1,644 research outputs found

    Intelligent Management and Efficient Operation of Big Data

    Get PDF
    This chapter details how Big Data can be used and implemented in networking and computing infrastructures. Specifically, it addresses three main aspects: the timely extraction of relevant knowledge from heterogeneous, and very often unstructured large data sources, the enhancement on the performance of processing and networking (cloud) infrastructures that are the most important foundational pillars of Big Data applications or services, and novel ways to efficiently manage network infrastructures with high-level composed policies for supporting the transmission of large amounts of data with distinct requisites (video vs. non-video). A case study involving an intelligent management solution to route data traffic with diverse requirements in a wide area Internet Exchange Point is presented, discussed in the context of Big Data, and evaluated.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    From Social Data Mining to Forecasting Socio-Economic Crisis

    Full text link
    Socio-economic data mining has a great potential in terms of gaining a better understanding of problems that our economy and society are facing, such as financial instability, shortages of resources, or conflicts. Without large-scale data mining, progress in these areas seems hard or impossible. Therefore, a suitable, distributed data mining infrastructure and research centers should be built in Europe. It also appears appropriate to build a network of Crisis Observatories. They can be imagined as laboratories devoted to the gathering and processing of enormous volumes of data on both natural systems such as the Earth and its ecosystem, as well as on human techno-socio-economic systems, so as to gain early warnings of impending events. Reality mining provides the chance to adapt more quickly and more accurately to changing situations. Further opportunities arise by individually customized services, which however should be provided in a privacy-respecting way. This requires the development of novel ICT (such as a self- organizing Web), but most likely new legal regulations and suitable institutions as well. As long as such regulations are lacking on a world-wide scale, it is in the public interest that scientists explore what can be done with the huge data available. Big data do have the potential to change or even threaten democratic societies. The same applies to sudden and large-scale failures of ICT systems. Therefore, dealing with data must be done with a large degree of responsibility and care. Self-interests of individuals, companies or institutions have limits, where the public interest is affected, and public interest is not a sufficient justification to violate human rights of individuals. Privacy is a high good, as confidentiality is, and damaging it would have serious side effects for society.Comment: 65 pages, 1 figure, Visioneer White Paper, see http://www.visioneer.ethz.c

    A Survey on Big Data for Network Traffic Monitoring and Analysis

    Get PDF
    Network Traffic Monitoring and Analysis (NTMA) represents a key component for network management, especially to guarantee the correct operation of large-scale networks such as the Internet. As the complexity of Internet services and the volume of traffic continue to increase, it becomes difficult to design scalable NTMA applications. Applications such as traffic classification and policing require real-time and scalable approaches. Anomaly detection and security mechanisms require to quickly identify and react to unpredictable events while processing millions of heterogeneous events. At last, the system has to collect, store, and process massive sets of historical data for post-mortem analysis. Those are precisely the challenges faced by general big data approaches: Volume, Velocity, Variety, and Veracity. This survey brings together NTMA and big data. We catalog previous work on NTMA that adopt big data approaches to understand to what extent the potential of big data is being explored in NTMA. This survey mainly focuses on approaches and technologies to manage the big NTMA data, additionally briefly discussing big data analytics (e.g., machine learning) for the sake of NTMA. Finally, we provide guidelines for future work, discussing lessons learned, and research directions

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    Big Data for Traffic Estimation and Prediction: A Survey of Data and Tools

    Full text link
    Big data has been used widely in many areas including the transportation industry. Using various data sources, traffic states can be well estimated and further predicted for improving the overall operation efficiency. Combined with this trend, this study presents an up-to-date survey of open data and big data tools used for traffic estimation and prediction. Different data types are categorized and the off-the-shelf tools are introduced. To further promote the use of big data for traffic estimation and prediction tasks, challenges and future directions are given for future studies

    Quadri-dimensional approach for data analytics in mobile networks

    Get PDF
    The telecommunication market is growing at a very fast pace with the evolution of new technologies to support high speed throughput and the availability of a wide range of services and applications in the mobile networks. This has led to a need for communication service providers (CSPs) to shift their focus from network elements monitoring towards services monitoring and subscribers’ satisfaction by introducing the service quality management (SQM) and the customer experience management (CEM) that require fast responses to reduce the time to find and solve network problems, to ensure efficiency and proactive maintenance, to improve the quality of service (QoS) and the quality of experience (QoE) of the subscribers. While both the SQM and the CEM demand multiple information from different interfaces, managing multiple data sources adds an extra layer of complexity with the collection of data. While several studies and researches have been conducted for data analytics in mobile networks, most of them did not consider analytics based on the four dimensions involved in the mobile networks environment which are the subscriber, the handset, the service and the network element with multiple interface correlation. The main objective of this research was to develop mobile network analytics models applied to the 3G packet-switched domain by analysing data from the radio network with the Iub interface and the core network with the Gn interface to provide a fast root cause analysis (RCA) approach considering the four dimensions involved in the mobile networks. This was achieved by using the latest computer engineering advancements which are Big Data platforms and data mining techniques through machine learning algorithms.Electrical and Mining EngineeringM. Tech. (Electrical Engineering

    Blending big data analytics : review on challenges and a recent study

    Get PDF
    With the collection of massive amounts of data every day, big data analytics has emerged as an important trend for many organizations. These collected data can contain important information that may be key to solving wide-ranging problems, such as cyber security, marketing, healthcare, and fraud. To analyze their large volumes of data for business analyses and decisions, large companies, such as Facebook and Google, adopt analytics. Such analyses and decisions impact existing and future technology. In this paper, we explore how big data analytics is utilized as a technique for solving problems of complex and unstructured data using such technologies as Hadoop, Spark, and MapReduce. We also discuss the data challenges introduced by big data according to the literature, including its six V's. Moreover, we investigate case studies of big data analytics on various techniques of such analytics, namely, text, voice, video, and network analytics. We conclude that big data analytics can bring positive changes in many fields, such as education, military, healthcare, politics, business, agriculture, banking, and marketing, in the future. © 2013 IEEE

    A Data-driven Methodology Towards Mobility- and Traffic-related Big Spatiotemporal Data Frameworks

    Get PDF
    Human population is increasing at unprecedented rates, particularly in urban areas. This increase, along with the rise of a more economically empowered middle class, brings new and complex challenges to the mobility of people within urban areas. To tackle such challenges, transportation and mobility authorities and operators are trying to adopt innovative Big Data-driven Mobility- and Traffic-related solutions. Such solutions will help decision-making processes that aim to ease the load on an already overloaded transport infrastructure. The information collected from day-to-day mobility and traffic can help to mitigate some of such mobility challenges in urban areas. Road infrastructure and traffic management operators (RITMOs) face several limitations to effectively extract value from the exponentially growing volumes of mobility- and traffic-related Big Spatiotemporal Data (MobiTrafficBD) that are being acquired and gathered. Research about the topics of Big Data, Spatiotemporal Data and specially MobiTrafficBD is scattered, and existing literature does not offer a concrete, common methodological approach to setup, configure, deploy and use a complete Big Data-based framework to manage the lifecycle of mobility-related spatiotemporal data, mainly focused on geo-referenced time series (GRTS) and spatiotemporal events (ST Events), extract value from it and support decision-making processes of RITMOs. This doctoral thesis proposes a data-driven, prescriptive methodological approach towards the design, development and deployment of MobiTrafficBD Frameworks focused on GRTS and ST Events. Besides a thorough literature review on Spatiotemporal Data, Big Data and the merging of these two fields through MobiTraffiBD, the methodological approach comprises a set of general characteristics, technical requirements, logical components, data flows and technological infrastructure models, as well as guidelines and best practices that aim to guide researchers, practitioners and stakeholders, such as RITMOs, throughout the design, development and deployment phases of any MobiTrafficBD Framework. This work is intended to be a supporting methodological guide, based on widely used Reference Architectures and guidelines for Big Data, but enriched with inherent characteristics and concerns brought about by Big Spatiotemporal Data, such as in the case of GRTS and ST Events. The proposed methodology was evaluated and demonstrated in various real-world use cases that deployed MobiTrafficBD-based Data Management, Processing, Analytics and Visualisation methods, tools and technologies, under the umbrella of several research projects funded by the European Commission and the Portuguese Government.A população humana cresce a um ritmo sem precedentes, particularmente nas áreas urbanas. Este aumento, aliado ao robustecimento de uma classe média com maior poder económico, introduzem novos e complexos desafios na mobilidade de pessoas em áreas urbanas. Para abordar estes desafios, autoridades e operadores de transportes e mobilidade estão a adotar soluções inovadoras no domínio dos sistemas de Dados em Larga Escala nos domínios da Mobilidade e Tráfego. Estas soluções irão apoiar os processos de decisão com o intuito de libertar uma infraestrutura de estradas e transportes já sobrecarregada. A informação colecionada da mobilidade diária e da utilização da infraestrutura de estradas pode ajudar na mitigação de alguns dos desafios da mobilidade urbana. Os operadores de gestão de trânsito e de infraestruturas de estradas (em inglês, road infrastructure and traffic management operators — RITMOs) estão limitados no que toca a extrair valor de um sempre crescente volume de Dados Espaciotemporais em Larga Escala no domínio da Mobilidade e Tráfego (em inglês, Mobility- and Traffic-related Big Spatiotemporal Data —MobiTrafficBD) que estão a ser colecionados e recolhidos. Os trabalhos de investigação sobre os tópicos de Big Data, Dados Espaciotemporais e, especialmente, de MobiTrafficBD, estão dispersos, e a literatura existente não oferece uma metodologia comum e concreta para preparar, configurar, implementar e usar uma plataforma (framework) baseada em tecnologias Big Data para gerir o ciclo de vida de dados espaciotemporais em larga escala, com ênfase nas série temporais georreferenciadas (em inglês, geo-referenced time series — GRTS) e eventos espacio- temporais (em inglês, spatiotemporal events — ST Events), extrair valor destes dados e apoiar os RITMOs nos seus processos de decisão. Esta dissertação doutoral propõe uma metodologia prescritiva orientada a dados, para o design, desenvolvimento e implementação de plataformas de MobiTrafficBD, focadas em GRTS e ST Events. Além de uma revisão de literatura completa nas áreas de Dados Espaciotemporais, Big Data e na junção destas áreas através do conceito de MobiTrafficBD, a metodologia proposta contem um conjunto de características gerais, requisitos técnicos, componentes lógicos, fluxos de dados e modelos de infraestrutura tecnológica, bem como diretrizes e boas práticas para investigadores, profissionais e outras partes interessadas, como RITMOs, com o objetivo de guiá-los pelas fases de design, desenvolvimento e implementação de qualquer pla- taforma MobiTrafficBD. Este trabalho deve ser visto como um guia metodológico de suporte, baseado em Arqui- teturas de Referência e diretrizes amplamente utilizadas, mas enriquecido com as característi- cas e assuntos implícitos relacionados com Dados Espaciotemporais em Larga Escala, como no caso de GRTS e ST Events. A metodologia proposta foi avaliada e demonstrada em vários cenários reais no âmbito de projetos de investigação financiados pela Comissão Europeia e pelo Governo português, nos quais foram implementados métodos, ferramentas e tecnologias nas áreas de Gestão de Dados, Processamento de Dados e Ciência e Visualização de Dados em plataformas MobiTrafficB

    SeLINA: a Self-Learning Insightful Network Analyzer

    Get PDF
    Understanding the behavior of a network from a large scale traffic dataset is a challenging problem. Big data frameworks offer scalable algorithms to extract information from raw data, but often require a sophisticated fine-tuning and a detailed knowledge of machine learning algorithms. To streamline this process, we propose SeLINA (Self-Learning Insightful Network Analyzer), a generic, self-tuning, simple tool to extract knowledge from network traffic measurements. SeLINA includes different data analytics techniques providing self-learning capabilities to state-of-the-art scalable approaches, jointly with parameter auto-selection to off-load the network expert from parameter tuning. We combine both unsupervised and supervised approaches to mine data with a scalable approach. SeLINA embeds mechanisms to check if the new data fits the model, to detect possible changes in the traffic, and to, possibly automatically, trigger model rebuilding. The result is a system that offers human-readable models of the data with minimal user intervention, supporting domain experts in extracting actionable knowledge and highlighting possibly meaningful interpretations. SeLINA's current implementation runs on Apache Spark. We tested it on large collections of realworld passive network measurements from a nationwide ISP, investigating YouTube and P2P traffic. The experimental results confirmed the ability of SeLINA to provide insights and detect changes in the data that suggest further analyse
    • …
    corecore