4,961 research outputs found

    Experimental investigation on synthesis, characterization, stability, thermo-physical properties and rheological behavior of MWCNTs-kapok seed oil based nanofluid

    Get PDF
    Several researchers devoted their efforts for the thermal conductivity enhancement of Carbon Nanotubes (CNTs) based nanofluids as CNTs have excellent thermal properties. However, limited research is reported on the detailed thermo-physical properties of CNTs and oil based nanofluids. In this work, the one-step method synthesis of a new MWCNTs-Kapok seed oil based nanofluid at constant nanoparticle concentration (0.1 wt./wt.) is reported. The nanofluid is characterized by FESEM, FTIR, visual stability analysis and thermophysical properties are experimentally measured. The viscosity found in the range of (0.049–10.101¿Pa·s), the thermal conductivity of (0.165–0.207¿W/m·K) and enhancement of thermal conductivity (6.1538%) were observed. Moreover, the viscosity decreases, and thermal conductivity increases with an increase in temperature. The experimentally obtained data are found in agreement with existing models and modified correlations. The rheological behavior showed that nanofluid is non-Newtonian in nature and exhibiting shear thinning or pseudo plastic behavior.Preprin

    Spin Gating of Mesoscopic Devices

    Full text link
    Inefficient screening of electric fields in nanoconductors makes electric manipulation of electronic transport in nanodevices possible. Accordingly, electrostatic (charge) gating is routinely used to affect and control the Coulomb electrostatics and quantum interference in modern nanodevices. Besides their charge, another (quantum mechanical) property of electrons - their spin - is at the heart of modern spintronics, a term implying that a number of magnetic and electrical properties of small systems are simultaneously harvested for device applications. In this review the possibility to achieve "spin gating" of mesoscopic devices, i.e. the possibility of an external spin control of the electronic properties of nanodevices is discussed. Rather than the Coulomb interaction, which is responsible for electric-charge gating, we consider two other mechanisms for spin gating. These are on the one hand the magnetic exchange interaction in magnetic devices and on the other hand the spin-orbit coupling ("Rashba effect"), which is prominent in low dimensional conductors. A number of different phenomena demonstrating the spin gating phenomenon will be discussed, including the spintro-mechanics of magnetic shuttling, Rashba spin splitting, and spin-gated weak superconductivity.Comment: Submitted to a special issue of "Synthetic Metals" to appear in March 201

    Symmetry-Adapted Phonon Analysis of Nanotubes

    Full text link
    The characteristics of phonons, i.e. linearized normal modes of vibration, provide important insights into many aspects of crystals, e.g. stability and thermodynamics. In this paper, we use the Objective Structures framework to make concrete analogies between crystalline phonons and normal modes of vibration in non-crystalline but highly symmetric nanostructures. Our strategy is to use an intermediate linear transformation from real-space to an intermediate space in which the Hessian matrix of second derivatives is block-circulant. The block-circulant nature of the Hessian enables us to then follow the procedure to obtain phonons in crystals: namely, we use the Discrete Fourier Transform from this intermediate space to obtain a block-diagonal matrix that is readily diagonalizable. We formulate this for general Objective Structures and then apply it to study carbon nanotubes of various chiralities that are subjected to axial elongation and torsional deformation. We compare the phonon spectra computed in the Objective Framework with spectra computed for armchair and zigzag nanotubes. We also demonstrate the approach by computing the Density of States. In addition to the computational efficiency afforded by Objective Structures in providing the transformations to almost-diagonalize the Hessian, the framework provides an important conceptual simplification to interpret the phonon curves.Comment: To appear in J. Mech. Phys. Solid

    Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current

    Full text link
    We study the nonequilibrium steady state of a mechanical resonator in the quantum regime realized by a suspended carbon nanotube quantum dot contacted by two ferromagnets. Because of the spin-orbit interaction and/or an external magnetic field gradient, the spin on the dot couples directly to the flexural eigenmodes. Accordingly, the nanomechanical motion induces inelastic spin flips of the tunneling electrons. A spin-polarized current at finite bias voltage causes either heating or active cooling of the mechanical modes. We show that maximal cooling is achieved at resonant transport when the energy splitting between two dot levels of opposite spin equals the vibrational frequency. Even for weak electron-resonator coupling and moderate polarizations we can achieve ground-state cooling with a temperature of the leads, for instance, of T=10ωT=10\omega
    • …
    corecore