7 research outputs found

    A hybrid kidney algorithm strategy for combinatorial interaction testing problem

    Get PDF
    Combinatorial Interaction Testing (CIT) generates a sampled test case set (Final Test Suite (FTS)) instead of all possible test cases. Generating the FTS with the optimum size is a computational optimization problem (COP) as well as a Non-deterministic Polynomial hard (NP-hard) problem. Recent studies have implemented hybrid metaheuristic algorithms as the basis for CIT strategy. However, the existing hybrid metaheuristic-based CIT strategies generate a competitive FTS size, there is no single CIT strategy can overcome others existing in all cases. In addition, the hybrid metaheuristic-based CIT strategies require more execution time than their own original algorithm-based strategies. Kidney Algorithm (KA) is a recent metaheuristic algorithm and has high efficiency and performance in solving different optimization problems against most of the state-of-the-art of metaheuristic algorithms. However, KA has limitations in the exploitation and exploration processes as well as the balancing control process is needed to be improved. These shortages cause KA to fail easily into the local optimum. This study proposes a low-level hybridization of KA with the mutation operator and improve the filtration process in KA to form a recently Hybrid Kidney Algorithm (HKA). HKA addresses the limitations in KA by improving the algorithm's exploration and exploitation processes by hybridizing KA with mutation operator, and improve the balancing control process by enhancing the filtration process in KA. HKA improves the efficiency in terms of generating an optimum FTS size and enhances the performance in terms of the execution time. HKA has been adopted into the CIT strategy as HKA based CIT Strategy (HKAS) to generate the most optimum FTS size. The results of HKAS shows that HKAS can generate the optimum FTS size in more than 67% of the benchmarking experiments as well as contributes by 34 new optimum size of FTS. HKAS also has better efficiency and performance than KAS. HKAS is the first hybrid metaheuristic-based CIT strategy that generates an optimum FTS size with less execution time than the original algorithm-based CIT strategy. Apart from supporting different CIT features: uniform/VS CIT, IOR CIT as well as the interaction strength up to 6, this study also introduces another recently variant of KA which are Improved KA (IKA) and Mutation KA (MKA) as well as new CIT strategies which are IKA-based (IKAS) and MKA-based (MKAS)

    Flower pollination algorithm with pollinator attraction

    Get PDF
    The Flower Pollination Algorithm (FPA) is a highly efficient optimization algorithm that is inspired by the evolution process of flowering plants. In the present study, a modified version of FPA is proposed accounting for an additional feature of flower pollination in nature that is the so-called pollinator attraction. Pollinator attraction represents the natural tendency of flower species to evolve in order to attract pollinators by using their colour, shape and scent as well as nutritious rewards. To reflect this evolution mechanism, the proposed FPA variant with Pollinator Attraction (FPAPA) provides fitter flowers of the population with higher probabilities of achieving pollen transfer via biotic pollination than other flowers. FPAPA is tested against a set of 28 benchmark mathematical functions, defined in IEEE-CEC’13 for real-parameter single-objective optimization problems, as well as structural optimization problems. Numerical experiments show that the modified FPA represents a statistically significant improvement upon the original FPA and that it can outperform other state-of-the-art optimization algorithms offering better and more robust optimal solutions. Additional research is suggested to combine FPAPA with other modified and hybridized versions of FPA to further increase its performance in challenging optimization problems

    Flower pollination algorithm parameters tuning

    Get PDF
    The flower pollination algorithm (FPA) is a highly efficient metaheuristic optimization algorithm that is inspired by the pollination process of flowering species. FPA is characterised by simplicity in its formulation and high computational performance. Previous studies on FPA assume fixed parameter values based on empirical observations or experimental comparisons of limited scale and scope. In this study, a comprehensive effort is made to identify appropriate values of the FPA parameters that maximize its computational performance. To serve this goal, a simple non-iterative, single-stage sampling tuning method is employed, oriented towards practical applications of FPA. The tuning method is applied to the set of 28 functions specified in IEEE-CEC'13 for real-parameter single-objective optimization problems. It is found that the optimal FPA parameters depend significantly on the objective functions, the problem dimensions and affordable computational cost. Furthermore, it is found that the FPA parameters that minimize mean prediction errors do not always offer the most robust predictions. At the end of this study, recommendations are made for setting the optimal FPA parameters as a function of problem dimensions and affordable computational cost. [Abstract copyright: © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.

    A New Manufacturing Service Selection and Composition Method Using Improved Flower Pollination Algorithm

    Get PDF
    With an increasing number of manufacturing services, the means by which to select and compose these manufacturing services have become a challenging problem. It can be regarded as a multiobjective optimization problem that involves a variety of conflicting quality of service (QoS) attributes. In this study, a multiobjective optimization model of manufacturing service composition is presented that is based on QoS and an environmental index. Next, the skyline operator is applied to reduce the solution space. And then a new method called improved Flower Pollination Algorithm (FPA) is proposed for solving the problem of manufacturing service selection and composition. The improved FPA enhances the performance of basic FPA by combining the latter with crossover and mutation operators of the Differential Evolution (DE) algorithm. Finally, a case study is conducted to compare the proposed method with other evolutionary algorithms, including the Genetic Algorithm, DE, basic FPA, and extended FPA. The experimental results reveal that the proposed method performs best at solving the problem of manufacturing service selection and composition

    Modified flower pollination algorithm for global optimization

    Get PDF
    In this paper, a modified flower pollination algorithm (MFPA) is proposed to improve the performance of the classical algorithm and to tackle the nonlinear equation systems widely used in engineering and science fields. In addition, the differential evolution (DE) is integrated with MFPA to strengthen its exploration operator in a new variant called HFPA. Those two algorithms were assessed using 23 well-known mathematical unimodal and multimodal test functions and 27 well-known nonlinear equation systems, and the obtained outcomes were extensively compared with those of eight well-known metaheuristic algorithms under various statistical analyses and the convergence curve. The experimental findings show that both MFPA and HFPA are competitive together and, compared to the others, they could be superior and competitive for most test cases

    Energy-efficient resource allocation scheme based on enhanced flower pollination algorithm for cloud computing data center

    Get PDF
    Cloud Computing (CC) has rapidly emerged as a successful paradigm for providing ICT infrastructure. Efficient and environmental-friendly resource allocation mechanisms, responsible for allocatinpg Cloud data center resources to execute user applications in the form of requests are undoubtedly required. One of the promising Nature-Inspired techniques for addressing virtualization, consolidation and energyaware problems is the Flower Pollination Algorithm (FPA). However, FPA suffers from entrapment and its static control parameters cannot maintain a balance between local and global search which could also lead to high energy consumption and inadequate resource utilization. This research developed an enhanced FPA-based energy efficient resource allocation scheme for Cloud data center which provides efficient resource utilization and energy efficiency with less probable Service Level Agreement (SLA) violations. Firstly, an Enhanced Flower Pollination Algorithm for Energy-Efficient Virtual Machine Placement (EFPA-EEVMP) was developed. In this algorithm, a Dynamic Switching Probability (DSP) strategy was adopted to balance the local and global search space in FPA used to minimize the energy consumption and maximize resource utilization. Secondly, Multi-Objective Hybrid Flower Pollination Resource Consolidation (MOH-FPRC) algorithm was developed. In this algorithm, Local Neighborhood Search (LNS) and Pareto optimisation strategies were combined with Clustering algorithm to avoid local trapping and address Cloud service providers conflicting objectives such as energy consumption and SLA violation. Lastly, Energy-Aware Multi-Cloud Flower Pollination Optimization (EAM-FPO) scheme was developed for distributed Multi-Cloud data center environment. In this scheme, Power Usage Effectiveness (PUE) and migration controller were utilised to obtain the optimal solution in a larger search space of the CC environment. The scheme was tested on MultiRecCloudSim simulator. Results of the simulation were compared with OEMACS, ACS-VMC, and EA-DP. The scheme produced outstanding performance improvement rate on the data center energy consumption by 20.5%, resource utilization by 23.9%, and SLA violation by 13.5%. The combined algorithms have reduced entrapment and maintaned balance between local and global search. Therefore, based on the findings the developed scheme has proven to be efficient in minimizing energy consumption while at the same time improving the data center resource allocation with minimum SLA violation

    Multiple Sequence Alignment Menggunakan Nature-Inspired Metaheuristic Algorithms

    Get PDF
    Multiple sequence alignment adalah proses dasar yang sering dibutuhkan dalam mengolah beberapa sequence yang berhubungan dengan bioinformatika. Apabila multiple sequence alignment telah selesai dikerjakan, maka dapat dilakukan analisis-analisis lain yang lebih jauh, seperti analisis filogenetik atau prediksi struktur protein. Banyaknya kegunaan dari multiple sequence alignment mengakibatkannya menjadi salah satu permasalahan yang banyak diteliti. Banyak algoritma-algoritma metaheuristic yang berdasar pada kejadian-kejadian alami, yang biasa disebut dengan nature-inspired metaheuristic algorithms. Beberapa algoritma baru dalam nature-inspired metaheuristic algorithms yang dianggap cukup efisien antara lain adalah firefly algorithm, cuckoo search, dan flower pollination algorithm. Dalam penelitian ini dipaparkan modified Needleman-Wunsch alignment. Didapatkan hasil bahwa modified Needleman-Wunsch alignment adalah metode yang cukup bagus. Modified Needleman-Wunsch alignment tersebut digunakan untuk membentuk solusi awal dari firefly algorithm, cuckoo search, dan flower pollination algorithm. Didapatkan hasil bahwa firefly algorithm, cuckoo search, dan flower pollination algorithm dapat menghasilkan solusi-solusi baru yang lebih baik. Secara keseluruhan, firefly algorithm adalah algoritma yang terbaik dari tiga algoritma tersebut dalam segi skor alignment, namun membutuhkan waktu komputasi yang lebih besar. ======================================================================================== Multiple sequence alignment is a fundamental tool that often needed to process bioinformatic sequences. If multiple sequence alignment is completed, we can process other further analysis, such as phylogenetic analysis or protein structure prediction. The versatility of multiple sequence alignment led it to be the one of the problems that studied continously. Many metaheuristic algorithms are based on natural events, with the so called nature-inspired metaheuristic algorithms. Algorithms in nature-inspired metaheuristic algorithms that considered to be good are firefly algorithm, cuckoo search, and flower pollination algorithm. In this research, we propose modified Needleman-Wunsch alignment. The results show that modified Needleman-Wunsch alignment is a good method. Modified Needleman-Wunsch alignment is used to create initial solution of firefly algorithm, cuckoo search, and flower pollination algorithm. The results show that firefly algorithm, cuckoo search, and flower pollination algorithm can produce new better solution. Overall, firefly algorithm is the best algorithm among the others in alignment score, but need large computation time
    corecore