

the cold fluid control command that is equal to that of the hot fluid control command. By 

doing so, the algorithm will not preference the cold control command over the hot fluid 

command of similar size when the objective of the algorithm is to minimize energy.     

4.4.1 Graph Theory Structure of NAA 
 
In the previous sections, the SMA actuators and NAA have been defined by discrete  

 
states and control commands. Because of these discrete components, Graph Theory [36]  
 
can be used to identify an optimal sequence of control commands to transition the wet  
 
SMA actuator from one state to another. NAA arranges the binary actuators (contracted  
 
(1) and extended (0)) in an NxN array that can be in one of 2NxN states. These states will 



69 
 
 

 
Figure 4.5: Characteristics of actuator array. A) Fluid flow rate with respect to the 
number of actuators driven of the MVD prototype with constant pressure sources. B) The 
electric current with respect to the number of driven actuators of the NAA prototype with 
a constant voltage source. C-E) The efficiency, energy cost and actuation times are 
defined with respect to the actuation energy cost and actuations times of single fluidic 
actuator, ε1 and τ1 respectively. The total current from the voltage source was limited to 
20 Amps based on practical limits of the prototype system. When nine or more actuators 
are driven, the current is not sufficient to heat the wire above the transition temperature.

5 10 15
0
1
2
3
4
5

F
lu

id
 F

lo
w

 (
m

L
/s

)

Number of Driven Actuators

(A)

5 10 15
0
1
2
3
4
5

(B)

Number of Driven Actuators

E
le

ct
ri

c 
C

ur
re

nt
 (

A
)

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6
(C)

Number of Driven Actuators

E
ff

ic
ie

nc
y

2 4 6 8 10 12 14 16
0
2
4
6
8

10

E
ne

rg
y 

( 
1
)

(D)

Number of Driven Actuators

2 4 6 8 10 12 14 16
0

2

4

(E)

T
im

e 
( 

1
)

Number of Driven Actuators

 

 

Hot Fluid Electric



70 
 

be treated as nodes in the graph. NAA defines (2N-1)2 discrete control command 

configurations that can address certain subarrays of actuators. These control commands 

are potential edges between nodes. Each of these control commands can be applied to any 

node of the graph; however some control commands will not produce any actuation. 

Commands that produce at least one actuation will be defined as edges of the graph. The 

NAA graph is defined as a multigraph because there can be multiple edges between two 

specific nodes. The simplest case accounts for the three input modes (hot fluid, cold fluid, 

or electricity). Therefore, there are 3(2N-1)2 control commands that can be executed from 

each node. 

The 2NxN nodes and 3(2N-1)2 control commands can be represented by N2 bit numbers. 

In this paper the nodes and control commands/edges will be presented as decimal 

numbers, with the first bit representing the upper left corner and the bits will be 

numbered from left to right, top to bottom.  

Edges of the graph can be easily identified by applying bitwise operations between the 

nodes and control commands. A complete graph for the NAA can be constructed with the 

following algorithm: 

 

 Hot fluid or electrical heating control commands: 

o h_test = OR(current node, control command) 
o if h_test ~= current node, then control command = edge 

 Cold fluid control command: 
o c_test = ~ OR(~current node,control command) 
o if c_test ~= current node, then control command = edge  

The above algorithm identifies all the edges that cause at least 1 actuator to change states. 

If the control command, forming the edge, delivers energy to an actuator of a subarray, 

and there is no resulting actuation (e.g., hot fluid is delivered to a subarray of actuators, 

one of which is already hot and contracted), then this energy flow is termed superfluous. 



71 
 

As long as at least one actuation occurs, the edge is still valid, but not as energy efficient 

as one resulting in full actuation (e.g., 4 out of 4). Additionally, some edges are redundant 

because they produce the same actuation (e.g., a 1x2 control command with superfluous 

flow can be completed by a 1x1 control command). Even with just valid non-redundant 

edges, the complete NAA graph scales poorly. Table 4.1 shows the size of a preprocessed 

NAA graph for different size arrays. Even when N = 4, the size of the graph becomes 

marginally unmanageable [29]. In Section III, expanding wavefront algorithms will be 

presented to address this scalability issue. 

When a fluidic or electric circuit is completed, the actuators are connected together in 

parallel to the source and sink. Therefore, the equivalent fluidic/electric resistance of the 

array will decrease as the number driven actuators increases. With this decrease in 

resistance for larger subarrays, the constant voltage/pressure source will deliver energy at 

faster rate than smaller control commands [28]. Also, with this increased energy flow 

rate, an edge (control command) may sacrifice energy with superfluous flow to produce 

the desired actuation in a shorter amount of time.  

Figure 4.6 shows a small portion of the 2x2 graph where only a portion of the nodes 

and edges are shown. Figure 4.7 shows a couple of control command sequences that will 

transition the actuator array from Node 1 to Node 15. Path ABC has no superfluous flow 

and an accumulated time and energy cost of [2.8τ1, 3ε1]. Path AC has an accumulated 

time and energy cost of [2.3τ1, 4ε1]; where the desired actuation is completed faster with 

superfluous flow at the penalty of being less efficient. To express a preference for energy 

 

Table 4.1: Size of Preprocessed Graph 

N 
Nodes 
2NxN 

Control 
CMDs 
3(2N-1)2 

# of Total 
Edges 

Data Size for 
Preprocessed Graph 

2 16 27 165 0.33 kb 
3 512 147 25,419 50.8 kb 
4 65536 675 14,910,429 29.8 Mb 



72 
 

 
Figure 4.6: Partial graph of a 2x2 actuator array. The control commands (hot fluid, cold 
fluid, electricity) are edges that transition the array between Nodes 1, 13 and 15.   

 
Figure 4.7: Two control command sequences are shown that will transition the actuator 
array from Node 1 to Node 15. The nonsuperfluous sequence produces the desired 
actuation with a sequence of two control commands with the minimum energy usage. The 
single control command with superfluous flow results in faster actuation, but uses more 
energy because hot fluid is delivered to actuator that is already contracted.   

or time, a weighted time-energy cost (Cte) function with a performance weighting factor 

(wte) has been defined as: 

 ∗ 1 ∗  (4.1) 

where Time is the time necessary to delivery/remove enough thermal energy from the 

array and Energy is the thermal energy to necessary to produce the complete actuation. 

Both of these values are respectively normalized to the time and energy required to 

fluidically activate a single actuator. When wte = 1, the preference is to minimize the total 

actuation time and when wte = 0, the preference is to minimize the total actuation energy. 

0C
00 

0E
00

0H
00

00
HH

EE
EE

HH
HH

00 
CC

00 
EE

13

1 15

Node

Edge

Hot Fluid

Cold Fluid

Electricity

Legend

CC
CC

1 1
1 1

1 0
0 0

1 0
1 1

1 0
0 0

1 1
1 1 H H

H

Node
1

Node
15 Step 1 Step 2

Non-Superfluous

1τ11.3τ1 1.8τ1

Step 1Total Total
Superfluous

2.3τ1 1.8τ1Time

H
H H

H

1121 4131 41Energy

Contracted 1 Extended 0 Hot H Cold C Zero 



73 
 

Although Time and Energy are normalized with respect to the performance of a single 

actuator, they are not scaled with respect to one another. Therefore, a wte value of 0.5 

may not represent an equal balance between the use of fluidic and electric heating.  

4.4.2 Graph Theory Algorithms 

Now that NAA has been formulated as a graph, three basic graph theory search 

algorithms [36] will be used to evaluate the performance of the actuator array and the 

computational cost to identify an optimal solution. All three algorithms use the basic 

principle of identifying a node with the minimum Cte and using this node to continue the 

search.  

 Best First Search (BFS): is a greedy search technique which follows nodes 

with minimum estimated heuristic (cost-to-goal, Cte). While the path is not 

optimal, BFS tends to have a low computational cost.  

 Dijkstra’s: is a search technique that is guaranteed to identify a path with 

minimum path cost. However, Dijkstra’s tends to be computationally costly, 

because it explores the graph with an uninformed perspective of the 

destination. 

 A* (pronounced “A star”): is a search algorithm that can identify a minimum 

cost (Cte) path like Dijkstra’s but it includes an estimated cost-to-goal heuristic 

like BFS to take a directed approach of exploring the graph. This results in 

lower computational cost than Dijkstra’s and a more optimal path than BFS.  

In order to find the optimal solution with the minimum amount of computational cost, 

the A* search algorithm has been implemented with an estimated total cost-to-goal (Ctotal) 

of: 

 ∗  (4.2) 

where, Cte is the accumulated Cte to an intermediate node. The heuristic (h) or cost-to-



74 
 

goal is estimated to be the minimum Cte for the number of actuators that remain to change 

states (flipped). This value may be associated with the fluid or electric domain depending 

on the value of wte. Because the NAA graph is highly connected, having parallel paths 

between start and goal nodes, an additional heuristic weighting (wh) has been added to the 

A*. When wh = 0, then A* is equivalent to Dijkstra's and an optimal path will always be 

found. If h is admissible, then setting wh = 1 will result in an optimal solution with the 

average computational cost being much less than Dijkstra's. If the computational cost, 

due to the NAA graph having a large number of parallel edges, is too large, then 

increasing wh above 1 will decrease the computational cost. However, this may 

potentially sacrifice finding an optimal solution.  

When multiple nodes have equal Ctotal, then an additional metric will be used to help 

identify the preferred node. In [28], a sum squared metric was used to identify nodes that 

had larger future control commands available. This metric showed to have up to a 32% 

improvement in complete sequence actuation times with a controller that operated 

randomly similar to BFS. 

4.5 Scalability and Simultaneous Operation 

4.5.1 Expanding Wavefront 

In order to overcome the data size of the complete graph, a partial graph will be 

constructed as needed in real time for each origin and destination node set. The two 

primary reasons that this approach works is that the 3(2N-1)2 control commands are 

scalable and the fact that simple binary operations can be used to identify the adjacent 

neighbors.  
 
Although there are 3(2N-1)2 control commands for each node, there will be at most (2N- 

 
1)2 neighbors to a single node. Figure 4.8 will be used to visualize the control commands  
 
applied to Node 1 that result in either some actuation, zero actuation or are redundant to a  
 
smaller control command. First, the hot fluid and electric commands produce the same 



75 
 
  

 
Figure 4.8: Example of expanding wavefront algorithm. A) Current node in binary and 
decimal format. B) Propagation of wavefront from current node to neighbor using hot 
control commands. Control commands H1, H3, and H5 can be removed from the control 
command list because they do not produce actuation or are redundant to a smaller control 
command. C) A similar process can be used with the cold commands. From Node 1 the 
control command list is reduced from 9 hot & 9 cold control commands to 6 hot & 1 cold 
control commands.   

Index CMD bin dec bin decNeighbor

H1 1000 1 1000 1

Redundant
Edge

Zero
Actuation

H
H H
H

0
1 0
0

H2 0100 2 1100 3H
H H
H 0

1 1
0

H4 0010 4 1010 5H
H H
H 1

1 0
0

H8 0001 8 1001 9H
H H
H 0

1 0
1

H3 1100 3 1100 3 H
H H
H 0

1 1
0

H5 1010 5 1010 5 H
H H
H 1

1 0
0

H10 0101 10 1101 11H
H H
H 0

1 1
1

H12 0011 12 1101 13H
H H
H 1

1 0
1

H15 1111 15 1111 15H
H H
H 1

1 1
1

C

0
0 0
0

Redundant
CMDs

Zero
Actuation H

H C
H C

H H
H

C C
C
C

C
C H
C

H
H H
C H

H C
C C

H H
C

Neighbor

Current Node
Decimal
Format

Binary 
Format

1000 1
0
1 0
0A)

B)

0
0 0
0

Node 
1

0
1 0
0

Contracted 1 Extended 0 Hot + Cold C Zero 

ActuationC)

Cold Control Commands

 



76 
 

actuation and will have common start and end nodes. Secondly, if a cooling control 

command is valid, the corresponding heating command is not valid because it does not 

produce any actuation and vice versa. Control command C1 is valid going from Node 1 

to Node 0 and H1 results in no actuation. Finally, when some control commands (e.g., 

commands H2 & H5) are applied, they result in a common neighbor and the command 

addressing the larger submatrix is redundant to a smaller submatrix. For Node 1 of a 2x2 

array, there are 27 possible control commands, but only 7 unique neighbors and 15 

connecting edges. The A* algorithm examines the minimum cost between the nodes and 

will identify whether electricity or hot fluid will be used to form the edge between the 

nodes, eliminating one half of the heating edges. 

4.5.2 Control Command Reduction 

The expanding wave front and A* algorithm can identify the optimal solution for 

arrays larger than 4x4, but at every node the wave expands, it must still examine 3(2N-1)2 

commands. Figure 4.8 shows that a large portion of the commands can be ignored while 

expanding the wavefront from a single node.  

The redundant and zero actuation control commands can be filtered prior to expanding 

from the start node. The filtering process is accomplished by determining the desired heat 

transfer process between the start and destination nodes. From the required positive and 

negative heat transfer, control commands that result in zero actuation or that are 

redundant can be filtered out of the wavefront command list.  
 
The algorithm used to identify the reduced control command list is shown in Table 4.2.  

 
The complete NAA command list is also used in this algorithm, [1000, 0100, 0010, 0001,  
 
1100, 1010, 0101, 0011, 1111]. A numerical example is provided to the right of the  
 
algorithm and Figure 4.9 shows a graphical representation of the same solution. For this  
 
example, six heating control commands and one cooling control command will remain in  
 
the reduced control command list and these will be used in the expanding wavefront 



77 
 
  

Table 4.2: Reduced Command List Algorithm 
 Results 
any_heat_transfer = BITXOR(origin_node, destination_node) 1111 
neg_heat_transfer = BITAND(origin_node, any_heat_transfer) 1000 
neg_cmd_test = BITAND(neg_heat_transfer, NAA_command_list) [1000,0000,0000,

 0000,1000,0000,
 1000,0000,1000]

neg_cmd_test_index = UNIQUE*(neg_cmd_test) [1 2] 
neg_cmd_index = REMOVE_INDEX**(neg_cmd_test == 
0000,pos_cmd_test_index) 

[1] 

reduced_neg_cmd_list = NAA_cmd_list (neg_cmd_index) [1000] 
pos_heat_transfer = BITAND(destination_node, any_heat_transfer) 0111 
pos_cmd_test = BITAND(pos_heat_transfer, NAA_command_list) [0000,0100,0010,

 0001,0100,0010,
 0101,0011,0111]

pos_cmd_test_index = UNIQUE*(pos_cmd_test) [1 2 3 4 7 8 9] 
pos_cmd_index = REMOVE_INDEX**(pos_cmd_test == 
0000,pos_cmd_test_index) 

[2 3 4 7 8 9] 

reduced_pos_cmd_list = NAA_cmd_list(pos_cmd_index) [0100,0010,0001,
 0101,0011,1111]

*The UNIQUE function identifies the index of the first unique elements of the array. 
** The REMOVE_INDEX function identifies and removes the index of the control 
commands that result in zero actuation. 

 

 
Figure 4.9: A) The required heat transfer processes. B) Reduced control commands list. 
This is a visual representation of the example presented in Table II. From the origin and 
destination nodes, the required heat transfer can be calculated, and the reduced control 
command list can then be determined with bitwise operations. 

  

Origin
Node

Destination
Node

Positive
Heat Transfer

Negative
Heat Transfer

1 0
0 0

0 1
1 1

+
+ +

-

H
H H

H
C

H
H H
HH

H H
HH

H H
HH

H H
HH

H H
H

H2 H3 H4 H7 H9 C1H8

Node 1 Node 14
A)

B)

Contracted 1 Extended 0 Hot + Cold C Zero 



78 
 

process. The original NAA graph constructed using the complete control command list 

has no disconnections between the start and destination nodes. However, with the 

reduced command list, the search algorithm may find a node with no neighbors. This is 

because a command with superfluous flow changes the state of an actuator that did not 

need to change states. At this point in the algorithm, the eliminated commands are 

temporarily reinstated to allow the wavefront to expand towards the destination. The path 

that includes this unnecessary actuation may be desirable because it is faster than 

working around this single actuator. For example, if the start node is 0 of 16 actuators 

contracted and the destination state is 15 out of 16 actuators contracted, then flushing the 

entire 4x4 array with hot fluid and then sending a 1x1 cold command is faster (3.31 + 11 

= 4.31) than sending a sequence of 3x4 and 1x3 hot commands (3.11 + 1.51 = 4.61). 

4.5.3 Simultaneous Operation of Fluid and Electric Inputs 

 As discussed earlier, the architecture of NAA limits how energy can be delivered to the 

actuator array and it may take multiple control commands to achieve the desired 

actuation. However, the fluidic and electrical networks are independent and can operate 

in parallel, reducing the total operational time. In Figure 4.10, case A is the optimal 

solution to minimize energy (3ɛ1) while case B minimizes the time (1.81) using a  

sequence of commands that do not overlap. However in case C, the electrical command, 

E2 (0.41, 31), can be executed simultaneously with C2 (11, 11) at time zero and then 

E4 (0.4, 31) can be immediately executed after E2, for accumulated cost of (11, 71). 
 
Equation 3 defines the Time cost for simultaneous operation, where Tex is the execution  

 
time of the control command and Ts is the time that the potential control command can  
 
operate simultaneously with the control commands from the other domain. Therefore, the  
 
accumulated execution time to each node must be tracked for both the fluidic and  
 
electrical domains. For case C, command C1 does not overlap with an electric command,  
 
so Ts = 0. After C1 has been completed, the accumulated execution time is 11 for the 



79 
 
  

  
Figure 4.10: Comparison of sequential and simultaneous operations. The hot and cold 
fluids use the same vascular network to deliver/remove thermal energy and therefore can 
only operate sequentially. The electric and fluidic networks are independent of one 
another and can operate simultaneously for improved speed. 

fluidic domain and 01 for the electrical domain. From this new intermediate node, the 

Time cost for E2 is 01 because this electrical command can be executed at the same time 

as C1 with complete overlap. From this second intermediate node, the Time cost for E4 is 

again 01 because this second electrical command can be executed immediately after E4 

and at the same time as C1 with overlap. Figure 4.11 shows a case where simultaneous 

operations cannot be used. If steps 1 and 2 are done simultaneously, the state of the first 

actuator cannot be guaranteed. 

	
, 0
, 0

0,
 (4.3) 

 
Figure 4.11: A case where simultaneous operation is not valid. Both steps 1a and 1b are 
viable control commands but when applied simultaneously, the state of the upper right 
actuator cannot be guaranteed. 

C1: H4: H4:H2: E2:

1
0 1
00

1 0
0

t

t

t

C1 H2H4

C1
E2 E4

C1
E2 E4

Case

A

Energy(1)Time(1)

1+1+1 
= 3

1+1+1
= 3

B
3+3+1

= 7
0.4+0.4+1

= 1.8

C
1+3+3

= 7
1+0+0

= 1

Origin:
Node 1

Destination:
Node 6

H
C H

H H
H H

H H
H H

H E
H H

H H
H E

H

0
1 0
0 1

0 1
1

Node 1 Node 14 Step 1a Step1b

E
E E

E 1
C 1

1



80 
 

4.6 Simulations and Analysis 

4.6.1 Analysis of Expanding Wavefront and Command Reduction  

The expanding wavefront and command reduction algorithms proposed above have 

been implemented in MATLAB. Figure 4.12 shows the performance of A* using the 

expanding wave front algorithm with both the complete and reduced command list. Plots 

A and B show the average number of edges explored by the A* algorithm using both the 

complete and reduced command list respectively. Although both lists produce the same 

solution (plot C) the number of edges explored by the reduced list is only about 5% of the 

edges explored for the complete list when wh = 0 (Dijkstra's). The value of wh may vary 

depending on the performance characteristics of the wet SMA actuator array, the choice 

of performance weighting (wte) and/or the size of the array. 

Figure 4.13 shows the characteristics of a 4x4 array of actuators where the control 

  

 
Figure 4.12: Comparison of full and reduced commands for a 4x4 array using the A* 
expanding wavefront algorithm. Plots A & B show the number of edges explored for the 
full and reduced lists, respectively, as wh is varied. Plot C shows that both lists result in 
the same solution. 

0

5000

10000

 E
dg

es
  

E
xp

lo
re

d

(A)

      0

    200

    400

 E
dg

es
  

E
xp

lo
re

d

(B)

0 0.5 1 1.5 2 2.5 3
 4.0

 4.5

 5.0

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
 

C
os

t (
 

, 
)

w
h

(C)

 

 

Full CMD List Reduced CMD List



81 
 

  
Figure 4.13: Performance comparison of a 4x4 actuator array using sequential and 
simultaneous control commands. The simultaneous mode uses more electrical energy in 
order to improve the speed of the array. At a performance weighting of greater than 0.5, 
the simultaneous mode becomes more energy efficient than the sequential mode. This is 
because the sequential mode is using only electricity, which has a higher energy cost. 

inputs are done sequentially or simultaneously, where both methods sacrifice energy for 

faster operation. Figure 4.14 shows the type of energy being delivered to the actuators to 

achieve the desired performance. When the desired performance is to minimize energy 

(wte < 0.2), both the sequential and simultaneous operations use the same commands to 

deliver the low energy cost fluid to the array. As the desired speed of the array becomes 

more important, the simultaneous mode is the first to introduce electricity. The sequential 

mode completely swaps out hot fluid for electricity to achieve lower total actuation times, 

while the simultaneous mode continues to use hot fluid with electricity. Both modes 

incorporate superfluous flow to decrease the actuation time as seen by the increase in the 

cold fluid energy (pseudo-energy). The superfluous flow increases the speed of the array, 

but delivers energy to actuators that do not change states (zero work), and lowers the total 

efficiency of the array. When time is the critical component of operating cost, the 

simultaneous mode saves approximately 15% on energy and 25% on time compared to 

the sequential mode. 
 

2

4

6

T
im

e(
)

(A)

0 0.2 0.4 0.6 0.8 1
6

8

10
E

ne
rg

y 
( 

)

(B)

Min Energy       Performance Weighting (w
te

)       Min T ime

 

 

Sequential Simultaneous



82 
 

 
Figure 4.14: Comparison of energy inputs to the array for (A) sequential operation and 
(B) simultaneous operation. When it is desired to have the fastest operation, the 
sequential mode only uses the higher energy-cost electricity to heat the wire (5.5ɛ1), 
while the simultaneous mode uses both hot fluid and electricity (4.2ɛ1) to heat the wire.  

Table 4.3 shows the relative performance of the expanding wavefront A* algorithm 

using the two command lists with wh = 1.75. If wh is set to 1, it can take A* multiple 

orders longer to explore the graph because there can be a large number of nodes that have 

the same estimated cost-to-goal. The value of wh may vary depending on the performance 

characteristics of the wet SMA actuator array, performance weighting (wte) or the size of 

the array. For the 5x5 array, the reduced command list explores only about 10% of the 

edges explored by the complete command list and it takes about 12% of the 

computational time. For the 6x6 array, only simple solutions could be calculated when 

the complete command list was used and therefore no average computational cost could 

be simulated. 

 

 

0

2

4

6

E
ne

rg
y 

( 
)

(A) Energy for Sequential Operation

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

E
ne

rg
y 

( 
)

(B) Energy for Simultaneous Operation

Min Energy       Performance Weighting (w
te

)       Min T ime

 

 

HOT ELEC COLD



83 
 

Table 4.3: Performance Characteristics of A*  
with expanding wave front using 1.75·H. 

 Complete CMD list Reduced CMD List 
N Mean Edges 

Explored 
Mean Comp 

Time(s) 
Mean Edges 

Explored 
Mean Comp 

Time(s) 
3 103 0.029 21 0.016 
4 734 0.167 98 0.031 
5 4623 1.132 469 0.116 
6 - - 2424 0.640 

 

4.7 Conclusion 

This paper presents the implementation of graph theory to optimally control an array of 

previous challenge of the scalability of identifying an optimal path by constructing the 

SMA actuators using thermofluidic and electric inputs. This work overcomes the graph 

on the fly instead of using a preprocessed graph that scaled poorly. The wavefront 

algorithm examines the required heat transfer process and removes control commands 

that result in no actuation or redundant control commands. This reduction of commands 

can improve the search algorithm by as much as 90% while continuing to find an optimal 

solution. The expanding wavefront and control command reduction has allowed for an 

optimal solution to be found for a 6x6 array, which has over one million more states than 

a 4x4 array of previous work. Allowing the fluidic and electric networks to operate 

simultaneously results in both faster and more efficient operation. While this work has 

been motivated by research with SMA actuator arrays, it is anticipated that these control 

methods could also be applied to a more general class of actuators with multiple inputs, 

where the inputs have differing time and energy costs. 

Additional work will need to examine the operation of wet SMA arrays that have rows 

of actuators connected in series or parallel for greater resolution of the displacements. 

The challenge with this hardware configuration is that there are multiple combinations 

that result in the same total displacements (e.g., [1100], [1010], [0011]). For this reason, 

there would not be a single destination node and the A* algorithm would need to be 



84 
 

modified to identify the destination node as well as the path with minimum weighted 

cost.  

4.8 References 

[1] I. Kossyk, J. Dorr, and K. Kondak, “Design and evaluation of a wearable haptic 
interface for large workspaces,” in Proc. IEEE International Conference on Robots 
and Systems, Taipei, Taiwan, pp. 4674-4679, 2010. 

[2] P. Taylor, A. Moser, and A. Creed, “Design and control of a tactile display based on 
shape memory alloys,” in Proc. IEEE International Conference on Robotics and 
Automation, Albuquerque, NM, pp. 1318-1323, 1997.  

[3] Younkoo Jeong, Dongjoon Lee,  Kyunghwan Kim, and Jong Oh Park, “A wearable 
robotic arm with high force-reflection capability,” in Proc. IEEE International 
Workshop on Robot and Human Interactive Communication, Osaka, Japan,  pp. 
411-416, 2000.  

[4] E. Biddiss and Tom Chau, “Dielectric elastomers as actuators for upper limb 
prosthetics: Challenges and opportunities,” Medical Engineering & Physics, vol. 
30, issue 4, pp. 403-418, 2008. 

[5] C. Moreno, F. Brunetti, J. Pons, J Baydal, and R. Barbera, “Rationale for multiple 
compensation of muscle weakness walking with a wearable robotic orthosis,” in 
Proc. IEEE International Conference on Robotics and Automation, Arganda del 
Rey, Spain, pp. 1914, 2005. 

[6] L. Sherwood, Human physiology 7th ed., Belmont, CA, Cengage Learning, 2008. 

[7] I. Hunter and S. Lafontaine, "Comparison of muscle with artificial actuators," in 
Proc. IEEE Solid-State Sensors and Actuator Workshop, Hilton Head Island, SC, 
USA, pp. 178-185, 1992. 

[8] E. Steltz and R. Fearing, “Dynamometer Power Output Measurements of 
Piezoelectric Actuators,” in Proc. IEEE/RSJ International Conference on Intelligent 
Robots and Systems, pp. 3980-3986, 2007.  

[9] S. Mascaro and H. Asada, "Wet shape memory alloy actuators for active vasculated 
robotic flesh," in Proc. IEEE International Conference on Robotics and 
Automation, Taipei, Taiwan, pp. 282-287, 2003. 

[10] S. Dutta and F. Ghorbel, "Differential hysteresis modeling of a shape memory alloy 
wire actuator," IEEE/ASME Transactions on Mechatronics, vol. 10, pp. 189-197, 
2005. 



85 
 
[11] S. Govindjee and E. Kasper, "Computational aspects of one-dimensional shape 

memory alloy modeling with phase diagrams," Computer Methods in Applied 
Mechanics and Engineering, vol. 171, pp. 309-326, 1999. 

[12] K. Ikuta, M. Tsukamoto, and S. Hirose, "Mathematical model and experimental 
verification of shape memory alloy for designing micro actuator," in Proc.  IEEE 
Micro Electro Mechanical Systems, Nara, Japan, pp. 103-108, 1991. 

[13] K. Kuribayashi, S. Shimizu, M. Yoshitake, and S. Ogawa, "Mechanical properties 
and control of shape memory alloy thin film actuator," Journal of the Japan Society 
for Precision Engineering, vol. 64, pp. 413-417, 1998. 

[14] C. Liang and C. Rogers, "One-dimensional thermo-mechanical constitutive 
relations for shape memory materials," Journal of Intelligent Material Systems and 
Structures, vol. 8, pp. 285-302, 1997. 

[15] Y. Liu, D. Favier, and L. Orgeas, "Mechanistic simulation of thermomechanical 
behaviour of thermoelastic martensitic transformations in polycrystalline shape 
memory alloys," in Proc. 7th European Mechanics of Materials Conference on 
Adaptive Systems and Materials: Constitutive Materials and Hybrid Structures, 
Frejus, France, pp. 37-45, 2004. 

[16] A. Bhattacharyya and D. Lagoudas, "Stochastic thermodynamic model for the 
gradual thermal transformation of SMA polycrystals," Smart Materials and 
Structures, vol. 6, pp. 235-250, 1997. 

[17] K. O'Toole, M. McGrath, and D. Hatchett, "Transient characterization and analysis 
of shape memory alloy wire bundles for the actuation of finger joints in prosthesis 
design," Mechanika, vol. 68, pp. 65-69, 2007. 

[18] M. Elahinia and H. Ashrafiuon, "Nonlinear control of a shape memory alloy 
actuated manipulator," Journal of Vibration and Acoustics, Transactions of the 
ASME, vol. 124, pp. 566-575, 2002. 

[19] J. Jayender and R. Patel, "Modeling and Gain Scheduled Control of Shape Memory 
Alloy Actuators," in Proc. IEEE Conference on Control Applications, Toronto, 
Canada, pp. 767-772, 2005. 

[20] B. Selden, K. Cho, and H. Asada, "Segmented binary control of shape memory 
alloy actuator systems using the peltier effect," in Proc. IEEE International 
Conference on Robotics and Automation, New Orleans, LA, USA, pp. 4931-4936, 
2004. 

[21] K. Cho, B. Selden, and H. Asada, "Segmented binary control of shape memory 
alloy actuator systems," Smart Structures and Materials, pp. 314-322, 2005. 



86 
 
[22] K. Cho, J. Rosmarin, and H. Asada, "SBC hand: a lightweight robotic hand with an 

SMA actuator array implementing C-segmentation,” in Proc. IEEE International 
Conference on Robotics and Automation, Rome, Italy, pp. 921-926, 2007. 

[23] K. De Laurentis, A. Fisch, J. Nikitczuk, and C. Mavroidis, "Optimal design of 
shape memory alloy wire bundle actuators," in Proc. IEEE International 
Conference on Robotics and Automation, Washington, DC, USA, pp. 2363-2368, 
2002. 

[24] R. Mukherjee, T. Christian, and R. Thiel, "An actuation system for the control of 
multiple shape memory alloy actuators," Sensors and Actuators A: Physical, vol. 
55, pp. 367-382, 1996. 

[25] Mascaro and H. Asada, "Vast DOF wet shape memory alloy actuators using matrix 
manifold and valve system," in Proc. ASME International Mechanical Engineering 
Congress, Dynamic Systems and Control Division, Washington, DC, USA, pp.577-
582, 2003. 

[26] S. Mascaro, K. Cho, and H. Asada, "Design and control of vast DOF wet SMA 
array actuators," in Proc. of the IEEE International Conference on Intelligent 
Robots and Systems, Las Vegas, NV, USA, pp. 577-582, 2003. 

[27] L. Flemming and S. Mascaro, "Wet SMA actuator array with matrix 
vasoconstriction device," in Proc. ASME International Mechanical Engineering 
Congress and Exposition, Dynamic Systems and Control Division, Orlando, FL, 
USA, pp. 1751-1758, 2005. 

[28] L. Flemming and S. Mascaro, "Control of a scalable matrix vasoconstrictor device 
for wet actuator arrays," in Proc. IEEE International Conference on Robotics and 
Automation, Rome, Italy, pp. 638-653, 2007. 

[29] L. Flemming, D. Johnson and S. Mascaro, “Optimal control of multi-input SMA 
actuator arrays using graph theory,” in Proc. IEEE International Conference on 
Robotics, Shanghai, China, pp. 6109–6114, 2011. 

[30] L. Flemming, D. Johnson and S. Mascaro, “Optimal control of multi-input SMA 
actuator arrays using graph theory: expanding wavefront & simultaneous 
operation,” in Proc. IEEE/RSJ International Conference on Robots and Systems, 
San Francisco, CA, USA, pp. 780-785, 2011. 

[31] "Technical Characteristics of Flexinol Actuator Wires" Dynalloy Inc., Available: 
www.dynalloy.com. 

[32] M. Nakatani, H. Kajimoto, K. Vlack, D. Sekiguchi, N. Kawakami, and S. Tachi, 
"Pop up!: 3D form display with coil-type shape memory alloy," Journal of the 
Institute of Image Information and Television Engineers, vol. 60, pp. 183-191, 
2006. 



87 
 
[33] J. Ertel and S. Mascaro, “Thermomechanical modeling of a wet shape memory 

alloy actuator,” in Proc. ASME International Mechanical Engineering Congress and 
Exposition, Chicago, IL, USA, pp. 1317-1324, 2006. 

[34] L. Flemming and S. Mascaro, "Analysis of hybrid electric/thermofluidic control for 
wet shape memory alloy actuators," in Proc. ASME Dynamic Systems and Controls 
Conference, Hollywood, CA, USA, pp. 1041-1047, 2009. 

[35] J. Ertel and S. Mascaro, “Dynamic thermomechanical modeling of a wet shape 
memory alloy actuator,” Transactions of the ASME Journal of Dynamic Systems, 
Measurements and Control, vol. 132, no. 4, pp. 1-9, 2010. 

[36] S. Russell and P. Norvig, Artificial intelligence – a modern approach, 3rd ed., 
Upper Saddle River, New Jersey, USA: Pearson Education Inc., 2010.  

 



 
 

CHAPTER 5  

CONCLUSIONS

The work presented in this dissertation has shown that large arrays of wet SMA 

actuators can be controlled intelligently based on the performance characteristics of the 

actuators and graph theory algorithms. NAA not only addresses the hardware scalability 

of wet SMA actuators, but the discrete nature of NAA has been shown to be beneficial 

with the scalability of the algorithms. The discrete NAA control commands allow the 

NAA graph to be constructed using an expanding wavefront and simple bitwise 

operations. By filtering the complete control command list based on the desired actuation, 

the A* algorithm, in conjunction with the expanding wave front algorithm, explores only 

a small percentage of the NAA graph, less than 0.01% for a 4x4, to identify an optimized 

sequence of control commands. This intelligent control theory will allow other actuators 

such as Electroactive Polymers (EAPs), to be integrated into large arrays and be 

controlled by multiple inputs.  

Although the A* algorithm and the expanding wavefront provide an effective method of 

identifying an optimal sequence of control commands for large arrays, it has not 

completely resolved the issue of scalability. When the columns of actuators are connected 

in series or parallel, there may be a large number of nodes (array configurations) that can 

produce the desired displacements (destination nodes). The current A* algorithm can be 

adapted to search for a minimum cost solution to multiple nodes; however, it is not viable 



89 
 
to search all these nodes to guarantee an optimal solution. For example, when a 5x5 array 

has a desired displacement of [2 2 2 2 2], there are 100000 nodes that can produce this 

displacement. The solution presented in Chapter 2, Section F appears to be a partial 

solution to this problem. This forecasting process ensures that selected destination node 

has the largest subarrays available for the proceeding destination. Although this may not 

be an optimal node for the current desired displacements, the selected node is believed to 

the best node with minimal cost to all future desired displacements. 

In this work, all of the actuators had equal lengths, and when connected in series, there 

are N+1 discrete displacements that can be produced. If it is desired to have finer 

resolution with equal length actuators, the number of actuators would have to increase. 

Another option would be to have unequal actuator lengths. For example, if there are two 

actuators with lengths of 1/3 and 2/3, respectively, then there are 2N-1 (3) combinations 

of contracted actuators that produce unique displacements. For this method, there would 

be a single destination node that can produce the desired displacement (each column 

would have a single solution). One challenge of this solution is that each actuator would 

need to be controlled for different amounts of time. Additionally, if the desired 

displacements was somewhere between two combinations of wire segments, there could 

be multiple destination to examine for an optimal solution. 

The solution presented in this dissertation only examined the cost to transition the array 

from one state to another. However, there could be additional energy cost incurred by the 

array to maintain the actuators in contracted state. If an actuator is electrically heated, it 

must be continuously heated to remain contracted. Whereas if it had been driven 

fluidically, the fluid flow could be turned off and the actuator would remain contracted 



90 
 
for a longer period of time. Therefore the cost function will need to be modified to 

manage desired duration of the contractions. 

 

 



 
 

APPENDIX 

NAA GRAPH THEORY ALGORITHMS

The algorithms presented in this dissertation were implemented in MATLAB. 

astar_naa.m is the primary function that integrates the components of Chapters 2 and 4. 

run_Astar.m is a script that runs the A* algorithm with different origin and destination 

and performance characteristics (energy and time).  The build_cost_index.m and 

build_time_index.m are functions that are used in the run_Astar script to format the 

performance characteristics in to the correct format for the astar_naa. 

build_N_submatrix.m is a script that can construct a table or control command for 

different size arrays. 

A.1 astar_naa.m 

This function determines that optimal control command sequence between the origin and destination nodes. 
There are 13 nested functions in this function that are able to share data without the need to passing the data 
in and out of separate functions. This function also uses persistent variables which allow the memory 
locations to remain active after the function is completed (closed) and therefore these memory location do 
not have to be re-established the next time the function is called. 
 
function [V_output,V_count] = 
astar_naa(ORIGIN,DESTINATION,WH,COST,SIMULTANEOUS,REDUCE) 
global SUBMATRIX  N2 N_CMDS 
  
%%%%% 
% The persistent function variables that are local to the function in which 
% they are declared yet their values are retained in memory between calls 
% to the function. The goal of using the persistent function it prevent the 
% need to allocate memory locations every time the function is called. 
%%%%% 
  
%%%%% 
% Naming Convention 
% 
% All terms with all CAPS are inputs to this function 
% All terms beginning with 'I' represent an index in the explored table 
% and will never change in the function 
% 
% All terms beginning with 'V' are variables that will updated during the function 
% 
% All terms that are lower case are functions.  Those functions starting 



92 
 
% with 'nf' are nested / embedded functions with in this 'astar_naa.m'_ 
  
  
%%%%% 
% Some lines of code are too long for printing.  A series of three dots 
% (...) allow for the line of code to be continued on to the next page. 
%%%%% 
  
persistent I_hot  I_elec  I_cold 
persistent I_node  I_node_index  I_prev_node  I_prev_node_index 
persistent I_accum_path_cost  I_estimated_total_cost  I_cost2goal 
persistent I_complete_hot  I_complete_elec  I_complete_cold 
persistent I_time2node_fluid  I_time2node_elec  I_cmd_execute_time 
persistent I_cmd2node  I_cmd2node_index  I_cmdtype2node  I_edge_cost 
persistent V_explored  V_explored_size  V_part_explored 
persistent V_openset_index  V_active_set 
persistent V_edges2neighbors_heat_index  V_cost_of_edge 
persistent V_edges2neighbors_cool_index  V_explored_neighbor_index  V_current_cmd 
persistent V_current_cmd_index  V_neighbors2current_cold  V_neighbors2current_heat 
persistent V_cost_hot  V_test_cost_hot  V_test_cost V_cmd_type V_prev_node_index 
persistent V_cost_elec  V_test_cost_elec 
persistent V_sub_h_cmd  V_sub_h_index  V_sub_h_cmd_not  V_sub_h_index_not 
persistent V_sub_c_cmd  V_sub_c_index  V_sub_c_cmd_not  V_sub_c_index_not 
persistent V_time2node_hot  V_min_est_index_temp 
persistent V_time2node_elec  V_current_explored_node_index V_current_node 
V_time2node 
persistent V_execute_time_elec  V_execute_time_hot  V_execute_time   V_neighbor 
  
nf_initialize; 
nf_submatrix_reduced; 
nf_astar; 
nf_create_directions; 
  
   function nf_astar 
      while ~isempty(V_openset_index) 
        V_part_explored = V_explored(:,V_openset_index); 
        [~, V_min_est_index_temp] = min(V_part_explored(I_estimated_total_cost,:)); 
        V_current_node = V_part_explored(I_node,V_min_est_index_temp); 
        V_current_explored_node_index =... 
           V_part_explored(I_node_index,V_min_est_index_temp); 
        if V_current_node == DESTINATION; 
           break % this will get out of this for while loop 
        end 
        nf_move_open2closed 
        nf_expand_wavefront 
        for ii = length(V_neighbors2current_heat):-1:1; 
           V_count = V_count+1; 
           V_neighbor = V_neighbors2current_heat(ii); 
            
           V_explored_neighbor_index = find(V_neighbor == V_active_set); 
           nf_is_in_explored 
           V_current_cmd_index = V_edges2neighbors_heat_index(ii); 
           V_current_cmd = SUBMATRIX.dec(V_current_cmd_index); 
           nf_calculate_hot_cost 
           nf_calculate_elec_cost 
           if V_test_cost_hot < V_test_cost_elec 
              V_test_cost = V_test_cost_hot; 
              V_cost_of_edge = V_cost_hot; 
              V_cmd_type = I_hot; 
              V_execute_time = V_execute_time_hot; 
              V_time2node = V_time2node_hot; 
           else 
              V_test_cost = V_test_cost_elec; 
              V_cost_of_edge = V_cost_elec; 
              V_cmd_type = I_elec; 
              V_execute_time = V_execute_time_elec; 



93 
 
              V_time2node = V_time2node_elec; 
           end 
           % this is not <=, becuase there is no need to nf_update path if solution 
           % is already optimal 
           if V_test_cost < V_explored(I_accum_path_cost,V_explored_neighbor_index); 
              nf_update 
           end 
        end 
        for ii = length(V_neighbors2current_cold):-1:1; 
           V_count = V_count+1; 
           V_neighbor = V_neighbors2current_cold(ii); 
           V_explored_neighbor_index = find(V_neighbor == V_active_set); 
           nf_is_in_explored; 
           V_current_cmd_index = V_edges2neighbors_cool_index(ii); 
           V_current_cmd = SUBMATRIX.dec(V_current_cmd_index); 
           nf_calculate_cold_cost 
           % this is not <=, becuase there is no need to nf_update path if 
           % solution is already optimal 
           if V_test_cost < V_explored(I_accum_path_cost,V_explored_neighbor_index); 
              V_cmd_type = I_cold; 
              nf_update 
           end 
        end 
      end %%%%% close nf_astar 
   end 
  
  
   function nf_initialize 
      if isempty(V_explored) 
        I_hot = 1; 
        I_elec = 2; 
        I_cold = 3; 
        I_node = 1; 
        I_node_index = 2; 
        I_prev_node = 3; 
        I_prev_node_index = 4; 
        I_accum_path_cost = 5; 
        I_estimated_total_cost = 6; 
        I_edge_cost =7; 
        I_time2node_fluid = 8; 
        I_time2node_elec = 9; 
        I_cmd_execute_time = 10; 
        I_cmd2node = 11; 
        I_cmd2node_index = 12; 
        I_cmdtype2node = 13; 
        I_cost2goal = 14; % heuristic value # bits to be flipped 
        I_complete_hot = 15; 
        I_complete_elec = 16; 
        I_complete_cold = 17; 
        V_explored = zeros(I_complete_cold,5000); 
      end 
      V_count=0; 
      V_explored= V_explored*0; 
      V_explored_size = 1; 
      V_explored_index = V_explored_size; 
      % this set of I_nodes have a path, but the path cost to I_node has 
      % not been proven to be minimum 
      V_explored(I_node,V_explored_index) = ORIGIN; 
      V_explored(I_node_index,V_explored_index) = V_explored_size; 
      V_explored(I_cost2goal,V_explored_index) = nf_weighted_cost2goal(ORIGIN); 
      V_explored(I_estimated_total_cost,V_explored_index) =... 
        V_explored(I_cost2goal,V_explored_index); 
      V_openset_index= 1; 
      V_active_set = ORIGIN; 
      V_current_node = ORIGIN; 
      V_current_explored_node_index = 1; 



94 
 
   end %%close nf_intialize 
  
  
   function nf_calculate_hot_cost 
      if SIMULTANEOUS 
        V_overlap =... 
           bitand(V_explored(I_complete_elec,V_current_explored_node_index)... 
           ,V_current_cmd); 
        if V_overlap == 0 
           V_execute_time_hot =... 
              V_explored(I_time2node_fluid,V_current_explored_node_index); 
        else 
           V_execute_time_hot =... 
              V_explored(I_time2node_elec,V_current_explored_node_index); 
           V_segment_overlap =... 
              bitand(V_explored(I_cmd2node,V_current_explored_node_index)... 
              ,V_current_cmd); 
           V_prev_node_index = V_explored(I_prev_node_index... 
              ,V_current_explored_node_index); 
           while ((V_segment_overlap == 0) && (V_prev_node_index > 1)) 
              V_execute_time_hot = V_explored(I_time2node_elec,V_prev_node_index); 
              V_segment_overlap =... 
                bitand(V_explored(I_cmd2node,V_prev_node_index),V_current_cmd); 
              V_prev_node_index = V_explored(I_prev_node_index,V_prev_node_index); 
           end 
           if V_execute_time_hot <... 
                V_explored(I_time2node_fluid,V_current_explored_node_index) 
              V_execute_time_hot =... 
                V_explored(I_time2node_fluid,V_current_explored_node_index); 
           end 
        end 
        V_time2node_hot = V_execute_time_hot + COST.time(I_hot,V_current_cmd_index); 
        % Complete V_overlap 
        if V_time2node_hot <=... 
              V_explored(I_time2node_elec,V_current_explored_node_index) 
           V_cost_hot = COST.w_energy(I_hot,V_current_cmd_index); 
           V_test_cost_hot =... 
              V_explored(I_accum_path_cost,V_current_explored_node_index)... 
              + COST.w_energy(I_hot,V_current_cmd_index) +  0 ; 
           % No V_overlap 
        elseif V_execute_time_hot >=... 
              V_explored(I_time2node_elec,V_current_explored_node_index) 
           V_cost_hot = COST.w_energy(I_hot,V_current_cmd_index)... 
              + COST.w_time(I_hot,V_current_cmd_index); 
           V_test_cost_hot =... 
              V_explored(I_accum_path_cost,V_current_explored_node_index)... 
              + COST.w_energy(I_hot,V_current_cmd_index)... 
              + COST.w_time(I_hot,V_current_cmd_index) ; 
           % partial V_overlap 
        else 
           V_cost_hot = + COST.w_energy(I_hot,V_current_cmd_index)... 
              + (V_time2node_hot -... 
              V_explored(I_time2node_elec,V_current_explored_node_index))... 
              / COST.time(I_hot,V_current_cmd_index)... 
              *COST.w_time(I_hot,V_current_cmd_index); 
           V_test_cost_hot =... 
              V_explored(I_accum_path_cost,V_current_explored_node_index)... 
              + COST.w_energy(I_hot,V_current_cmd_index)... 
              + (V_time2node_hot... 
              -V_explored(I_time2node_elec,V_current_explored_node_index))/... 
              COST.w_time(I_hot,V_current_cmd_index)... 
              *COST.weighted_t(V_current_cmd_index); 
        end 
      else %NOT SIMULTANEOUSLY 
        V_execute_time_hot =... 
           max(V_explored(I_time2node_fluid:I_time2node_elec,... 



95 
 
           V_current_explored_node_index)); 
        V_time2node_hot = V_execute_time_hot + COST.time(I_hot,V_current_cmd_index); 
        V_test_cost_hot =... 
           V_explored(I_accum_path_cost,V_current_explored_node_index)... 
           + COST.w_cost(I_hot,V_current_cmd_index); 
        V_cost_hot =  COST.w_cost(I_hot,V_current_cmd_index); 
      end 
   end %%%%% close nf_calculate_hot_cost 
  
  
   function nf_calculate_elec_cost 
      if SIMULTANEOUS 
        V_overlap =... 
           bitand(V_explored(I_complete_cold,V_current_explored_node_index),... 
           V_current_cmd); 
        if V_overlap == 0; 
           V_execute_time_elec =... 
              V_explored(I_time2node_elec,V_current_explored_node_index); 
        else 
           V_execute_time_elec =... 
              V_explored(I_time2node_fluid,V_current_explored_node_index); 
           V_segment_overlap =... 
              bitand(V_explored(I_cmd2node,V_current_explored_node_index),... 
              V_current_cmd); 
           V_prev_node_index = V_explored(I_prev_node_index,... 
              V_current_explored_node_index); 
           while (((V_segment_overlap == 0) && (V_prev_node_index > 1))... 
                && ~(V_execute_time_elec < V_explored(I_time2node_elec,... 
                V_current_explored_node_index))) 
              V_execute_time_elec= V_explored(I_time2node_fluid,V_prev_node_index); 
              V_segment_overlap =... 
                bitand(V_explored(I_cmd2node,V_prev_node_index),V_current_cmd); 
              V_prev_node_index = V_explored(I_prev_node_index,V_prev_node_index); 
           end 
           if V_execute_time_elec <... 
                V_explored(I_time2node_elec,V_current_explored_node_index) 
              V_execute_time_elec =... 
                V_explored(I_time2node_elec,V_current_explored_node_index); 
           end 
        end 
         
        V_time2node_elec = V_execute_time_elec... 
           + COST.time(I_elec,V_current_cmd_index); 
        % Complete V_overlap 
        if V_time2node_elec <= V_explored(I_time2node_fluid,... 
              V_current_explored_node_index) 
           V_cost_elec =COST.w_energy(I_elec,V_current_cmd_index) +  0; 
           V_test_cost_elec = V_explored(I_accum_path_cost,... 
              V_current_explored_node_index)... 
              + COST.w_energy(I_elec,V_current_cmd_index) +  0; 
           % No V_overlap 
        elseif V_execute_time_elec >=... 
              V_explored(I_time2node_elec,V_current_explored_node_index) 
           V_cost_elec = COST.w_energy(I_elec,V_current_cmd_index)... 
              + COST.w_time(I_elec,V_current_cmd_index); 
           V_test_cost_elec =... 
              V_explored(I_accum_path_cost,V_current_explored_node_index)... 
              + COST.w_energy(I_elec,V_current_cmd_index)... 
              + COST.w_time(I_elec,V_current_cmd_index); 
           % partial V_overlap 
        else 
           V_cost_elec = COST.w_energy(I_elec,V_current_cmd_index)... 
              + (V_time2node_elec... 
              -V_explored(I_time2node_fluid,V_current_explored_node_index))... 
              / COST.time(I_elec,V_current_cmd_index)... 
              *COST.w_time(I_elec,V_current_cmd_index); 



96 
 
           V_test_cost_elec = V_explored(I_accum_path_cost,... 
              V_current_explored_node_index)... 
              + COST.w_energy(I_elec,V_current_cmd_index)... 
              + (V_time2node_elec... 
              -V_explored(I_time2node_fluid,V_current_explored_node_index))... 
              / COST.w_time(I_elec,V_current_cmd_index)... 
              *COST.weighted_t(V_current_cmd_index); 
        end 
         
      else 
        V_execute_time_elec =... 
           max(V_explored(I_time2node_fluid:I_time2node_elec,... 
           V_current_explored_node_index)); 
        V_time2node_elec = V_execute_time_elec... 
           + COST.time(I_elec,V_current_cmd_index); 
        V_test_cost_elec =... 
           V_explored(I_accum_path_cost,V_current_explored_node_index)... 
           + COST.w_cost(I_elec,V_current_cmd_index);%(time & energy) 
        V_cost_elec = COST.w_cost(I_elec,V_current_cmd_index);%(time & energy) 
      end 
   end %%%%% close nf_calculate_elec_cost 
  
  
   function nf_calculate_cold_cost 
      if SIMULTANEOUS 
        V_overlap =... 
           bitand(V_explored(I_complete_elec,V_current_explored_node_index),... 
           V_current_cmd); 
        if V_overlap == 0 
           V_execute_time =... 
              V_explored(I_time2node_fluid,V_current_explored_node_index); 
        else 
           V_execute_time =... 
              V_explored(I_time2node_elec,V_current_explored_node_index); 
           V_segment_overlap =... 
              bitand(V_explored(I_cmd2node,V_current_explored_node_index),... 
              V_current_cmd); 
           V_prev_node_index = V_explored(I_prev_node_index,... 
              V_current_explored_node_index); 
           while ((V_segment_overlap ==0) &&  (V_prev_node_index > 1)) 
              V_execute_time = V_explored(I_time2node_elec,V_prev_node_index); 
              V_segment_overlap =... 
                bitand(V_explored(I_cmd2node,V_prev_node_index),V_current_cmd); 
              V_prev_node_index = V_explored(I_prev_node_index,V_prev_node_index); 
           end 
           if V_execute_time <... 
                V_explored(I_time2node_elec,V_current_explored_node_index) 
              V_execute_time =.... 
                V_explored(I_time2node_elec,V_current_explored_node_index); 
           end 
        end 
        V_time2node = V_execute_time + COST.time(I_cold,V_current_cmd_index); 
        % Complete V_overlap 
        if V_time2node <= V_explored(I_time2node_elec,V_current_explored_node_index) 
           V_cost_of_edge = COST.w_energy(I_cold,V_current_cmd_index) +  0 ; 
           V_test_cost =... 
              V_explored(I_accum_path_cost,V_current_explored_node_index)... 
              + COST.w_energy(I_cold,V_current_cmd_index) +  0 ; 
           % No V_overlap 
        elseif V_execute_time >=... 
              V_explored(I_time2node_elec,V_current_explored_node_index) 
           V_cost_of_edge = COST.w_energy(I_cold,V_current_cmd_index)... 
              + COST.w_time(I_cold,V_current_cmd_index) ; 
           V_test_cost =... 
              V_explored(I_accum_path_cost,V_current_explored_node_index)... 
              + COST.w_energy(I_cold,V_current_cmd_index)... 



97 
 
              + COST.w_time(I_cold,V_current_cmd_index) ; 
           % partial V_overlap 
        else 
           V_cost_of_edge = COST.w_energy(I_cold,V_current_cmd_index)... 
              + (V_time2node-V_explored(I_time2node_elec,... 
              V_current_explored_node_index))... 
              / COST.time(I_cold,V_current_cmd_index)... 
              *COST.w_time(I_cold,V_current_cmd_index); 
           V_test_cost =... 
              V_explored(I_accum_path_cost,V_current_explored_node_index)... 
              + COST.w_energy(I_cold,V_current_cmd_index)... 
              + (V_time2node... 
              -V_explored(I_time2node_elec,V_current_explored_node_index))... 
              / COST.time(I_cold,V_current_cmd_index)... 
              *COST.w_time(I_cold,V_current_cmd_index); 
        end 
      else 
        V_execute_time =... 
           max(V_explored(I_time2node_fluid:I_time2node_elec,... 
           V_current_explored_node_index)); 
        V_time2node = V_execute_time + COST.time(I_cold,V_current_cmd_index); 
        V_test_cost = V_explored(I_accum_path_cost,V_current_explored_node_index)... 
           + COST.w_cost(I_cold,V_current_cmd_index); 
        V_cost_of_edge = COST.w_cost(I_cold,V_current_cmd_index); 
      end 
   end %%%%% close nf_calculate_cold_cost 
  
  
   function nf_update 
      V_explored(I_accum_path_cost,V_explored_neighbor_index) = V_test_cost; 
      V_explored(I_edge_cost,V_explored_neighbor_index) = V_cost_of_edge; 
      V_explored(I_prev_node,V_explored_neighbor_index) = V_current_node; 
      V_explored(I_prev_node_index,V_explored_neighbor_index) =... 
        V_current_explored_node_index; 
      V_explored(I_estimated_total_cost,V_explored_neighbor_index) =... 
        V_explored(I_accum_path_cost,V_explored_neighbor_index)... 
        +  V_explored(I_cost2goal,V_explored_neighbor_index); 
      V_explored(I_cmd_execute_time,V_explored_neighbor_index) = V_execute_time; 
      V_explored(I_cmd2node,V_explored_neighbor_index) = V_current_cmd; 
      V_explored(I_cmd2node_index,V_explored_neighbor_index) = V_current_cmd_index; 
      V_explored(I_cmdtype2node,V_explored_neighbor_index) = V_cmd_type; 
      switch V_cmd_type 
        case I_hot 
           % no action taken in I_electric domain, therefore no time added 
           V_explored(I_time2node_fluid,V_explored_neighbor_index) = V_time2node; 
           V_explored(I_time2node_elec,V_explored_neighbor_index) =... 
              V_explored(I_time2node_elec,V_current_explored_node_index); 
           V_explored(I_complete_hot,V_explored_neighbor_index) =... 
              bitor(V_explored(I_complete_hot,V_current_explored_node_index),... 
              V_current_cmd); 
           V_explored(I_complete_elec,V_explored_neighbor_index) =... 
              V_explored(I_complete_elec,V_current_explored_node_index); 
           V_explored(I_complete_cold,V_explored_neighbor_index) =... 
              V_explored(I_complete_cold,V_current_explored_node_index); 
        case I_elec 
           % no action taken in I_electric domain, therefore no time added 
           V_explored(I_time2node_fluid,V_explored_neighbor_index) =... 
              V_explored(I_time2node_fluid,V_current_explored_node_index); 
           V_explored(I_time2node_elec,V_explored_neighbor_index) = V_time2node; 
           V_explored(I_complete_hot,V_explored_neighbor_index) =... 
              V_explored(I_complete_hot,V_current_explored_node_index); 
           V_explored(I_complete_elec,V_explored_neighbor_index) =... 
              bitor(V_explored(I_complete_elec,V_current_explored_node_index),... 
              V_current_cmd); 
           V_explored(I_complete_cold,V_explored_neighbor_index) =... 
              V_explored(I_complete_cold,V_current_explored_node_index); 



98 
 
        case I_cold 
           % no action taken in I_electric domain, therefore no time added 
           V_explored(I_time2node_fluid,V_explored_neighbor_index) = V_time2node; 
           V_explored(I_time2node_elec,V_explored_neighbor_index) =... 
              V_explored(I_time2node_elec,V_current_explored_node_index); 
           V_explored(I_complete_hot,V_explored_neighbor_index) =... 
              V_explored(I_complete_hot,V_current_explored_node_index); 
           V_explored(I_complete_elec,V_explored_neighbor_index) =... 
              V_explored(I_complete_elec,V_current_explored_node_index); 
           V_explored(I_complete_cold,V_explored_neighbor_index) =... 
              bitor(V_explored(I_complete_cold,V_current_explored_node_index),... 
              V_current_cmd); 
      end 
   end %%%%% nf_update 
  
  
   function h = nf_weighted_cost2goal(I_node2evaluate) %Heuristic 
      % this identifies the actuators that need to change states (the absolute 
V_error) 
      dx = double(bitxor(I_node2evaluate,DESTINATION)); 
      [~,e]=log2(max(dx)); 
      bits2flip =sum(rem(floor(dx*pow2(1-max(1,e):0)),2)); 
      h = WH*COST.w_h(bits2flip+1); 
      h = WH*bits2flip; 
      h = COST.w_h(bits2flip+1); 
   end 
  
  
   function nf_expand_wavefront 
      % Heat nf_expand_wavefront 
      V_neighbors2current_heat = bitor(V_current_node,V_sub_h_cmd); 
      if ~isempty(V_neighbors2current_heat) 
        [V_neighbors2current_heat,index_unique_V_neighbors_h] =... 
           unique(V_neighbors2current_heat,'first'); 
        index_unique_V_neighbors_h(V_neighbors2current_heat == V_current_node) = []; 
        V_neighbors2current_heat(V_neighbors2current_heat == V_current_node) = []; 
        V_edges2neighbors_heat_index = V_sub_h_index(index_unique_V_neighbors_h); 
         
      else% isempty(V_neighbors2current_heat) 
        V_neighbors2current_heat = bitor(V_current_node,V_sub_h_cmd_not); 
        [V_neighbors2current_heat,index_unique_V_neighbors_h] =... 
           unique(V_neighbors2current_heat,'first'); 
        index_unique_V_neighbors_h(V_neighbors2current_heat == V_current_node) = []; 
        V_neighbors2current_heat(V_neighbors2current_heat == V_current_node) = []; 
        V_edges2neighbors_heat_index = 
V_sub_h_index_not(index_unique_V_neighbors_h); 
      end 
       
      % cool nf_expand_wavefront 
      V_neighbors2current_cold =... 
        bitcmp(bitor(bitcmp(V_current_node,N2),V_sub_c_cmd),N2); 
      if ~isempty(V_neighbors2current_cold); 
        [V_neighbors2current_cold,index_unique_V_neighbors_c] =... 
           unique(V_neighbors2current_cold,'first'); 
        index_unique_V_neighbors_c(V_neighbors2current_cold == V_current_node) = []; 
        V_neighbors2current_cold(V_neighbors2current_cold == V_current_node) = []; 
        V_edges2neighbors_cool_index = V_sub_c_index(index_unique_V_neighbors_c); 
      else% isempty(V_neighbors2current_cold) 
        V_neighbors2current_cold = bitcmp(bitor(bitcmp(V_current_node,N2),... 
           V_sub_c_cmd_not),N2); 
        [V_neighbors2current_cold,index_unique_V_neighbors_c] =... 
           unique(V_neighbors2current_cold,'first'); 
        index_unique_V_neighbors_c(V_neighbors2current_cold == V_current_node) = []; 
        V_neighbors2current_cold(V_neighbors2current_cold == V_current_node) = []; 
        V_edges2neighbors_cool_index = 
V_sub_c_index_not(index_unique_V_neighbors_c); 



99 
 
      end 
   end %%%%% nf_expand_wavefront 
  
  
   function nf_is_in_explored 
      if isempty(V_explored_neighbor_index) 
        V_active_set = [V_active_set V_neighbor]; 
        V_explored_size = V_explored_size+1; 
        V_explored(I_node,V_explored_size) = V_neighbor; 
        V_explored(I_node_index,V_explored_size) = V_explored_size; 
        V_explored(I_prev_node,V_explored_size) = V_current_node; 
        V_openset_index = [V_openset_index V_explored_size]; 
        V_explored(I_accum_path_cost,V_explored_size)= inf; 
        V_explored(I_cost2goal,V_explored_size) =  
nf_weighted_cost2goal(V_neighbor); 
        V_explored_neighbor_index = V_explored_size; 
      end 
   end 
  
  
   function nf_move_open2closed 
      remove_index = (V_openset_index == V_current_explored_node_index); 
      V_openset_index(remove_index) = []; 
   end %%%%% nf_move_open2closed 
  
  
   function nf_submatrix_reduced 
      if REDUCE 
        V_error = bitxor(ORIGIN,DESTINATION); 
        V_error_h = bitand(DESTINATION,V_error); 
        V_error_c = bitand(ORIGIN,V_error); 
         
        [sub_h, V_sub_h_index, ~] = unique(bitand(V_error_h,SUBMATRIX.dec),'first'); 
        V_sub_h_index(sub_h == 0) =[]; 
        V_sub_h_cmd = SUBMATRIX.dec(V_sub_h_index); 
         
        V_sub_h_index_not = 1:N_CMDS; 
        V_sub_h_index_not(V_sub_h_index) = []; 
        V_sub_h_cmd_not = SUBMATRIX.dec; 
        V_sub_h_cmd_not(V_sub_h_index) = []; 
         
        [sub_c, V_sub_c_index, ~] = unique(bitand(V_error_c,SUBMATRIX.dec),'first'); 
        V_sub_c_index(sub_c == 0) =[]; 
        V_sub_c_cmd = SUBMATRIX.dec(V_sub_c_index); 
         
        V_sub_c_index_not = 1:N_CMDS; 
        V_sub_c_index_not(V_sub_c_index) = []; 
        V_sub_c_cmd_not = SUBMATRIX.dec; 
        V_sub_c_cmd_not(V_sub_c_index) = []; 
         
      else %full control command list 
        V_sub_h_cmd = SUBMATRIX.dec; 
        V_sub_c_cmd = SUBMATRIX.dec; 
        V_sub_h_index = 1:N_CMDS; 
        V_sub_c_index = 1:N_CMDS; 
      end 
   end %%%%% nf_submatrix_reduced 
  
  
   function nf_create_directions 
      V_backnode_index = V_current_explored_node_index; 
      V_output.I_nodes = []; 
      V_output.cmd =[]; 
      V_output.type = []; 
      V_output.energy = []; 
      V_output.time2 = []; 



100 
 
      V_output.timeE = []; 
       
      while V_backnode_index ~= 1 
        V_output.I_nodes = [V_explored(I_node,V_backnode_index),V_output.I_nodes]; 
        V_output.cmd = [V_explored(I_cmd2node,V_backnode_index),V_output.cmd]; 
        V_output.type = [V_explored(I_cmdtype2node,V_backnode_index),V_output.type]; 
        V_output.time2 =... 
           [V_explored(I_time2node_fluid:I_time2node_elec,V_backnode_index),... 
           V_output.time2]; 
        V_output.timeE =... 
           [V_explored(I_cmd_execute_time,V_backnode_index),V_output.timeE]; 
        if V_explored(I_cmdtype2node,V_backnode_index) == I_hot 
           V_output.energy =... 
              [[COST.energy(I_hot,... 
              V_explored(I_cmd2node_index,V_backnode_index));0;0],V_output.energy]; 
        elseif V_explored(I_cmdtype2node,V_backnode_index) == I_elec 
           V_output.energy =... 
              [[0;COST.energy(I_elec,... 
              V_explored(I_cmd2node_index,V_backnode_index));0],V_output.energy]; 
        else 
           V_output.energy =... 
              [[0;0;COST.energy(I_cold,... 
              V_explored(I_cmd2node_index,V_backnode_index))],V_output.energy]; 
        end 
        V_backnode_index = V_explored(I_prev_node_index,V_backnode_index); 
      end 
      V_output.I_nodes =[ORIGIN,V_output.I_nodes ]; 
      V_output.V_explored_size = V_explored_size; 
      V_output.n_sub_cmd = size(V_sub_h_cmd,1) + size(V_sub_c_cmd,1); 
      V_output.cost = V_part_explored(I_accum_path_cost,V_min_est_index_temp); 
   end %%%%% nf_create_directions 
end %% close of astar_naa 

A.2 build_n_submatrix.m 

function submatrix=build_N_submatrix(size_array) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This MATLAB function creates a mat file with a list the NAA control 
% commands or an NxN array. size_array can be a vector of integers 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 for N= size_array; %N is the size of the array 
   N2 = N^2;  %N squared 
   n_nodes = 2^N2; % Number of nodes 
   n_cmds = (2^N-1)^2; % Number of NAA CMDS 
   s_list_index=0;  % This is a counter for the submatrix list 
   submatrix_1d_list = false(n_cmds,N2); %a N^2 x (2^N-1)^2 array that 
   submatrix_flow_list = zeros(1,N2); 
   for ii=1:N 
      % create a list of all combination with ii out of N row switches on 
      row = combntns(1:N,ii); 
      for jj=1:N 
        % create a list of all combination with jj out of N column switches on 
        col=combntns(1:N,jj); 
        for rr=1:size(row,1) 
           for cc=1:size(col,1) 
              s_list_index=1+s_list_index; %index 
              smatrix_2d = zeros(N,N); %reset all elements to zero 
              % set all intersecting elements of on switches to 
              % on(1,flow) 
              smatrix_2d(row(rr,:),col(cc,:)) = 1;  
              submatrix_1d = reshape(smatrix_2d,1,N2); 
              submatrix_1d_list(s_list_index,:)=submatrix_1d; 
              rtable(row(rr,:),s_list_index)=1; 



101 
 
              ctable(s_list_index,col(cc,:))=1; 
              submatrix_flow_size(s_list_index)=sum(submatrix_1d); 
           end 
        end 
      end 
   end 
    
   % Sort the submatrix based on size of control command 
   [submatrix_flow_list,submatrix_flow_size_sorted_index] =... 
      sort(submatrix_flow_size,'ascend'); 
   sorted_smatrix_1d_list = submatrix_1d_list(submatrix_flow_size_sorted_index,:); 
   rtable=rtable(:,submatrix_flow_size_sorted_index); 
   ctable=ctable(submatrix_flow_size_sorted_index,:); 
    
   submatrix.bin = sorted_smatrix_1d_list; 
   submatrix.rtable.bin = rtable; 
   submatrix.ctable.bin = ctable; 
   submatrix.smod = submatrix_flow_size(submatrix_flow_size_sorted_index); 
    
   % Convert to submatrix from binary from to decimal form 
   % It is easier to visually identify identical binary number in decimal form. 
    
   %%%% Convert to submatrix.bin to decimal form 
   % Convert submatrix.bin to string 
   submatrix_bin_string = num2str(submatrix.bin); 
    
   % Remove spaces from string 
   submatrix_bin_string = 
submatrix_bin_string(:,[1:3:size(submatrix_bin_string,2)]); 
    
   % Convert submatrix_bin_string to decminal form.  It is easier to identify 
   % identical binary number in decimal form. 
   submatrix.dec = bin2dec(num2str(submatrix_bin_string)); 
    
   rtable_string = num2str(rtable'); 
   rtable_string = rtable_string(:,[1:3:size(rtable_string,2)]'); 
   submatrix.rtable.dec = bin2dec(num2str(rtable_string)); 
    
   ctable_string = num2str(ctable); 
   ctable_string = ctable_string(:,[1:3:size(ctable_string,2)]'); 
   submatrix.ctable.dec = bin2dec(num2str(ctable_string)); 
   submatrix.index = 1:n_cmds; 
    
   % This data is used to for the series algorithm 
   single_col_combinations = 1:(2^N-1); 
   size_cmd_col_combinations = zeros(1,(2^N-1)); 
   for ii = 1:2^N-1 
      % this identifies the actuators that need to change states (the 
      % absolute error) 
      dx = double(single_col_combinations(ii)); 
      [~,e]=log2(max(dx)); 
      size_cmd_col_combinations(ii) =sum(rem(floor(dx*pow2(1-max(1,e):0)),2)); 
   end 
   [size_cmd, size_ind] = sort(size_cmd_col_combinations); 
    
   single_all_columns.dec = zeros(N,(2^N-1)); 
   for jj = 1:N 
      single_all_columns.dec(N-jj+1,:) = bitshift(size_ind,N*(jj-1)); 
   end 
    
   single_all_columns.sumbmatrix_dec_index = zeros(size(single_all_columns)); 
   for ii = 1:size(single_all_columns.dec,1) 
      for jj = 1:size(single_all_columns.dec,2) 
        single_all_columns.sumbmatrix_dec_index(ii,jj) =... 
           find(single_all_columns.dec(ii,jj) == submatrix.dec); 
      end 



102 
 
   end 
    
   single_all_columns.smod = ones(N,1)*size_cmd; 
   single_all_columns.rtable.dec = ones(N,1)*single_col_combinations; 
   single_all_columns.ctable.dec = [1:N]'*ones(1,(2^N-1)); 
    
   % Delete all variables that are temporarly used 
   clear c col ctable ctable_string dx e ii jj r row rtable rtable_string 
   clear s_list_index single_col_combinations size_cmd 
   clear size_cmd_col_combinations size_ind smatrix_2d 
   clear sorted_smatrix_1d_list submatrix_1d submatrix_1d_list 
   clear submatrix_bin_string submatrix_flow_list submatrix_flow_size 
   clear submatrix_flow_size_sorted_index 
    
   % Save variables as a mat file 
   eval(['save submatrix_N',num2str(N),'_07_2011']); 
end 

A.3 run_Astar.m 

clear all 
clear fun 
close all 
clc 
 
global  HOT_INDEX ELEC_INDEX COLD_INDEX N2 N SUBMATRIX N_CMDS  
HOT_INDEX = 1; 
ELEC_INDEX = 2; 
COLD_INDEX = 3; 
  
for N = 3 % size of the array 
   N2 = N^2; %number of actuators in array 
   N_CMDS = (2^N-1)^2;  % number of control commands 
 
 
   % Load a 2x10000 list of randomly generated nodes, between 0-2^N2, to 
   % be use orgin and destinations for repeatability 
   eval(['load origin_destination_n',num2str(N),'.mat']) 
 
 
   % Load the NAA control commands for use in algorithms 
   eval(['load submatrix_N',num2str(N),'_07_2011']) 
   SUBMATRIX =submatrix; 
 
 
   % time for contraction using hot_fluid 
   time = 1*[0  1.0000   1.5876  1.9744  2.2482  2.4522  2.6102  2.7360... 
          2.8387  2.9241  2.9961  3.0578  3.1111  3.1577  3.1988... 
          3.2353   3.2679]; 
   time=[time ones(1,25)*time(end)]; 
 
    
   % time for contraction using electricity 
   time(ELEC_INDEX,:) = .25*time(1,:); 
 
 
   % time for extention using cold fluid 
   time(COLD_INDEX,:) = 1*time(1,:); 
    
 
   % energy for contraction using hot fluid 
   energy = 1*submatrix.smod; 
 
 



103 
 
   % energy for contraction using electricity 
   energy(ELEC_INDEX,:) = 3*energy(HOT_INDEX,:); 
 
 
   % energy for extention using cold fluid 
   energy(COLD_INDEX,:) = 1*energy(HOT_INDEX,:); 
 
    
   % reshape time and erergy to work in Astar algorithm 
   time_f_cmd = build_time_index(time,submatrix.smod); 
   energy_f_cmd = energy ; 
 
    
   % initilize the parameters of how Astar will operate.  
   reduce = 1; 
   sim = 1; 
    
 
   % Heuristic weighting, defines the performance of the Astar Algorithm, 
   % w_h = 0 is Dikjstra , w_h = if is Best First Search.  w_h = 1 should 
   % be make the heuristic value admissiable 
   w_h_array =[1.5];  
    
 
 % The performance weighting to define performance of wet SMA array. 

   % w_te = 0 minimizes energy, w_te = 1 minimizes time     
   w_te_array = [.99];  
    
    
   % selection determine what elements of the origin-destination array for 
   % simulations 
   selection = 1:10; 
    
 
   % This section allows for multiple values of w_h and w_te, with 
   % multiple origin 
   for kk = 1:length(w_h_array) 
      for jj = 1:length(w_te_array) 
        w1 =w_te_array(jj)*ones(1,N2); 
        cost = build_cost_index(time_f_cmd,energy_f_cmd,w1); 
        for ii = selection  %reduced 
           start = origin_destination(ii,1); 
           destination = origin_destination(ii,2); 
           [output_path] =... 
              astar_naa(start,destination,w_h_array(kk),cost,sim,reduce) 
        end 
      end 
       
   end 
end 
  
 
% output_path =  
%          % Nodes that the path will take starting from start to destination   
%          nodes: [4850127 22693327 31344079 31344607 30689247 30689246] 
%          % Control commands that will take the array through nodes 
%           cmd1: [17843200 8650752 528 655360 1] 
%          % Type of control commands (1-Hot, 2-Elec, 3-cold) 
%           type: [1 1 1 3 3] 
%          % Energy used from each control command 
%          energy: [3x5 double] 
%          % Operation time for each control command for the fluidic  
%          time2: [2x5 double] 
%          % When the control commands are executed 
%          timeE: [0 2.2482 3.8358 5.4234 7.0110] 
%          % Number of nodes explored 



104 
 
%          V_explored_size: 163 
%          % Number of edges explored 
%          count: 195 
%          % Total weighted cost 
%           cost: 11 
%          % Number of reduced control commands 
%          n_sub_cmd: 88 

A.4 build_cost_index.m 

function cost = build_cost_index(time_f_cmd,energy_f_cmd,w1_1d) 
global  HOT_INDEX ELEC_INDEX COLD_INDEX N2  SUBMATRIX N_CMDS 
  
x = ones(N_CMDS,1); 
w1_2d = x*w1_1d; 
 
 
% the complimentary for w1 
w1_2d_comp=1-w1_2d; 
  
weighted_t = dot(w1_2d',SUBMATRIX.bin')./SUBMATRIX.smod; 
weighted_e = dot(w1_2d_comp',SUBMATRIX.bin')./SUBMATRIX.smod; 
  
  
%%%% This is no longer used in simultaneous operations 
% %the weighted cmd time 
% % weighted time for hot fluid 
weighted_time(HOT_INDEX,:) = weighted_t.*time_f_cmd(HOT_INDEX,:); 
 
 
% % weighted time for cold fluid 
weighted_time(ELEC_INDEX,:) = weighted_t.*time_f_cmd(ELEC_INDEX,:); 
 
 
% % weighted time for electricity 
weighted_time(COLD_INDEX,:) = weighted_t.*time_f_cmd(COLD_INDEX,:); 
  
  
%the weighted cmd energy 
% weighted energy for hot fluid 
% weighted_energy = 3,n_nodes-1); 
weighted_energy(HOT_INDEX,:) = weighted_e.*energy_f_cmd(HOT_INDEX,:); 
 
 
% weighted energy for cold fluid 
weighted_energy(ELEC_INDEX,:) = weighted_e.*energy_f_cmd(ELEC_INDEX,:); 
 
 
% weighted energy for electricity 
weighted_energy(COLD_INDEX,:) = weighted_e.*energy_f_cmd(COLD_INDEX,:); 
  
  
% format into desired form at 
cost.time = time_f_cmd; 
cost.w_time = weighted_time; 
cost.energy = energy_f_cmd; 
cost.w_energy = weighted_energy; 
cost.w_cost = cost.w_time+cost.w_energy;  
cost.cost = cost.time+cost.energy ; 
 
 
%zero is added to allow for the destination (h =0) to be identified in 
%Astar_heuritic cost.h = cost.w_cost(h+1) 
cost.w_h = [0 spline(unique(SUBMATRIX.smod),unique(min(cost.w_cost)),1:N2)];  



105 
 
cost.weighted_t = weighted_t; 
cost.weighted_e = weighted_e; 

A.5. build_time_index.m 

function cmd_time = build_time_index(time,smod) 
% reshapes the time variable from [hot time; cold time; electric time] as  
% function of smod to a 1d [hot time, cold time, electric time] to a 
% function of cmd 
cmd_time =time(:,smod+1); 

A.6 build_origin_destination 

function origin_destination = build_origin_destination(size_array,num_nodes) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This MATLAB function creates a mat file with a list of origin and 
% and destination nodes.  This set of nodes is used as a data set for repeatability  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for N= size_array; 
    N2 = N^2 
    origin_destination = floor((2^N2)*rand(num_nodes,2)); 
    eval(['save origin_destination_N',num2str(N)']); 
end 

A.7 combntns.m 

function out=combntns(choicevec,choose); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This MATLAB function was downloaded from Mathworks Central Exchange Website.   
% This function is not built into MATLAB.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%COMBNTNS  Computes all combinations of a given set of values 
% 
%  c = COMBNTNS(choicevec,choose) returns all combinations of the 
%  values of the input choice vector.  The size of the combinations 
%  are given by the second input.  For example, if choicevec 
%  is [1 2 3 4 5], and choose is 2, the output is a matrix 
%  containing all distinct pairs of the choicevec set. 
%  The output matrix has "choose" columns and the combinatorial 
%  "length(choicevec)-choose-'choose'" rows.  The function does not 
%  account for repeated values, treating each entry as distinct. 
%  As in all combinatorial counting, an entry is not paired with 
%  itself, and changed order does not constitute a new pairing. 
%  This function is recursive. 
  
%  Copyright 1996-2003 The MathWorks, Inc. 
%  Written by:  E. Brown, E. Byrns 
%   $Revision: 1.11.4.1 $    $Date: 2003/08/01 18:15:39 $ 
  
if nargin ~= 2;  error('Incorrect number of arguments');  end 
  
%  Input dimension tests 
  
if min(size(choicevec)) ~= 1 | ndims(choicevec) > 2 
    error('Input choices must be a vector') 
  
elseif max(size(choose)) ~= 1 
    error('Input choose must be a scalar') 



106 
 
  
else 
    choicevec = choicevec(:);       %  Enforce a column vector 
end 
  
%  Ensure real inputs 
  
if any([~isreal(choicevec) ~isreal(choose)]) 
    warning('Imaginary parts of complex arguments ignored') 
    choicevec = real(choicevec);    choose = real(choose); 
end 
  
%  Cannot choose more than are available 
  
choices=length(choicevec); 
if choices<choose(1) 
    error('Not enough choices to choose that many') 
end 
  
  
%  Choose(1) ensures that a scalar is used.  To test the 
%  size of choices upon input results in systems errors on 
%  the Macintosh.  Maybe somehow related to recursive nature of program. 
  
%  If the number of choices and the number to choose 
%  are the same, choicevec is the only output. 
  
if choices==choose(1) 
    out=choicevec'; 
  
%  If being chosen one at a time, return each element of 
%  choicevec as its own row 
  
elseif choose(1)==1 
    out=choicevec; 
  
%  Otherwise, recur down to the level at which one such 
%  condition is met, and pack up the output as you come out of 
%  recursion. 
  
else 
    out = []; 
    for i=1:choices-choose(1)+1 
        tempout=combntns(choicevec(i+1:choices),choose(1)-1); 
        out=[out; choicevec(i)*ones(size(tempout,1),1)  tempout]; 
    end 
end 
 
 


	Title Page
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Appendix



