2 research outputs found

    Performance evaluation of stochastic systems with dedicated delivery bays and general on-street parking

    Get PDF
    As freight deliveries in cities increase due to retail fragmentation and e-commerce, parking is becoming a more and more relevant part of transportation. In fact, many freight vehicles in cities spend more time parked than they are moving. Moreover, part of the public parking space is shared with passenger vehicles, especially cars. Both arrival processes and parking and delivery processes are stochastic in nature. In order to develop a framework for analysis, we propose a queueing model for an urban parking system consisting of delivery bays and general on-street parking spaces. Freight vehicles may park both in the dedicated bays and in general on-street parking, while passenger vehicles only make use of general on-street parking. Our model allows us to create parsimonious insights into the behavior of a delivery bay parking stretch as part of a limited length of curbside. We are able to find explicit expressions for the relevant performance measures, and formally prove a number of monotonicity results. We further conduct a series of numerical experiments to show more intricate properties that cannot be shown analytically. The model helps us shed light onto the effects of allocating scarce urban curb space to dedicated unloading bays at the expense of general on-street parking. In particular, we show that allocating more space to dedicated delivery bays can also make passenger cars better off

    Queueing Variables and Leave-Without-Treatment Rates in the Emergency Room

    Get PDF
    Hospitals stand to lose millions of dollars in revenue due to patients who leave without treatment (LWT). Grounded in queueing theory, the purpose of this correlational study was to examine the relationship between daily arrivals, daily staffing, triage time, emergency severity index (ESI), rooming time, door-to-provider time (DTPT), and LWT rates. The target population comprised patients who visited a Connecticut emergency room between October 1, 2017, and May 31, 2018. Archival records (N = 154) were analyzed using multiple linear regression analysis. The results of the multiple linear regression were statistically significant, with F(9,144) = 2902.49, p \u3c .001, and R2 = 0.99, indicating 99% of the variation in LWT was accounted for by the predictor variables. ESI levels were the only variables making a significant contribution to the regression model. The implications for positive social change include the potential for patients to experience increased satisfaction due to the high quality of care and overall improvement in public health outcomes. Hospital leaders might use the information from this study to mitigate LWT rates and modify or manage staffing levels, time that patients must wait for triage, room placement, and DTPT to decrease the rate of LWT in the emergency room
    corecore