3,878 research outputs found

    Evaluation of diffuse-illumination holographic cinematography in a flutter cascade

    Get PDF
    Since 1979, the Lewis Research Center has examined holographic cinematography for three-dimensional flow visualization. The Nd:YAG lasers used were Q-switched, double-pulsed, and frequency-doubled, operating at 20 pulses per second. The primary subjects for flow visualization were the shock waves produced in two flutter cascades. Flow visualization was by diffuse-illumination, double-exposure, and holographic interferometry. The performances of the lasers, holography, and diffuse-illumination interferometry are evaluated in single-window wind tunnels. The fringe-contrast factor is used to evaluate the results. The effects of turbulence on shock-wave visualization in a transonic flow are discussed. The depth of field for visualization of a turbulent structure is demonstrated to be a measure of the relative density and scale of that structure. Other items discussed are the holographic emulsion, tests of coherence and polarization, effects of windows and diffusers, hologram bleaching, laser configurations, influence and handling of specular reflections, modes of fringe localization, noise sources, and coherence requirements as a function of the pulse energy. Holography and diffuse illumination interferometry are also reviewed

    Towards automated visual flexible endoscope navigation

    Get PDF
    Background:\ud The design of flexible endoscopes has not changed significantly in the past 50 years. A trend is observed towards a wider application of flexible endoscopes with an increasing role in complex intraluminal therapeutic procedures. The nonintuitive and nonergonomical steering mechanism now forms a barrier in the extension of flexible endoscope applications. Automating the navigation of endoscopes could be a solution for this problem. This paper summarizes the current state of the art in image-based navigation algorithms. The objectives are to find the most promising navigation system(s) to date and to indicate fields for further research.\ud Methods:\ud A systematic literature search was performed using three general search terms in two medical–technological literature databases. Papers were included according to the inclusion criteria. A total of 135 papers were analyzed. Ultimately, 26 were included.\ud Results:\ud Navigation often is based on visual information, which means steering the endoscope using the images that the endoscope produces. Two main techniques are described: lumen centralization and visual odometry. Although the research results are promising, no successful, commercially available automated flexible endoscopy system exists to date.\ud Conclusions:\ud Automated systems that employ conventional flexible endoscopes show the most promising prospects in terms of cost and applicability. To produce such a system, the research focus should lie on finding low-cost mechatronics and technologically robust steering algorithms. Additional functionality and increased efficiency can be obtained through software development. The first priority is to find real-time, robust steering algorithms. These algorithms need to handle bubbles, motion blur, and other image artifacts without disrupting the steering process

    Interaction of acoustic beam with elastic structures

    Get PDF
    This thesis describes experiments and calculations performed on the interaction of acoustic beams in water and air with planar and cylindrical elastic structures. Ultrasonic reflection measurements have been used to elucidate the phenomena of guided wave generation and reradiation by selecting beam incidence at, or near, phase-matching conditions. Under these circumstances reasonant mode conversion of accoustic wave to guided wave mode energy can occur. This interaction has been studied in rubber-coated steel, aluminum, plexiglas, and graphite-epoxy composite. The acoustic coupling media used in these experiments has been either water or air;Some theoretical modeling has also been undertaken to explain these results. The calculations performed here exploit an efficient analytical tool that simplifies the construction of finite acoustic beams. The method relies on the interesting mathematical fact that displacing a real point source into the couplex plane, converts the source into a quasi Gaussian beam. The free-space Green\u27s function, which satisfies the inhomogeneous Helmholtz equation, is converted to a complex Green\u27s function that describes the interaction of two beams, one from the source and the other at the observation point;The interaction with elastic structures is treated by spectral decomposition of the incident and reflected beams weighted by the plane wave reflection or transmission coefficient. The resulting spectral integral is evaluated either asymptotically along a steepest descent path, keeping track of the reflection/transmission coefficient pole contributions or numerically;In the first problem the interaction of acoustic beams with steel layered cylindrical shells is studied. The difficulty introduced by the high damping in the rubber is resolved and its influence on the signal is analyzed. The bond rigidity between the rubber and steel are accounted for in the model calculation by the so-called spring model. It is found that disbonds in the layered cylinder can be detected by monitoring the leaky wave amplitude. Where low bond rigidity exists, the leaky wave is only weakly excited;In the second problem the effects of transducer misalignment in guided plate wave measurement are studied, where the receiver incident angle is misaligned with the transmitter angle. It is found that misalignment leads to changes in the relative amplitudes of the various contributions. In addition, the more highly collimated the beam, the more pronounced are the effects. It is shown that the signal maximum is not a; reliable indicator of receiver alignment;In the third problem the complex transducer point is applied to generate 3-D rotationally symmetric Gaussian beams in transmission to model air-coupled ultrasonic beam interaction with plates of plexiglas and composite. Studying the transmission coefficient permits characterization both isotropic and anisotropic material from narrowband experimental data. A comparison between a 2-D and 3-D analysis is shown. At all but the lowest incident angles, the differences are reasonably small;In the fourth problem the complex transducer point is applied to wideband transducer operation and employed to study the Lamb wave reflection frequency spectrum, which allows efficient and precision materials characterization and inversion. It is found that a full 3-D calculation is necessary to model the experiments and thereby infer the imaginary elastic stiffnesses accurately

    Dense Reconstruction of Transparent Objects by Altering Incident Light Paths Through Refraction

    Get PDF

    Acoustic imaging in application to reconstruction of rough rigid surface with airborne ultrasound waves

    Get PDF
    Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation (GCV) technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5 and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%

    A deep learning framework for quality assessment and restoration in video endoscopy

    Full text link
    Endoscopy is a routine imaging technique used for both diagnosis and minimally invasive surgical treatment. Artifacts such as motion blur, bubbles, specular reflections, floating objects and pixel saturation impede the visual interpretation and the automated analysis of endoscopy videos. Given the widespread use of endoscopy in different clinical applications, we contend that the robust and reliable identification of such artifacts and the automated restoration of corrupted video frames is a fundamental medical imaging problem. Existing state-of-the-art methods only deal with the detection and restoration of selected artifacts. However, typically endoscopy videos contain numerous artifacts which motivates to establish a comprehensive solution. We propose a fully automatic framework that can: 1) detect and classify six different primary artifacts, 2) provide a quality score for each frame and 3) restore mildly corrupted frames. To detect different artifacts our framework exploits fast multi-scale, single stage convolutional neural network detector. We introduce a quality metric to assess frame quality and predict image restoration success. Generative adversarial networks with carefully chosen regularization are finally used to restore corrupted frames. Our detector yields the highest mean average precision (mAP at 5% threshold) of 49.0 and the lowest computational time of 88 ms allowing for accurate real-time processing. Our restoration models for blind deblurring, saturation correction and inpainting demonstrate significant improvements over previous methods. On a set of 10 test videos we show that our approach preserves an average of 68.7% which is 25% more frames than that retained from the raw videos.Comment: 14 page

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version
    corecore