772 research outputs found

    Approaches to integrated strategic/tactical forest planning

    Get PDF
    Traditionally forest planning is divided into a hierarchy of planning phases. Strategic planning is conducted to make decisions about sustainable harvest levels while taking into account legislation and policy issues. Within the frame of the strategic plan, the purpose of tactical planning is to schedule harvest operations to specific areas in the immediate few years and on a finer time scale than in the strategic plan. The operative phase focuses on scheduling harvest crews on a monthly or weekly basis, truck scheduling and choosing bucking instructions. Decisions at each level are to a varying degree supported by computerized tools. A problem that may arise when planning is divided into levels and that is noted in the literature focusing on decision support tools is that solutions at one level may be inconsistent with the results of another level. When moving from the strategic plan to the tactical plan, three sources of inconsistencies are often present; spatial discrepancies, temporal discrepancies and discrepancies due to different levels of constraint. The models used in the papers presented in this thesis approaches two of these discrepancies. To address the spatial discrepancies, the same spatial resolution has been used at both levels, i.e., stands. Temporal discrepancies are addressed by modelling the tactical and strategic issues simultaneously. Integrated approaches can yield large models. One way of circumventing this is to aggregate time and/or space. The first paper addresses the consequences of temporal aggregation in the strategic part of a mixed integer programming integrated strategic/tactical model. For reference, linear programming based strategic models are also used. The results of the first paper provide information on what temporal resolutions could be used and indicate that outputs from strategic and integrated plans are not particularly affected by the number of equal length strategic periods when more than five periods, i.e. about 20 year period length, are used. The approach used in the first paper could produce models that are very large, and the second paper provides a two-stage procedure that can reduce the number of variables and preserve the allocation of stands to the first 10 years provided by a linear programming based strategic plan, while concentrating tactical harvest activities using a penalty concept in a mixed integer programming formulation. Results show that it is possible to use the approach to concentrate harvest activities at the tactical level in a full scale forest management scenario. In the case study, the effects of concentration on strategic outputs were small, and the number of harvest tracts declined towards a minimum level. Furthermore, the discrepancies between the two planning levels were small

    Transportation Optimization in Tactical and Operational Wood Procurement Planning

    Get PDF
    RÉSUMÉ : L'économie canadienne est dépendante du secteur forestier. Cependant, depuis quelques années, ce secteur fait face à de nouveaux défis, tels que la récession mondiale, un dollar canadien plus fort et une baisse significative de la demande de papier journal. Dans ce nouveau contexte, une planification plus efficace de la chaîne d'approvisionnement est devenue un élément essentiel pour assurer le succès et la pérennité du secteur. Les coûts de transport représentent une dépense importante pour les entreprises forestières. Ceci est dû aux grands volumes de produits qui doivent être transportés sur de grandes distances, en particulier dans le contexte géographique d'un grand pays comme le Canada. Même si les problèmes de tournée de véhicules sont bien couverts dans la littérature, le secteur forestier a beaucoup de caractéristiques uniques qui nécessitent de nouvelles formulations des problèmes et des algorithmes de résolution. À titre d’exemple, les volumes à transporter sont importants comparés à d’autres secteurs et il existe aussi des contraintes de synchronisation à prendre en compte pour planifier l'équipement qui effectue le chargement et le déchargement des véhicules. Cette thèse traite des problèmes de planification de la chaîne logistique d'approvisionnement en bois: récolter diverses variétés de bois en forêt et les transporter par camion aux usines et aux zones de stockage intermédiaire en respectant la demande pour les différents produits forestiers. Elle propose trois nouvelles formulations de ces problèmes. Ces problèmes sont différents les uns des autres dans des aspects tel que l'horizon de planification et des contraintes industrielles variées. Une autre contribution de cette thèse sont les méthodologies développées pour résoudre ces problèmes dans le but d’obtenir des calendriers d’approvisionnement applicables par l’industrie et qui minimisent les coûts de transport. Cette minimisation est le résultat d’allocations plus intelligentes des points d'approvisionnement aux points de demande, d’une tournée de véhicules qui minimise la distance parcourue à vide et de décisions d'ordonnancement de véhicules qui minimisent les files d’attentes des camions pour le chargement et le déchargement. Dans le chapitre 3 on considère un modèle de planification tactique de la récolte. Dans ce problème, on détermine la séquence de récolte pour un ensemble de sites forestiers, et on attribue des équipes de récolte à ces sites. La formulation en programme linéaire en nombres entiers (PLNE) de ce problème gère les décisions d'inventaire et alloue les flux de bois à des entrepreneurs de transport routier sur un horizon de planification annuel. La nouveauté de notre approche est d'intégrer les décisions de tournée des véhicules dans la PLNE. Cette méthode profite de la flexibilité du plan de récolte pour satisfaire les horaires des conducteurs dans le but de conserver une flotte constante de conducteurs permanents et également pour minimiser les coûts de transport. Une heuristique de génération de colonnes est créée pour résoudre ce problème avec un sous-problème qui consiste en un problème du plus court chemin avec capacités (PCCC) avec une solution qui représente une tournée de véhicule. Dans le chapitre 4, on suppose que le plan de récolte est fixé et on doit déterminer les allocations et les inventaires du modèle tactique précédent, avec aussi des décisions de tournée et d'ordonnancement de véhicules. On synchronise les véhicules avec les chargeuses dans les forêts et dans les usines. Les contraintes de synchronisation rendent le problème plus difficile. L’objectif est de déterminer la taille de la flotte de véhicules dans un modèle tactique et de satisfaire la demande des usines avec un coût minimum. Le PLNE est résolu par une heuristique de génération de colonnes. Le sous-problème consiste en un PCCC avec une solution qui représente une tournée et un horaire quotidien d'un véhicule. Dans le chapitre 5, on considère un PLNE du problème similaire à celui étudié dans le chapitre 4, mais dans un contexte plus opérationnel: un horizon de planification d'un mois. Contrairement aux horaires quotidiens de véhicules du problème précédent, on doit planifier les conducteurs par semaine pour gérer les situations dans lesquelles le déchargement d’un camion s’effectue le lendemain de la journée où le chargement a eu lieu. Cette situation se présente quand les conducteurs travaillent la nuit ou quand ils travaillent après les heures de fermeture de l'usine et doivent décharger leur camion au début de la journée suivante. Ceci permet aussi une gestion plus directe des exigences des horaires hebdomadaires. Les contraintes de synchronisation entre les véhicules et les chargeuses qui sont présentes dans le PLNE permettent de créer un horaire pour chaque opérateur de chargeuse. Les coûts de transport sont alors minimisés. On résout le problème à l’aide d’une heuristique de génération de colonnes. Le sous-problème consiste en un PCCC avec une solution qui représente une tournée et un horaire hebdomadaire d’un véhicule.----------ABSTRACT : The Canadian economy is heavily dependent on the forestry industry; however in recent years, this industry has been adapting to new challenges including a worldwide economic downturn, a strengthening Canadian dollar relative to key competing nations, and a significant decline in newsprint demand. Therefore efficiency in supply chain planning is key for the industry to succeed in the future. Transportation costs in particular represent a significant expense to forestry companies. This is due to large volumes of product that must be transported over very large distances, especially in the geographic context of a country the size of Canada. While the field of vehicle routing problems has been heavily studied and applied to many industries for decades, the forestry industry has many unique attributes that necessitate new problem formulations and solution methodologies. These include, but are not limited to, very large (significantly higher than vehicle capacity) volumes to be transported and synchronization constraints to schedule the equipment that load and unload the vehicles. This thesis is set in the wood procurement supply chain of harvesting various assortments of wood in the forest, transporting by truck to mills and intermediate storage locations, while meeting mill demands of the multiple harvested products, and contributes three new problem formulations. These problems differ with respect to planning horizon and varied industrial constraints. Another contribution is the methodologies developed to resolve these problems to yield industrially applicable schedules that minimize vehicle costs: from smarter allocations of supply points to demand points, vehicle routing decisions that optimize the occurrence of backhaul savings, and vehicle scheduling decisions that minimize queues of trucks waiting for loading and unloading equipment. In Chapter 3, we consider a tactical harvest planning model. In this problem we determine the sequence of the harvest of various forest sites, and assign harvest teams to these sites. The MILP formulation of this problem makes inventory decisions and allocates wood flow to trucking contractors over the annual planning horizon, subject to demand constraints and trucking capacities. The novel aspect of our approach is to incorporate vehicle routing decisions into our MILP formulation. This takes advantage of the relatively higher flexibility of the harvest plan to ensure driver shifts of desired characteristics, which is important to retain a permanent driver fleet, and also prioritize the creation of backhaul opportunities in the schedule. A branch-and-price heuristic is developed to resolve this problem, with the subproblem being a vehicle routing problem that represents a geographical shift for a vehicle. In Chapter 4, we assume the harvest plan to be an input, and integrate the allocation and inventory variables of the previous tactical model with vehicle routing and scheduling decisions, synchronizing the vehicles with loaders in the forests and at the mills. The synchronization constraints make a considerably more difficult problem. We use this as a tactical planning model, with no specific driver constraints but a goal of determining vehicle fleet size to maximize their utilization. The objective is to meet mill demands over the planning horizon while minimizing transportation and inventory costs, subject to capacity, wood freshness, fleet balancing, and other industrial constraints. The MILP formulation of the problem is resolved via a column generation algorithm, with the subproblem being a daily vehicle routing and scheduling problem. In Chapter 5, we consider a similar problem formulation to that studied in Chapter 4, but set in a more operational context over a planning horizon of approximately one month. Unlike the daily vehicle schedules of the previous problem, we must schedule drivers by week to manage situations of picking up a load on one day and delivering on another day, which is necessary when drivers work overnight shifts or when they work later than mill closing hours and must unload their truck on the next day's shift. This also allows for more direct management of weekly schedule requirements. Loader synchronization constraints are present in the model which derives a schedule for each loader operator. Given mill demands, transportation costs are then minimized. We resolve the problem via a branch-and-price heuristic, with a subproblem of a weekly vehicle routing and scheduling problem. We also measure the benefits of applying interior point stabilization to the resource synchronization constraints in order to improve the column generation, a new application of the technique

    Inter-firm collaboration in transportation

    Get PDF
    Dans la littérature académique et professionnelle relative au transport de marchandise, il y a longtemps que les méthodes de planification avancées ont été identifiées comme un moyen de dégager des économies grâce à une efficacité accrue des opérations de transport. Plus récemment, la collaboration interentreprises dans la planification du transport a été étudiée comme une source de gain supplémentaire en efficacité et, par conséquent, une opportunité pour dégager de nouvelles économies pour les collaborateurs. Cependant, la mise en œuvre d'une collaboration interentreprises en transports soulève un certain nombre d’enjeux. Cette thèse aborde trois thèmes centraux de la collaboration interentreprises et démontre les contributions via des études de cas dans l’industrie forestière et du meuble. Premièrement, les moyens technologiques pour soutenir une collaboration en planification du transport sont étudiés. Un système d’aide à la décision supportant la collaboration en transport forestier est présenté. Deuxièmement, le partage entre les collaborateurs du coût commun en transport est étudié. Une méthode de répartition du coût de transport tenant compte de l'impact - l’augmentation du coût de transport - des exigences inégales entre des collaborateurs est proposée. Troisièmement, la création de groupes collaboratifs - des coalitions - dans un ensemble de collaborateurs potentiel est étudiée. Un modèle réseau pour la formation d’une coalition selon les intérêts d’un sous-ensemble de collaborateurs adoptant ou pas un comportement opportuniste est détaillé. De plus, pour soutenir l'étude des thèmes précédents, la thèse comprend deux revues de la littérature. Premièrement, une revue sur les méthodes de planification et les systèmes d’aide à la décision en transport forestier est présenté. Deuxièmement, à travers la proposition d'un cadre pour créer et gérer une collaboration en transport et, plus généralement en logistique, une revue de travaux sur le transport et la logistique collaborative est offerte.In the academic and professional literature on freight transportation, computer-based planning methods have a long time ago been identified as a means to achieve cost reduction through enhanced transportation operations efficiency. More recently, inter-firm collaboration in transportation planning has been investigated as a means to provide further gains in efficiency and, in turn, to achieve additional cost reduction for the collaborators. However, implementation of inter-firm collaboration in transportation raises a number of issues. This thesis addresses three central themes in inter-firm collaboration and exemplifies the contributions in case studies involving collaboration in furniture and forest transportation. First, technological means to enable collaboration in transportation planning are studied. Embedding a computer-based planning method for truck routing, a decision support system enabling collaborative transportation is presented. Second, sharing the common transportation cost among collaborators is studied. A cost allocation method taking into account the impact – an increase of the transportation cost – of uneven requirements among collaborators is proposed. Third, building collaborating groups (i.e. coalitions) among a set of potential collaborators is studied. A network model for coalition formation by a subset of self-interested collaborators adopting or not an opportunistic behaviour is detailed. Moreover, to support the study of the aforementioned themes, the thesis includes two literature reviews. First, a survey on planning methods and decision support systems for vehicle routing problem in forest transportation is presented. Second, through the proposition of a framework for building and managing collaboration in transportation and, more generally in logistics, a survey of works on collaborative transportation and logistics is given

    Mixed integer linear programming approaches for solving the raw material allocation, routing and scheduling problems in the forest industry

    Get PDF
    Transportation planning in forest industry is a challenging activity since it involves complex decisions about raw material allocation, vehicle routing and scheduling of trucks arrivals to both harvest areas and the plants. In the Argentine context, specifically in the Argentinean Northeast (NEA) region, the forest industry plays essential role for the economic development and, among the included activities, the transportation is the key element considering the volumes that must be moved and the distances to be traveled. Therefore, enhancing efficiency in the transportation activity improves significantly the performance of this industry. In this work, a Mixed Integer Linear Programming (MILP) model is presented, where raw material allocation, vehicle routing and scheduling of trucks arrivals are simultaneously addressed. Since the resolution times of the proposed integrated MILP model are prohibitive for large instances, a hierarchical approach is also presented. The considered decomposition approach involves two stages: in the first phase, the raw material allocation and vehicle routing problems are solved through a MILP model, while in the second phase, fixing the route for each truck according to the results of the previous step, the scheduling of truck arrivals to both the harvest areas and the plants is solved through a new MILP model. The obtained results show that the proposed approach is very effective and could be easily applied in this industry.Fil: Bordon, Maximiliano Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Montagna, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Corsano, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentin

    An integrated planning model for multi-supplier, multi-facility, multi-customer, multi-product and multi-period : application to the wood furniture industry

    Get PDF
    Typiquement, un réseau de création de valeur dans l'industrie du meuble en bois, est composé de fournisseurs de billes de bois, de scieries, de séchoirs, d'usines de meubles, de centres de distribution et de détaillants. Dans cette thèse, nous nous concentrons sur l'étude du réseau qui assure l'approvisionnement des usines de meubles en bois. La problématique à laquelle font face les entreprises de ce réseau se situe principalement au niveau de la synchronisation des flux de matière. Ces derniers doivent respecter les contraintes de capacité, de procédés, de transport et la diversité des produits, pour satisfaire la demande. La planification, dans ce contexte, repose sur une vision locale ce qui affecte la performance globale du réseau. L'objectif de cette thèse est de proposer un modèle de planification intégrée dans un contexte, multifoumisseurs, multiusines, multiproduits, multiclients et multipériodes, qui vise la synchronisation des flux, et la maximisation de la performance globale tout en respectant les différentes contraintes du réseau. Nous proposons un modèle générique du problème de planification intégrée qui permet de déterminer les décisions tactiques d'approvisionnement, d'inventaire, de flux de matière et de sous-traitance. Ce modèle est un programme linéaire mixte en nombres entiers de grande taille. Nous avons développé une heuristique basée sur la décomposition dans le temps qui exploite l'aspect multipériodes du problème de planification. Nous avons aussi proposé deux solutions basées sur la décomposition de Benders et la décomposition croisée pour réduire le temps de résolution. Enfin, ce modèle a été validé en utilisant les données réelles de l'entreprise partenaire du projet et les résultats, montrent des réductions potentielles du coût total des opérations de l'ordre de 22%. L'approche de planification intégrée adoptée ainsi que les méthodes de résolution proposées dans cette thèse peuvent être exploitées pour la planification des réseaux dans d'autres secteurs d'activités ayant des similarités avec la problématique traitée dans cette thèse

    Optimization models and methods for real-time transportation planning in forestry

    Get PDF
    Lors du transport du bois de la forêt vers les usines, de nombreux événements imprévus peuvent se produire, événements qui perturbent les trajets prévus (par exemple, en raison des conditions météo, des feux de forêt, de la présence de nouveaux chargements, etc.). Lorsque de tels événements ne sont connus que durant un trajet, le camion qui accomplit ce trajet doit être détourné vers un chemin alternatif. En l’absence d’informations sur un tel chemin, le chauffeur du camion est susceptible de choisir un chemin alternatif inutilement long ou pire, qui est lui-même "fermé" suite à un événement imprévu. Il est donc essentiel de fournir aux chauffeurs des informations en temps réel, en particulier des suggestions de chemins alternatifs lorsqu’une route prévue s’avère impraticable. Les possibilités de recours en cas d’imprévus dépendent des caractéristiques de la chaîne logistique étudiée comme la présence de camions auto-chargeurs et la politique de gestion du transport. Nous présentons trois articles traitant de contextes d’application différents ainsi que des modèles et des méthodes de résolution adaptés à chacun des contextes. Dans le premier article, les chauffeurs de camion disposent de l’ensemble du plan hebdomadaire de la semaine en cours. Dans ce contexte, tous les efforts doivent être faits pour minimiser les changements apportés au plan initial. Bien que la flotte de camions soit homogène, il y a un ordre de priorité des chauffeurs. Les plus prioritaires obtiennent les volumes de travail les plus importants. Minimiser les changements dans leurs plans est également une priorité. Étant donné que les conséquences des événements imprévus sur le plan de transport sont essentiellement des annulations et/ou des retards de certains voyages, l’approche proposée traite d’abord l’annulation et le retard d’un seul voyage, puis elle est généralisée pour traiter des événements plus complexes. Dans cette ap- proche, nous essayons de re-planifier les voyages impactés durant la même semaine de telle sorte qu’une chargeuse soit libre au moment de l’arrivée du camion à la fois au site forestier et à l’usine. De cette façon, les voyages des autres camions ne seront pas mo- difiés. Cette approche fournit aux répartiteurs des plans alternatifs en quelques secondes. De meilleures solutions pourraient être obtenues si le répartiteur était autorisé à apporter plus de modifications au plan initial. Dans le second article, nous considérons un contexte où un seul voyage à la fois est communiqué aux chauffeurs. Le répartiteur attend jusqu’à ce que le chauffeur termine son voyage avant de lui révéler le prochain voyage. Ce contexte est plus souple et offre plus de possibilités de recours en cas d’imprévus. En plus, le problème hebdomadaire peut être divisé en des problèmes quotidiens, puisque la demande est quotidienne et les usines sont ouvertes pendant des périodes limitées durant la journée. Nous utilisons un modèle de programmation mathématique basé sur un réseau espace-temps pour réagir aux perturbations. Bien que ces dernières puissent avoir des effets différents sur le plan de transport initial, une caractéristique clé du modèle proposé est qu’il reste valable pour traiter tous les imprévus, quelle que soit leur nature. En effet, l’impact de ces événements est capturé dans le réseau espace-temps et dans les paramètres d’entrée plutôt que dans le modèle lui-même. Le modèle est résolu pour la journée en cours chaque fois qu’un événement imprévu est révélé. Dans le dernier article, la flotte de camions est hétérogène, comprenant des camions avec des chargeuses à bord. La configuration des routes de ces camions est différente de celle des camions réguliers, car ils ne doivent pas être synchronisés avec les chargeuses. Nous utilisons un modèle mathématique où les colonnes peuvent être facilement et naturellement interprétées comme des itinéraires de camions. Nous résolvons ce modèle en utilisant la génération de colonnes. Dans un premier temps, nous relaxons l’intégralité des variables de décision et nous considérons seulement un sous-ensemble des itinéraires réalisables. Les itinéraires avec un potentiel d’amélioration de la solution courante sont ajoutés au modèle de manière itérative. Un réseau espace-temps est utilisé à la fois pour représenter les impacts des événements imprévus et pour générer ces itinéraires. La solution obtenue est généralement fractionnaire et un algorithme de branch-and-price est utilisé pour trouver des solutions entières. Plusieurs scénarios de perturbation ont été développés pour tester l’approche proposée sur des études de cas provenant de l’industrie forestière canadienne et les résultats numériques sont présentés pour les trois contextes.When wood is transported from forest sites to mills, several unforeseen events may occur, events which perturb planned trips (e.g., because of weather conditions, forest fires, or the occurrence of new loads). When such events take place while the trip is under way, the truck involved must be rerouted to an alternative itinerary. Without relevant information on such alternative itineraries, the truck driver may choose a needlessly long one or, even worse, an itinerary that may itself be "closed" by an unforeseen event (the same event as for the original itinerary or another one). It is thus critical to provide drivers with real-time information, in particular, suggestions of alternative itineraries, when the planned one cannot be performed. Recourse strategies to deal with unforeseen events depend on the characteristics of the studied supply chain, such as the presence of auto-loaders and the management policy of forestry transportation companies. We present three papers dealing with three differ- ent application contexts, as well as models and solution methods adapted to each context. In the first paper, we assume a context where truck drivers are provided a priori with the whole weekly plan. In this context, every effort must be made to minimize the changes in the initial plan. Although the fleet of trucks is homogeneous, there is a priority ranking of the truck drivers. The priority drivers are ensured the highest work- loads. Minimizing the changes in their plans is also a priority. Since the consequences of unforeseen events on transportation are cancellations and/or delaying of some trips, the proposed approach deals first with single cancellations and single delayed trips and builds on these simple events to deal with more complex ones. In this approach, we try to reschedule the impacted trips within the same week in such a way that a loader is free at the truck arrival time both at the forest site and at the mill. In this way, none of the other trips will be impacted or changed. This approach provides the dispatchers with alternative plans in a few seconds. Better solutions could be found if the dispatcher is allowed to make more changes to the original plan. In the second paper, we assume a context where only one trip at a time is communicated to the drivers. The dispatcher waits until the truck finishes its trip before revealing the next trip. This context is more flexible and provides more recourse possibilities. Also, the weekly problem can be divided into daily problems since the demand is daily and the mills are open only for limited periods in the day. We use a mathematical programming model based on a time-space network representation to react to disruptions. Although the latter can have different impacts on the initial transportation plan, one key characteristic of the proposed model is that it remains valid for dealing with all the unforeseen events, regardless of their nature. Indeed, the impacts of such events are reflected in the time-space network and in the input parameters rather than in the model itself. The model is solved for the current day each time an unforeseen event is revealed. In the last paper, the fleet of trucks is heterogeneous, including trucks with onboard loaders. The route configuration of the latter is different than the regular truck routes, since they do not have to be synchronized with the loaders. We use a mathematical model where the columns can be easily and naturally interpreted as truck routes. We solve this model using column generation. As a first step, we relax the integrality of the decision variables and consider only a subset of feasible routes. The feasible routes with a potential to improve the solution are added iteratively to the model. A time-space network is used both to represent the impacts of unforeseen events and to generate these routes. The solution obtained is generally fractional and a heuristic branch-and-price algorithm is used to find integer solutions. Several disruption scenarios were developed to test the proposed approach on case studies from the Canadian forest industry and numerical results are presented for the three contexts

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development
    • …
    corecore