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ABSTRACT 
 

 

The telecommunication market is growing at a very fast pace with the evolution of new 

technologies to support high speed throughput and the availability of a wide range of services 

and applications in the mobile networks. This has led to a need for communication service 

providers (CSPs) to shift their focus from network elements monitoring towards services 

monitoring and subscribers’ satisfaction by introducing the service quality management (SQM) 

and the customer experience management (CEM) that require fast responses to reduce the time 

to find and solve network problems, to ensure efficiency and proactive maintenance, to improve 

the quality of service (QoS) and the quality of experience (QoE) of the subscribers. While both 

the SQM and the CEM demand multiple information from different interfaces, managing multiple 

data sources adds an extra layer of complexity with the collection of data.  

While several studies and researches have been conducted for data analytics in mobile networks, 

most of them did not consider analytics based on the four dimensions involved in the mobile 

networks environment which are the subscriber, the handset, the service and the network 

element with multiple interface correlation.  

The main objective of this research was to develop mobile network analytics models applied to 

the 3G packet-switched domain by analysing data from the radio network with the Iub interface 

and the core network with the Gn interface to provide a fast root cause analysis (RCA) approach 

considering the four dimensions involved in the mobile networks. This was achieved by using 

the latest computer engineering advancements which are Big Data platforms and data mining 

techniques through machine learning algorithms. 

 

 

Keywords: Telecommunication, Mobile Networks, Packet-Switched, QoS, QoE, SQM, CEM, 

Root Cause Analysis, Data Analytics, Big Data, Machine Learning, Artificial Intelligence, ANN, 

Deep learning. 
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Chapter 1: Introduction 

 

1.1. Background of the study 

The mobile networks services with the explosion of new generations of devices, smartphones 

and tablets have been evolving from simple calls and internet browsing to data intensive 

applications such as video streaming, social media, online gaming, internet protocol television 

(IPTV) and even security demanding applications for banking or mobile money [1]. This evolution 

leads to a complexity in the monitoring and management of the networks with a high number of 

services to consider in a typical  mobile network environment. The complexity is further increased 

with the introduction of the internet of things (IoT),  machine to machine (M2M) communications 

[2] and the network function virtualization (NFV) with the software-defined networking (SDN) [3]. 

To manage the complexity of the current mobile networks ecosystems, there has been a 

paradigm shift from network- to service-oriented management with the subscribers’ satisfaction 

in the centre of the network management. The network operation centre (NOC) has become a 

lower layer of the so-called service operation centre (SOC) with the implementation of the service 

quality management (SQM) and the customer experience management (CEM) [4]. 

The implementation of the SQM has become a huge challenge for communication service 

providers (CSPs), since it involves several areas of expertise needed to handle both the quality 

of service (QoS) and the quality of experience (QoE) which are both linked to the profitability of 

the organization.  

A customer experience lifecycle includes the experience before the subscription, while using the 

network and when leaving the network in case of churn [5]. The SQM requires a deep knowledge 

of the technical and business aspects of the mobile network environment, a collection and 

correlation of customers’ information from various data sources such as the network probing, the 

performance management (PM), the fault management (FM) and the billing information for 

different services [6]. All these variations of data sources lead to a need to perform mobile 

network analytics based on multiple dimensions such as the subscriber, the handset, the service 

and the network element contributing to the management diversity by using an intelligent 

approach for data collection, data mining and analysis [4]. 
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1.2. Problem statement and purpose of study 

1.2.1. Problem statement 

Previous researches in mobile network analytics tend to only focus on one dimension at a time, 

without considering the links and the impacts between different dimensions in mobile networks. 

An efficient SQM should assume that the subscriber’s experience could deteriorate due to the 

usage of underperforming handsets. In the same vein some handsets might be underperforming 

only because they are mostly used in a cell with poor coverage. For this, there is a need to bear 

in mind the correlations and links between the four dimensions (the subscriber, the handset, the 

service and the network element) during the collection of data, the processing, the root cause 

analysis (RCA) and the analytics.  

1.2.1.1. Sub-problem 1: Data collection and processing 

To ensure the implementation of an SQM,  there is a need to process and store a large amount 

of historical aggregated data for the feeding of the SOC [7]. The traditional database 

management systems based on the structured query language (SQL) have shown their limitation 

to store and retrieve huge amount of data from multiple interfaces. There is therefore a need to 

use Big Data platforms to ensure a faster and efficient management of data. 

1.2.1.2. Sub-problem 2: Reporting and root cause analysis (RCA) 

To unleash the business benefits from the collected information in the mobile networks and 

increase the revenue, two of the most critical barriers are the organization processes and the 

data complexity [4]. Thus, there is a need for an intelligent reporting approach to manage the 

data complexity in the mobile network by understanding different network processes. This will 

help in building useful reports and most importantly derive the RCA to reduce the troubleshooting 

time and hence improve the efficiency while optimizing the operation expenditure (OPEX). 

1.2.1.3. Sub-problem 3: Analytics 

One of the leading trends in SQM implementation is the predictive analytics [8]. Depending on 

the types of data collected, there is a need to apply analytics for any layer of the mobile networks 

starting from the NOC in the prediction of network elements, the SOC to predict the behaviour of 

services, up to the marketing department so as to understand the customers’ segmentation and 

preferences for marketing campaigns or product promotions. 
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1.2.2. Purpose of study 

The purpose of this research was to use some of the advancements in the area of computer 

engineering and data science to provide a Big Data model for data mining and analytics on the 

mobile networks, particularly, on the packet-switched domain as its usage is tremendously 

increasing. The study’s contribution is to investigate and provide new directions in mobile 

networks investigation into managing the packet-switch domain and providing customer- and 

service-oriented RCA with an upper layer of artificial intelligence. The results of this research 

were submitted or published to local and international journals and conferences on 

telecommunication and Big Data.  

1.3. Research questions 

In light of the problem statement above, this study attempted to address the following 

questions: 

1. Which methods have been used for data analytics in mobile networks previously?  

2. How to develop a quadri-dimensional (including the subscriber, the handset, the service 

and the cell) reporting structure for performance monitoring in mobile networks. 

3. How to use machine learning techniques to classify and predict the type of data traffic in 

the network? 

4. How to use machine learning techniques to determine the relationship between the radio 

conditions and the perceived subscribers’ QoS in mobile networks? 

5. How to develop a model using machine learning techniques, the radio conditions and the 

core network performance metrics for the RCA of the poor QoS in the mobile networks?  

1.4. Research methodology 

The research methodology approach used in this study was the design science paradigm. The 

design science research (DSR) methodology not only provides investigation flow to determine 

the problems and the objectives, but also focuses on the development and the design of a 

valuable artefact [9].  

The design science methodology has been widely accepted and approved in research circles  

for the design of engineering products and applications. There are case studies in the fields of 

data warehouse, software measurement and telecommunication software that demonstrate the 

successful implementation of the DSR methodology [10]. 
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The phases considered during the execution of this research/study are described as follows: 

1. Literature review: To deeply analyse the problems identified in this study, the motivations 

leading to the objectives and the requirements of the implementation. This first phase 

consisted of intensive literature survey in mobile network analytics.  

2. Design and implementation: To produce a valuable artefact, the research orientation was 

a solution-based one to design and implement:   

a. Models based on artificial neural network (ANN) to classify video traffic from a 

sample of Facebook data containing video, chat and browsing traffic. The best 

model should be selected based on the accuracy as the evaluation metric. 

b. A structured reporting model to enable hierarchical aggregation following a tree 

approach to speed up troubleshooting considering the main four dimensions in 

the mobile network. 

c. Models based on machine learning techniques to predict user-based QoS 

categories using radio conditions parameters. Different models based on different 

machine learning techniques which are the decision tree (DT), the random forests 

(RF), the support vector machines (SVM) were trained, tuned and compared to 

select the best model based on the accuracy. 

d. A model based on deep neural network (DNN) to analyse the performance metrics 

from both the radio and the core networks for the RCA of a poor throughput 

performance in the mobile network. 

3. Demonstration and evaluation: The results of the research were evaluated based on a 

quantitative approach of measuring the performance metrics of the system and a 

qualitative approach of assessing the accuracy of the results. 

4. Communication of the research results: The results of this research will be submitted and 

published in journals and conferences. 

1.5. Research objectives 

The main objectives of this research were: 

1. To provide a data analytics model applied to the packet-switched domain of the mobile 

network and build an intelligent reporting model. 

2. To analyse the data from the radio network on the Iub interface, the core network on the 

Gn interface. 
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3. To establish the correlation between the performance metrics of the network and the 

perceived experience by the subscribers. 

4. To use machine learning techniques for classification problems in mobile networks and 

to develop an RCA model for poor network performance. 

1.6. Scope and delimitation  

The scope of this research was limited to the following assumptions and delimitations:  

1. The study only focused on the universal mobile telecommunications system (UMTS) 3G 

packet-switched domain since most of the services, applications and handsets 

contributing to the complexity of the mobile network environment are operating under that 

domain. 

2. Although there are several interfaces in the packet-switched domain, this research 

considered only the main interfaces of the packet-switched domain of a UMTS 3G mobile 

network. The interfaces considered for this study are as follows: 

a) Iub interface: The Iub interface is the radio 3G interface between the Node-B and 

the radio network controller (RNC) carrying the radio resource control (RRC) 

measurement reports that provide information about the propagation delay 

(Distance at which the customers are generating their radio activities), the radio 

signalling strength and radio signalling quality. 

b) Gn interface: The Gn interface is the core network interface between the general 

packet radio services (GPRS) support nodes such as the serving GPRS support 

node (SGSN) and the gateway GPRS support node (GGSN) by carrying the 

packet data protocol (PDP) information and the user-plane information such as 

the bytes usage, the latency or the packets retransmission.  

3. This research used a physical computer for hosting the application programming 

interfaces (APIs) used to write the relevant programming codes and a virtual environment 

to host the Big Data platform for data storage and analytics. 
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Chapter 2: Literature Review 

 

2.1. Introduction to the mobile networks 

The mobile networks have a direct impact in our daily lives, starting with the devices we use to 

communicate through calls, short message service (SMS), social media chats or just for simple 

researches on the internet. For the past years, the use cases in the mobile network environment 

have evolved to address new requirements such as online gaming with the virtual reality (VR) or 

the augmented reality (AR). These are both very demanding in terms of higher throughputs and 

lower latencies. Others are applications such as the mobile money services which require high 

security features [1]. The mobile networks are intensively using the latest evolutions of computer 

engineering such as the network function virtualization (NFV) with software-defined networking  

(SDN), artificial intelligence with machine learning algorithms and Big Data concepts to enhance 

the capability and flexibility of CSPs. These are all implemented so as to address the new 

emerging use cases while improving the network monitoring and customer’s satisfaction [4]. 

2.2. The mobile networks evolution 

The mobile networks started with the introduction of the 1st generation (1G) mobile networks that 

consisted of purely analogue systems supporting only the voice services. Some of the famous 

1G mobile networks  technologies are the advanced mobile phone system (AMPS), the Nordic 

mobile telephone (NMT) and the total access communication system (TACS). The 2nd generation 

(2G) mobile networks such as the digital-advanced mobile phone system (D-AMPS), the global 

system for mobile communications (GSM) and the general packet radio services (GPRS) 

introduced the concept of digitization of information with the combination of both the voice and 

the data services. In the early 2000s, the 3rd generation (3G) mobile network  was introduced 

with new modulation techniques that enabled the mobile broadband (MBB) with the high-speed 

packet access (HSPA) plus the downlink with the carrier aggregation that used multiple-in and 

multiple-out (MIMO) techniques. Some of the 3G technologies  available today are the UMTS 

and the time division synchronous code division multiple access (TD-SCDMA). The 4th 

generation (4G) mobile networks  such as the long-term evolution (LTE) were introduced after 

2008, to enable higher data rates  and for faster and better data connectivity. This was mainly 

done for services requiring richer contents and more connections [11]. Lately, different 

telecommunication standardization bodies are writing for the specifications of the 5th generation 
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of telecommunication (5G) technologies  that will probably have  first commercial deployments 

from 2020 [3]. 

2.3. Mobile networks trends 

The trend of the mobile networks is strongly influenced by the types of use cases that need to 

be addressed. The amount of applications and services increases with the number of 

smartphones [4] and software capabilities facilitated by APIs and opensource platforms. Most of 

the developed countries are taking huge strides in the deployment of the 4G networks and the 

testing of the 5G prototypes. Interestingly, while the European mobile operators have more than 

90% coverage on the 4G networks and expecting first deployments of 5G networks around 2020 

[7], some of the African countries are still lagging with the deployment of the 4G networks as 

shown in Figure 1 [12] where the percentage of 4G connections will still be below 50% by 2021. 

Therefore, for most of the African countries the  packet-switched services will still be delivered 

by the legacy 2G/3G technologies. 

 

 

 

Figure 1: Smartphones as a percentage of handsets, Sub-Saharan Africa 2015 and 2021  [12] 

 

Another factor influencing the trend of the mobile networks is the types of devices. The  

introduction of smart electronic devices and smart appliances  that are technologically wrapped 

around machine to machine (M2M) communication and the internet of things will contribute to 

the evolution of smart cities and the evolvement of the industry 4.0 [13]. Even though these new 



8 
 

devices represent opportunities in terms of revenue, there are  also new challenges for CSPs in 

terms of services and network management complexity. 

2.4. Service quality management (SQM) 

The evolution of different services in the network and the complexity in the management of the 

mobile networks have a major impact on the QoE [14] which is the measurement of the user’s 

experience based on the service value perception. The QoE can be subjective or objective. A 

subjective QoE is based on the user's opinion of a certain aspect of a service such as customer 

service, easy-to-use, cost, billing or performance. This type of QoE does not provide, in general, 

the difference between the expected and the delivered quality. The objective QoE instead, 

establishes the relationship between the factors influencing the QoE based on the network 

information [15] to demonstrate that, although the QoE is linked to the end-user perception, it 

can have a relationship with the traditional network-centric QoS contributing to the end-user 

dissatisfaction or satisfaction [16]. This relationship is shown in Figure 2 [17] which describes the 

four viewpoints of the QoS where the customer’s perception of the QoS plays a major role in the 

overall QoE. 

 

 

Figure 2: ITU Four Viewpoints of QoS [17] 

 

One of the important metrics used to determine the customers’ perception of the network is the 

network promotor score (NPS). The NPS is survey used to evaluate subscriber’s satisfaction 

through a score ranging from zero to ten (0 to 10) and is based on the subscriber’s 

recommendation of the consumed product [18]. Therefore, the CSPs use the NPS to determine 

the organization efficiency and effectiveness for the CEM. Figure 3 [18] shows the correlation 

between the NPS and the churning rate of customers based on the analysis of the throughput 

for 6 months for small and medium-sized enterprises (SMEs), indicating the relationship between 

the NPS and the QoE. Generally, poor QoE can be understood through NPS detractors. 
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Figure 3: Percentage of SMEs intending to churn within six months and corresponding NPS 
[18] 

 

The NPS of some of the operators in the African countries are shown in Figure 4 [19]. Although 

some of the operators in South Africa and in Kenya seem to have high NPS as compared to 

others, the overall NPS is still poor, leading to high churning rate in most African countries [19].  

 

 

Figure 4: NPS for samples of African operators [19] 

 

The NPS detractors usually churn from the network based on distinctive top three network-

related reasons on churn. For most mobile networks, the reasons why customers churn, are 

based on the service quality, network coverage and data speed as shown in Table 1 [18]. The 
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data speed which is perceived by the customers as the user throughput plays a very important 

role in the QoE for the packet-switched domain of the mobile network. As most of the mobile 

networks in Africa have 3G networks deployment, the optimization of the 3G packet-switched 

mobile network is still crucial in ensuring better QoS.  

 

Table 1: Top three reasons for churn by enterprise size and service type [18] 

Service Type SMEs Large enterprises 

Mobile 

1. Price 1. Customer service 

2. Customer service 2. Price 

3. Network coverage 3. Network quality and data speed 

Fixed 

1. Data rate or bandwidth 1. Customer service 

2. Price 2. Price 

3. Customer service 3. Network coverage 

 

 

The traditional NOC has been very inefficient in terms of problem finding, handling and 

resolution. As more and more people use the mobile networks with multiple connectivity, 

acquiring a new customer is more difficult than it is for the existing customers to churn. While the 

traditional mobile networks monitoring strategies followed a bottom-up approach, that is  starting 

with the network elements management, the network alarming and troubleshooting through 

historical key performance indicators (KPIs) monitoring; the SQM follows the top-down approach 

starting with the very aggregated service quality index (SQI), down to the KPIs. This assists the 

CSPs in reacting, in near real-time, not only to issues but also, based on the historical and 

statistical values, to applying predictive and proactive maintenance [4]. 

Some of the benefits of the SQM are the reduction of the OPEX, the reduction of the time-to-

market, the reduction of the mean-time to repair (MTTR) and the increase of the revenues. Even 

if these seem to be clear benefits of the SQM approach, however, there are still barriers regarding 

its full implementation due to delays in digital transformation for certain CSPs, the complexity of 

the services and the processing of huge amount of the mobile network data before extracting 

any values. To extract values from the data, the correlation between different parts of the network 

is a necessity for any SQM to provide an end-to-end (E2E) QoS and QoE. The collection and 

the correlation of information from different parts of the network allows the computation of 
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customer-centric metrics which are derived from weighted functions of the aggregated SQI 

attributes and KPIs from different dimensions in the mobile network [7]. An SQM takes 

information from multiple data sources including the call data records (CDRs), the measurement 

reports and the operations and maintenance centre (OMC) data to provide and E2E visibility [20]. 

The value from the data is then extracted using Big Data and machine learning for predictive 

analysis [21]. Since the CSPs spend a lot of time when there is an issue or outage in the network 

because of the complexity of services and the number of elements involved in the mobile 

networks, the evaluation of the efficiency in detecting and solving issues is measured by the 

MTTR [22].  

2.5. 3G packet-switched mobile networks interfaces 

Most of the services and applications introduced with the proliferation of devices are in the 

packet-switched domain delivered through the mobile broadband (MBB) [14]. In MBB, the 

network related reasons to churn are due to poor network quality and data speeds [18]. The 

replacement of the traditional circuit-switched services and the continuous increase in customers’ 

data quality expectation resulted in different SQM model for packet-switched services compared 

to the traditional circuit-switched [23].  

While the 3G packet-switched domain has several interfaces as shown in Figure 5 [99], most of 

the information required to perform an E2E analysis can be captured from the Iub interface of 

the radio network and the Gn interface of the core network. 
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Figure 5: 3G packet-switched network topology [99] 

 

2.5.1. Iub interface 

The Iub is the logical interface between the Node-B and the radio network controller (RNC) in 

the UMTS terrestrial radio access network (UTRAN). It is used to ensure the interconnection 

between the two nodes, to manage the radio resources as well as to ensure the transport of the 

non-access stratum (NAS) information transferred from the user equipment (UE) directly to the 

RNC. The Iub interface supports different data streams depending on the types of the channel 

used. Some of the Iub interface channels are the dedicated channel (DCH), the fast-access 

channel (FACH) and the random-access channel (RACH). These channels provide the transport 

of information during the connection and the idle modes  of the network system [24]. The main 

functions of Iub interface are the management of the radio link, the cell configuration, the radio 

network performance, the radio resource and the measurement reports. 

a) Iub protocol stack 

The Iub protocol stack consists of the transport and the network layers. The transport layer is the 

underlaying layer based on either the asynchronous transfer mode (ATM) or internet protocol 

(IP). The network layer is composed of the Node-B application part (NBAP), the radio link control 

(RLC), the radio resource control (RRC) and the upper NAS as shown in Figure 6 [24]. 
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Figure 6: Iub interface protocol stack [24] 

 

b) Iub interfaces messages and procedures  

Most of the 3G radio procedures are transported through the RRC protocol. Some of them are:  

1. Upper layer messages routing for mobility management (MM) and session management 

(SM) to ensure the communication between the UE and the core network.  

2. Radio bearer management 

3. UEs paging 

4. System information broadcasting 

5. Handovers management 

6. Power control 

7. Lower layer configuration  

8. Measurement reports management  

Any upper layer procedure requires a prior RRC establishment to ensure the communication 

between the UE and the RNC. After the RRC connection request from the UE to the RNC via 

the Node-B, the NBAP protocol sets the radio links between the Iub bearer and the frame protocol 

(FP) before completing the RRC setup as shown in Figure 7 [25]. 
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Figure 7: RRC establishment steps [25] 

 

Among the important messages for the radio optimization, there are the measurement reports. 

These are messages exchanged over the RRC layer to enable communication between the UEs 

and the RNC. The RNC sends sets of conditions to the UE via the measurement commands and 

expects periodic and event-triggered measurement reports from the UE to request for the 

appropriate actions from the RNC after any of those conditions are modified [26]. Table 2 

summarises the measurement reports groups and their trigger conditions.  
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Table 2: 3G Measurement reports summary 

Measurement Type 
Event-ID 

Group 
Typical Tasks 

Intra-frequency 

measurement e1 

Triggers the softer or soft handover if 

necessary 

Inter-frequency 

measurement e2 Triggers the hard handover if necessary 

Inter-RAT measurement e3 

Triggers handover from the UTRAN 

another technology if necessary 

Traffic Volume 

measurement e4 

Triggers the change of RRC state while 

the packet data protocol (PDP) context 

stays active (channel type switching) 

Quality Reporting e5 

Informs the source RNC that a predefined 

number of cyclic redundancy check (CRC) 

errors is exceeded on the UE side 

UE Internal measurement e6 

Delivers the information about UE Tx 

power (i.e.: If maximum Tx power is 

reached) 

UE Positioning reporting e7 

Informs the network about problems with 

positioning 

 

 

2.5.2. Gn interface 

The Gn is the interface between two GPRS supporting nodes that could be an SGSN or a GGSN 

within the same public land mobile network (PLMN) and is equivalent to the Gp interface in case 

of different PLMNs interconnection while keeping the same protocol stack.  

a) Gn protocol stack  

The Gn interface protocol stack consists of the transport and the application layers. The transport 

layer consists of the physical, the data link, the IP and user datagram protocol (UDP) layer while 

the application layer consists of the GPRS tunnelling protocol (GTP) as shown in Figure 8 [27]. 
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The GTP is divided into two sub-protocols which are the GTP-C for the control plane and the 

GTP-U dedicated for the user plane [27]. 

 

 

Figure 8: Gn interface protocol stack [27] 

 

b) Gn interface messages and procedures  

The main procedures of the GTP-C are the GPRS mobility management (GMM) and the session 

management (SM). The GMM takes care of the mobility procedures such as the location update 

to track the serving cell of the UE [28]. The SM controls the sessions by means of PDP context 

establishment, update and deletion. The PDP context request message contains information 

such as the QoS, the international mobile subscriber identity (IMSI), the international mobile 

equipment identity (IMEI), the network elements information (The SGSN and the GGSN IPs) and 

the access point name (APN) [28]. The PDP Context establishment steps are provided in Figure 

9 [27]. 
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Figure 9: PDP context establishment steps [27] 

 

The user plane of the GPRS tunnelling protocol (GTP-U) carries the data of the subscribers 

related to the PDP context created. The packets transmission is regulated according to the QoS 

negotiated during the establishment of the PDP assignment. The QoS configuration depends on 

the types of subscribers, the types of services used: Browsing, video streaming or peer-to-peer 

(P2P) [29]. Some of the important KPIs used to measure the performance of data services are 

the throughput, the latency and the retransmission. To get to a deeper level of applications 

classification, the GGSN is often extended with the deep packet inspection (DPI) engine which 

uses either the domain name system (DNS) requests for the uniform resource locator (URL) 

resolution from IP addresses or the signature and the pattern of the traffic to detect the types of 

application or protocols used. 

2.6. QoS and QoE in packet-switched mobile networks 

Several researches have been done to evaluate and optimize both the QoS and the QoE in the 

packet-switched mobile network environment. Ouyang and Fallah [23] presented a study based 

on statistical models for a packet-switched network operation. The simulation used a service call 

generator tool to trigger different traffic types and collect performance from the GGSN. The main 

QoS performance assessed were the average utilization, the latency, the packet loss, the 

throughput and the DNS failures. Rawal and Gupta [30] used OPNET modeler to simulate a 
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packet-switched mobile network with QoS parameters such delay and throughput. The paper 

demonstrated that the configuration parameters have an impact on the overall QoS of the 

network. Schwind et al. [16] built a testbed that consisted of 250 access nodes hosted in 

volunteers' home and for mobility reason in public transport cars, buses and trains. The traffic 

was sent to the core network of three CSPs in three different European countries and the user 

measurement results were periodically transferred to a centralized repository. The correlation 

was then established between the experimental measurements and the QoS of the network to 

derive the link between the QoS and the QoE. 

Unlike previous researches focusing only on simulations and lab tests, the research done by 

Casas et al. [31] considered another source of information for QoE based on crowdsourcing to 

receive real users experience feedback from the users’ devices. Using crowdsourcing 

applications on end-user’s devices is getting popular. Not only for network authority regulators 

(NRA) but also for the CSPs. Some of the common crowdsourcing applications are Netalyzer, 

YoMoApp, Mobiperf. The results from the passive monitoring could therefore be correlated with 

the crowdsourcing application to demonstrate the link between the QoE and the QoS for a 

packet-switched mobile network. The metrics used to measure the QoE was the mean opinion 

score (MOS) which usually ranges from one to five (1 to 5). In this case, 1 is considered as being 

a poor QoE and 5 being an excellent one.  

Recent academic developments such as the one done by Monserrat et al. [7] used 

questionnaires to determine the NPS which is a metric model used to evaluate customers 

satisfaction and loyalty through rating of 0 to 10 based on subscriber’s perceived 

recommendation of the consumed product or service. Upadhyaya et al. [32] proposed a different 

model of collected QoE for the web services based on online reviews of the perception of the 

services delivered. Thousands of online reviews were analysed to determine the QoE attributes 

for the web services and create the relationship with the QoS parameters. To enable simple 

feedback, the online review was captured in native language, and was collected using crawling 

on the web, then saved in a database for text analysis. The text analysis consisted of 

categorization of words for positive feedback such as beautiful, nice, happy; and a negative 

feedback, based on words such as bad, terrible, disappointed. The reviews were clustered to 

determine the factors that influenced the user’s perception and the QoE in correlation with the 

QoS parameters. The study done by Fiedler et al. [33] presented, through longitudinal user study, 

the relationship between the QoE, the volume of data usage and the churn risk. The study 
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demonstrated that most of the churners tend to have negative QoE followed with a less usage 

of the network before a potential churn.  

2.7. Introduction to data mining techniques  

Machine learning involves several domains of interest in the telecommunication environment for 

data mining and predictive analytics. While data mining involves procedures to discover trends 

and hidden patterns within large datasets, predictive analytics focuses on extracting useful 

information from those datasets to perform predictions or estimation about potential outcomes in 

the future [34]. Figure 10 [100] shows different intersections between data mining and other fields. 

 

 

Figure 10: Data mining ecosystem [100] 

 

The telecommunication environment uses both supervised and unsupervised machine learning 

algorithms. Supervised machine learning algorithms such as regression, statistical analysis and 

classification imply providing sample of results to the learning model during the training phase to 

derive the link between the predictors and the prediction. Unsupervised machine learning 

algorithms such as clustering involve finding patterns from data without prior knowledge of the 

results [35], [36]. Some of the machine learning algorithms used for classification are the linear 

discriminant analysis (LDA), the K-nearest neighbors (KNN), the classification and regression 
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trees (CART), the random forests (RF) and the support vector machines (SVM). Depending on 

the types of data to be used, the distribution of the data, the number of examples in the dataset 

and the hardware resources, machine learning algorithms can behave differently.  

2.7.1. Linear discriminant analysis (LDA)  

The LDA is a statistical approach based on a generalization of Fisher's linear discriminant used 

for both classification and dimension reduction. LDA is based on variance analysis where 

projection is used to characterize or separate classes of data after finding the linear combination 

of the features [37]. 

2.7.2. Classification and regression trees (CART) 

The CART method is one the decision tree algorithms used to produce strictly binary decision 

trees where each decision node has 2 branches. Through recursive partitions, training data are 

grouped into subsets based on similarities of values for the target attribute. The tree grows 

following an exhaustive search of available variables and a possibility of splitting values to select 

the optimal split [34]. 

2.7.3. K-nearest neighbors (KNN) 

The KNN is an instance-based learning algorithm that can be used for classification and numeric 

prediction. The algorithm classifies labelled data into categories and each unlabelled record is 

categorized based on the similarity with the nearest k records in the training dataset and assigned 

to a specific class that includes most of the nearest neighbors [34]. 

2.7.4. Support vector machines (SVM) 

The SVM method uses the concept of hyperplane to set the boundaries between the data points 

representing learning examples and their feature values to divide a high-dimension space into 

homogeneous partitions. The  SVM can be used both in classification and numeric prediction 

learning tasks. Since multiple hyperplane could separate the data, a search for the maximum 

margin hyperplane (MMH) is required to achieve the greatest separation. The goal is to maximise 

the margin by creating the largest possible distance between the separating hyperplane and the 

instances on either side. Both the linear and the non-linear algorithms exist to define the 

hyperplane [35]. 
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2.7.5. Random forests (RF) 

The RF is an ensemble-based technique that is based only on ensembles that are decision trees 

and a voting model to combine the trees’ predictions. The RF method uses both the bagging 

principle and the random feature selection for additional diversity on the decision tree models 

[35]. 

2.7.6. Artificial neural network (ANN) 

The ANN is a machine learning technique that attempts to imitate the structure of the natural 

neurons as shown in Figure 11 [97], to fire non-linear learning tasks. Just like the brain is made 

of several cells called neurons that are interconnected to each other’s to handle stimuli from 

sensory sources massively processed in parallel, the ANN is an extremely powerful machine 

learning method that uses interconnected neurons or nodes to model the relationship between 

a set of input signals and the output signal [38]. ANN machine Learning methods are nowadays 

intensively used both for supervised learning (classification or numeric prediction) and for 

unsupervised learning (pattern recognition) and the domains of application range from speech 

recognition, image processing, self-driving cars, etc. [34]. 

 

 

Figure 11: Biological Neuron [97] 

 

The ANN artificial neurons as shown in Figure 12 [97] pass the linear combination of inputs and 

weights to an activation function to simulate this nonlinear behaviour of firing when a specific 

threshold is reached [35].  
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Figure 12: Artificial Neurons [97] 

 

A typical ANN with n input signal can be represented by the following formula: 

 

𝑦(𝑥) = 𝑓 (∑ 𝑤𝑖

𝑛

𝑖=1

𝑥𝑖 + 𝑏𝑖)                                                                (1) 

With 𝑥𝑖 as set of inputs, 𝑤𝑖 as set of weights, n as the number of observations during training, bi 

as set of bias values, f as the activation function, 𝑦(𝑥) as the output. 

a) Determination of the number of hidden neurones 

Several researches have been done to determine the number of hidden neurons for an ANN  

knowing the number of the input and output nodes.  

Heaton [48] proposed a method called the thumb’s rule as follows: 

1. The number of hidden neurons is between the number of input neurons and output 

neurons.  

2. The number of hidden neurons should be equal to 2/3 of the sum of the number of input 

neurons and output neurons. 

3. The number of hidden neurons should be less than double the size of input neurons. 

The researches done by Li et al. [49] as well as Sheela and Deepa [50] proposed an arbitrary 

functions to obtain the number of hidden neurons based on the number of input nodes while 
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Shibata and Ikeda [51] as well as Hunter et al. [52], considered both the number of inputs nodes 

and the output nodes in the arbitrary function to provide the number of hidden neurons. 

Interestingly, Vujicic et al. [53] provided a comparative analysis of ANN topologies with different 

number of hidden neurons. The metric to benchmark the topologies was the mean squared error 

(MSE) and the number of hidden neurons was calculated by using arbitrary functions such as 

the ones proposed in [49], [50] and [51]. Two different datasets were used to train the models. 

The first one was with smaller number of input nodes and second one was with larger number of 

input nodes. The study concluded that, the methods that performed well on a small dataset did 

not necessary perform well with the larger ones. 

b) Deep Learning 

Deep learning is one of the machine learning techniques that put focus on the data 

representations and features learning instead of individual tasks for both supervised and 

unsupervised learning [39]. The deep learning training methods require large amount of data and 

several iterations to reach the convergence. These methods perform better than traditional 

algorithms and take advantage of the hardware infrastructure for parallel computing or graphical 

processing unit (GPU) computing power. Often selected an excellent choice to solve difficult 

tasks with large sets of data, deep learning has gained a lot of popularity ranging from speech 

recognition, natural language processing (NLP), image recognition, machine translation. The 

baseline of deep learning algorithms is the usage of multilayer perceptron to represent high level 

representations into simpler ones. Deep learning architectures include the deep ANN that will be 

referred throughout this research as deep neural network (DNN), the deep belief networks (DBN), 

recurrent neural networks (RNN) and convolutional neural networks (CNN). Those architectures 

can be used for different types of classification problems [40].  

c) Deep neural network (DNN) 

The DNN which is a deeper structure of multi-layered neural network as shown in Figure 14 [43], 

can be considered as an extension of the multi-layer perceptron (MLP) shown in Figure 13 [43], 

but with more than one hidden layer to ensure the non-linearity within the distribution of the data 

is captured. The DNN can achieve better performance compared to the shallow networks since 

it can extract high-level abstraction from low-level features or the raw data [40]. Multiple hidden 
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layers involve additional complexity to the model and the training process, therefore deep 

learning techniques are required to ensure hyper parameters tuning [41].  

 

 

Figure 13: Shallow ANN architecture [43] 

 

 

Figure 14: DNN architecture [43] 

 

d) Deep belief network (DBN) 

The DBN is a deep generative classifier commonly used to model deep learning algorithms with 

effective results as unsupervised learning method involving learning features from high-

dimensional and complex datasets [42]. The core of the its structure is composed of restricted 

Boltzmann machines (RBM) where a greedy training is separately done for each layer 

considering information learned from the previous layer as input. An RBM is a probabilistic model 
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based on graph with one hidden layer and without direct connection between visible units or 

between hidden units [40] as shown in Figure 15 [43].  To tune the DBN, the backpropagation or 

the SVM can be used in a supervised or semi-supervised stage as intermediary layers [41]. But 

one of the drawbacks of the RBM is the tractability of the joint distribution [47]. 

 

 

Figure 15: RBM architecture [43] 

 

e) Recurrent neural network (RNN) 

The RNN is a deep architecture with a feedback looping between layers as shown in Figure 16 

[43]. There are two types of RNN models, the Elman and the Jordan models. The Elman model 

is based on a simple feedback, looping layer by layer. While the Jordan model has a feedback 

looping throughout all the nodes of a layer up until the next layer [42]. The RNN architecture has 

direct cyclic connections between internal neurons. Generally, RNN uses backpropagation 

learning, to processes input sequences by using the internal memory to keep a link between the 

output and its previous computation. As such, RNN is suitable for dynamic temporal behaviour 

analysis such as stock market prediction, time series prediction [45] and modelling sequence of 

data such as text and speech analysis [43]. 

One of the variants of RNN is the long short-term memory network (LSTM) which is easy to train 

since it solves the problem of the vanishing gradient [46]. The LSTM is a deep learning 

architecture suited for complex patterns prediction and can be used for both supervised and 
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unsupervised learning. training LTSM models requires a large amount of data and several 

iterations before converging [41]. 

 

 

Figure 16: RNN architecture [43] 

 

f) Convolutional neural network (CNN) 

The CNN is a descriptive deep architecture containing an array of one or more convolutional and 

pooling layers to create a multilayer neural network [42] as shown in Figure 17 [101]. The 

convolutional layer is made of learnable filters also referred to as kernel [46], that extracts 

location invariant patterns from input objects such as images to detect specific types of features 

[45]. The pooling layer on the other hand performs translational invariant properties by sampling 

the output from the convolutional layer. The CNN has an advantage of easy training, since it has 

less parameters as compared to other connected networks with the same number of hidden 

nodes [42]. Although there is a similarity between the CNN and the ordinary artificial neural 

networks as they both have neurons with tuneable biases and weights, the CNN has better 

performance to overcome the burden of dimensionality that causes other deep learning 

structures to underperform when the input becomes very large and complex like in high 

resolution images [43]. 
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The CNN is used in several applications that include video analysis and natural language 

processing (NLP) [45]. Others are robotics, speech and image recognition where some popular 

CNN approaches such as LeNet, AlexNet, VGG, RestNet and GoogLeNet are used [44].  

 

 

Figure 17: CNN architecture [101] 

 

2.7.7. Data mining techniques performance evaluation  

There are different methods to evaluate the performance of machine learning models depending 

on whether the problem is a regression one or a classification one. Since the focus of this 

research is on classification methods, we will discuss only the performance evaluation metrics 

for classification methods. Most of the classification evaluation metrics used for prediction were 

based on the confusion matrix (Which is a summary table benchmarking the actual values or 

reference value with the predicted value). Table 3 shows a generic confusion matrix [35]: 

 

Table 3: Generic confusion matrix 

 Reference 

Prediction Positive (1) Negative (0) 

Positive (1) TP FP 

Negative (0) FN TN 
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1. TP: True positive, amount of correctly predicted positive class 

2. FP: False positive, amount of wrongly predicted positive class 

3. TN: True negative, amount of correctly predicted negative class 

4. FN: False negative, amount of wrongly predicted negative class. 

 

Some common evaluation metrics that were defined based on information from the confusion 

matrix are:   

1. The accuracy as shown in equation (2), which is the success rate of the prediction model. 

2. The precision as shown in equation (3), which is the positive predictive value 

demonstrating the correctness of the predicted positive class. 

3. The sensitivity as shown in equation (4), which is the true positive rate. 

4. The specificity as shown in equation (5), which is the true negative rate. 

5. The AUC which is the  area under the receiver operating characteristic (ROC)  curve as 

shown in equation (6), provides a statistic to determine the perfection of the classifier 

based on the shape of the curve as a better identifier of the positive values. 

6. The F1_Score as shown in equation (7), which is the harmonic mean of the precision and 

the recall (A  metric describing how complete the results are). 

 

Accuracy =  
TP + TN

TP + FP + FN + TN
                                                         (2) 

 

Precision =  
TP

TP + FP
                                                                               (3) 

 

Specificity =  
TN

TN + FP
                                                                             (4) 

 

Sensitivity =  
TP

TP + FN
                                                                             (5) 
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AUC =  
Sensitivity + Specificity

2
                                                           (6) 

 

F1_Score =  
2TP

(2TP + FP + FN)
                                                               (7) 

 

2.8. Data mining techniques in radio networks 

Several studies have been done both for radio QoS and machine learning algorithms to enhance 

the radio optimization and capacity planning. Charoenlap and Uthansakul [55] proposed a 

method of tracking some of the common issues that are related to the radio part of the 3G 

network such as the interference and the coverage. While network testing procedures such as 

drive testing can help to detect specific areas with no network coverage, drive testing, however, 

cannot be performed over the whole network because it is expensive in terms of human and 

equipment resources. The data from the drive test was used to create a correlation between the 

interference, coverage and the data throughput. The main task was to improve the network QoS 

at a proportionately lower cost. The proposed model estimated the network throughput based on 

the data from the drive test, by capturing the comparison of energy per chip and noise (EcNo), 

received signal code power (RSCP) and the received signal strength indicator (RSSI) on the 

radio interfaces under specific geolocation coordinates obtained during the drive test. This was 

done with a view of identifying holes (Areas without coverage) and the areas with higher 

interferences on the network. From the drive test data, a model was then developed to determine 

the correlation between the radio conditions and the data throughput and was later used to 

predict the throughput knowing the input radio conditions.  

The studies done by Octora and Iskandar [56] as well as Zhang and Yang [57] provided detailed 

methods for the optimization of the HSPA+ technology based on the measurement reports. The 

approaches focused on the radio condition metrics such as the RSCP, the EcNo and the KPIs 

related to the network capacity such as call setup success rate (CSSR) for both the voice and 

HSPA services, and the average downlink throughput per user. The authors in [56] and [57] were 

able to demonstrate that radio issues can have an impact on the QoS. They later suggested that 

by adjusting typical antenna parameters such as the antenna height, the tilt or the reconfiguration 
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of the transmitted power, the radio conditions could be optimised so as to achieve the QoS level 

required. Huang et al. [54] focused on the usage of machine learning techniques for radio 

optimization and proposed a method to mitigate the complexity growth of new base stations by 

creating a data-driven optimization framework for both offline and online modules. For the offline 

module, the study employed a dimension reduction method using hierarchical clustering analysis 

and the outcome was analysed using an ANN for optimal prediction of groups of base stations. 

For the online module, the K-medoids clustering algorithm was used to segment the groups of 

base stations for performance optimization. As such, to improve the planning and the 

optimization of the resources in the network. Lawal et al. [58] proposed a data traffic forecasting 

model using an ensemble of neural network models with firefly optimization and resilient 

propagation algorithms. A comparative analysis with other algorithms such as the support vector 

regression (SVR) and the group method of data handling (GMDH) based on abductive network 

methods was used for data traffic forecast, providing a better performance.  

Researches based on the measurement reports analysis were conducted by Zhou et al. [59] and 

Moysen  et al. [63]. The authors in [59] focused on the influence of multiple radio access bearers 

in relation to the high demand of packet-switched sessions as compared to the circuit-switched 

sessions. The measurements in the network were analysed using Adaboost, so as to derive 

reasons for potential call drops. The reduction of the number of call drop optimized the bad 

performance for both the voice and the data QoS. The authors in [63] instead, focused on the 

QoS prediction techniques so as to facilitate the planning for the network operators in 

heterogeneous networks. The measurement reports from the radio interfaces were collected and 

used to develop models based on correlational measurements. This was done with a view of 

improving the network planning from a QoS point of view. In essence, a comparison was done 

between different regression techniques for different types of features, while applying dimension 

reduction techniques as well.  

Chen et al. [60] investigated diverse factors that impact the performance of a 3G cellular network 

on the RNC level from the packet loss rate and the round-trip time (RTT). The study applied a 

supervised machine learning with the RuleFit algorithm that combines both the decision tree and 

the linear regression. Roshdy et al. [64] proposed models based on correlation, clustering and 

regression. The cells in the network were classified according to their priorities and their QoS 

requirements to monitor the capacity of each group using the throughput limitation and to 

determine the load in order to be able to share the resources between cells in case of low usage. 
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2.9. Data mining techniques in core networks and traffic classifications 

As the data traffic growth is largely influenced by video data usage, video traffic classification 

and categorization for QoS management or security have been a subject of intense researches. 

A web-service approach was presented by Kumar et al. [61] to predict the response time and the 

throughput based on the QoS parameters from the past data usage behaviour. A comparison of 

several machine learning algorithms, including bagging and SVM were applied to the dataset. 

The bagging and SVM performed better than the other algorithms. The model performance was 

assessed using the correlation coefficient, mean absolute error (MAE) and the root mean square 

error (RMSE). Nikravesh  et al. [62] applied data analysis methods to maximize resource 

management for mobile service providers to avoid under-provisioning or over-provisioning of 

network capacity. Several machine learning techniques were applied which included multi-layer 

perceptron (MLP), multi-layer perceptron with weight decay (MLPWD) and SVM. The SVM 

technique was selected as the best method in handling multi-dimensional data traffic for that 

mobile system. 

Garcia [65] applied unsupervised learning algorithms for clustering data such as K-means and 

density-based spatial clustering of applications with noise (DBSCAN) to analyse the customer 

traffic flows and the behaviour produced from the heavy-hitter segment of customers. From the 

data containing packets information and the DPI classification, four to six clusters were identified 

based on the flow behaviour and a subset of them represented the traffic that was not based on 

the video transfer. The research done by Trivedi  and Patel [66] considered the unique byte 

patterns that are used within the DPI systems as the signature to detect different traffic 

applications that require regular maintenance through the updates of the DPI signatures. To 

reduce the laborious manual operations leading to errors during signatures update, they 

proposed an automated solution for the DPI signatures verification based on machine learning 

techniques. By using open source mobile automated tools for mobile application traffic 

generation, the signature patterns for undetected flows using well-known ports and machine 

learning algorithms reduced the time taken to do a signature update.  

An analysis of the data flow between the client and the server to ensure efficient bandwidth usage 

was done by Kaoprakhon and Visoottiviseth [67]. The study provided a method of classifying 

non-encrypted audio and video traffic over hypertext transfer protocol (HTTP). The packet flow 

information was used to observe audio and video traffic. The method built flow profiles using the 

flow duration, the average received packet size and the server-client packets.  
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Huan [68] presented a video packet classification algorithm in the field of video surveillance and 

video management that requires fast video packet identification. The XOR and shift operations 

were used in combination with the linear hash function to filter video packets from the network 

traffic. The results of the experiment provided better performance for higher traffic network 

compared to simple rules of filtering methods. 

For the efficient management of the network resource and the QoS required for video services, 

Dong et al. [69] proposed a fine-grained classification algorithm for video traffic on the internet 

using the hierarchical clustering technique based on a combination of statistical features from 

the QoS and the network resources requirements. The method provided better performances for 

the recall and the f-measure. 

Within the domains of  guaranteed QoS, Zai-Jian et al. [70] used the concept of QoS based flow 

aggregation that consisted of different QoS classes with features from the downstream and the 

upstream rates. Because of the sparsity of the multimedia QoS, the authors suggested a 

modified K-singular value decomposition (K-SVD) classification framework with an SVM 

classifier. The research demonstrated that the downstream and the upstream rates provided 

good features that could be considered for video traffic classification. 

Extant literature such as the one by Dubin et al. [71] used machine learning algorithms to classify 

video titles of encrypted HTTP adaptive streams from popular videos based on Youtube video 

streams. The classification could handle long delays and high packet losses and proved to be 

accurate in its prediction. Although the video streaming such as Youtube are mostly over HTTPS, 

the study was able to derive the pattern of streaming. 

Recent developments in classification done by Nossenson and Polacheck [72] proposed 

statistical classification for video traffic live and video on demand (VOD). Generally, such types 

of video transmission require different optimization techniques such as multicasting for live video 

streaming and the usage of cache for the VOD streaming. Thus, the internet service provider 

(ISP) and the content delivery network (CDN), may require online classification of the two types 

of video streaming for proper optimization of resources. By using of the packets size and the 

video traffic source, two classifiers were proposed to separate live video streaming from VOD 

streaming traffic. The prediction evaluation metric used for the classification and to assess the 

performance of the two methods was the accuracy.  
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Shi and Biswas [73] used traffic analysis methods to design a firewall framework to block the 

BitTorrent traffic while mixed with other types of traffic such as video streaming. The solution 

used 2-steps classifiers to detect BitTorrent traffic and to identify video streaming traffic under 

an encrypted tunnel. Another video traffic classification method was proposed by Tang et al. [74] 

based on the multi-fractal’s theory. The approach uses the fractal characteristics from physical 

calculations rather than statistical features extraction from traditional analysis resulting in a better 

performance than the Bayes networks, the SVM, the hidden Markov model (HMM) and the 

decision tree. 

There have been researches conducted to use the deep learning techniques in the 

telecommunication environment. These studies range from the physical, the data link and the 

network layers up to the packet flow identification and the intrusion detection systems [75]. 

From the physical and data link layers, Peng et al. [76] proposed a deep learning method for 

modulation classification in communication systems. AlexNet which is one of the variants of the 

CNN deep architecture was used for training and testing of the model. The model used 

constellation diagrams which were image representation of the modulated signals. The deep 

learning results were compared with traditional modulation classification based on cumulant and 

SVM showing a closer classification accuracy but without the need for the laborious task of 

manual feature selection in the case of deep learning. Xu et al. [77] proposed an automatic 

configuration model using deep reinforcement learning that adapts from the traffic conditions to 

reduce the delay in the network for the routing optimization. A simulated environment based on 

the OMNeT++ simulator was built to assess the delay under different variation of traffic and 

routing. The model based on deep reinforced learning provided a better performance with smaller 

network delay in respect to the benchmark setup. 

Some studies focused on the network layer for routing optimization problems. Kato et al. [83] 

used a DNN architecture to improve traffic control in heterogenous networks. The study proposed 

an approach to properly characterized the input and the output of heterogenous network traffic 

with a supervised DNN. The method demonstrated a good performance for the throughput and 

the delay compared to the open shortest path first (OSPF) benchmark routing approach. 

With the introduction of programmable software-defined routers, to reduce the cost of the packet 

processing through intelligent methods, the deep learning has been introduced in studies such 

as the one done by Mao et al. [82], where a simulation was conducted using the DBN architecture 
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to characterize the input and the output traffic patterns. the results of the proposed method 

outperformed the existing benchmark method based on performance indicators such as the 

delay and the throughput.  

Due to the rapid growth of the internet traffic, numerous studies have been done on the usage 

of deep learning for traffic classification. Lotfollahi et al. [80] proposed an approach to investigate 

both the feature extraction and the classification tasks using the same platform. The major class 

of traffics such as the file transfer protocol (FTP), the P2P and the E2E applications such as 

BitTorrent and Skype were categorized using the CNN.  Wang [81] focused on the challenge of 

the feature’s identification within the flow of data. Since most of the systems used for traffic 

identification use features such as the port number, the application signature and other statistical 

characteristics; this study proposed a method based on the ANN and deep learning model using 

a stacked auto-encoder (SAE) architecture to extract the features and classify the traffic. 

The deep learning techniques have also been used in some researches to improve the network 

security against attacks. Tang et al. [78] built a DNN model to mitigate against security threats in 

SDN. The model proposed an intrusion detection system that applied a deep learning approach 

on flow-based anomaly detection. Although the research results were not good enough to 

outperform the existing network intrusion systems, however, it demonstrated the potentiality of 

deep learning in SDN environments. Gao et al. [79] used a DBN architecture to address Big Data 

classification for intrusion detection. The DBN model learned high dimensional representation 

while performing efficiently the classification tasks compared to other models based on SVM and 

ANN. 

2.10. Big Data in mobile networks 

The term Big Data is often used for large data management which is computationally expensive 

and difficult to handle using the traditional database management tools. Previously Big Data was 

relying on 3-Vs which were the volume, the velocity and the variety of the data. Today the industry 

refers to 5-Vs by adding the value and the veracity as shown in Figure 18 [98].  
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Figure 18: Big Data 5-Vs [98] 

 

Some of the platforms handling Big Data are oracle DB2, EMC Greenplum, Vertica, Microsoft 

PDW, Teradata and Hadoop [84]. Hadoop is an open-source software platform implemented in 

Java programming language. It allows the store of large files on a single machine or in a cluster 

of computers for distributed processing of huge datasets. The main components of the Hadoop 

ecosystem are the Hadoop distributed file system (HDFS) and the MapReduce framework. The 

HDFS manages the storage of large files while the MapReduce is a technique used to distribute 

the tasks across several nodes by processing the input data and producing intermediate results 

in the Map-phase and merging the intermediate results having the same key in the Reduce-

phase [85].  

He et al. [21] proposed a unified data model for an architectural framework based on the random 

matrix theory and the application of machine learning techniques for Big Data analytics in mobile 

networks. The authors also illustrated examples of Big Data applications in mobile network such 

as data traffic, location, signalling, heterogeneous networks and radio waveforms. The research 

concluded with open research challenges of Big Data application in mobile networks such as 

data privacy, filtering and compression. Su et al. [20] proposed a Big Data platform to collect, 

process and analyse the large amount of data available in the mobile networks. A Hadoop-based 
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and a multiple parallel processing database architecture was used to achieve a unified 

management and storage system using the massive telecommunication data sources, to ensure 

proper maintenance and network optimization. The results of this study demonstrated a better 

performance of the Big Data platform in terms of data loading and analysis compared to the 

traditional data warehouse, providing the benefits of a Big Data infrastructure.  

To enable the CSPs to manage the network resources in an effective and efficient way while 

supporting a better QoS, Si et al. [85] developed a Big Data analysis platform to analyse the 

mobile network data traffic patterns for the management of the resource usage of the network 

elements. two datasets were used with Apache Hadoop for the storage and Mahout for the 

machine learning algorithms. The algorithms included essentially the K-means and Fuzzy K-

means for clustering. The results focused on improving the execution time by changing the 

Hadoop cluster parameters. Jun et al. [86] instead, collected core network data from a CSP’s 

core network and proposed Zipf-like models to analyse the traffic volume, the exchanged 

requests between service providers and the subscribers’ usage to characterise their distributions. 

The model essentially solved a time-series unsupervised clustering challenge by identifying the 

traffic patterns. The results of the study highlighted the users’ behaviours leading to the traffic 

patterns and the service categories used. 

Çelebi et al. [84] used a Big Data approach to analyse inter-radio access technologies handovers 

from the 3G to 2G networks. The study proposed an analysis of the A interface signalling 

messages between the base station subsystem (BSS) and the mobile switching centre (MSC). 

Due to the large amount of the signalling messages, a Hadoop platform was used to load the 

data into the HDFS and to run the queries using the Apache Hive to transforms structured query 

language (SQL) queries into MapReduce functions. The results provided visibility on 3G service 

holes (Areas with service discontinuity), outperforming the base station KPIs analysis approach 

based on the accuracy. Jie et al. [87] used a distributed computing Hadoop system to analyse 

high-speed network traffic from the massive data captured from a 3G network. The internet traffic 

from the smartphones were analysed to leverage a MapReduce parallel programming model 

with the objective to understand the usage patterns and the forecast growths of the network 

traffic. The data were collected using a traffic monitoring system deployed at the Gn interface 

between the SGSN and the GGSN. The results of this research provided flow characteristics of 

different smartphone operating systems and their related traffic, which could be useful for CSPs 

to anticipate the fast traffic growth in the network.  
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2.11. Root cause analysis (RCA) in mobile networks 

The full automation of the processes in mobile networks management will still take time and 

therefore the support of human expertise is still needed. The mobile technologies knowledge 

plays a very important role into finding and solving problems in the network. But the evolution of 

technologies and the proliferation of handsets and services create a huge number of errors and 

faults in the network while increasing the scale of complexity for the incident management and 

the RCA. 

Botta et al. [88] proposed an intelligent customer service assurance platform for mobile 

broadband network. To enhance advanced operations support systems (OSS), an architecture 

based on probes was used to improve the bit rate, to correlate the control and the user plane 

including a multidimensional and an RCA model. The result of the research was used in a real 

network to provide benefits on mobility and session management as well as transmission control 

protocol (TCP) connections. 

Keeney et al. [89] proposed a recommendation system to assist the NOC operational team to 

manage incident occurring in the network. The approach consisted of a collection of 

telecommunication data from the OSS In an intelligent way to correlate them and add prediction 

for proactive maintenance. Kingsley and Dahj [90] proposed a tree-based SQM approach for 

efficient low-cost service management with a particular interest on the over-the-top (OTT) 

applications. The SQM-tree had four levels consisted of the 3G services classes i.e.: streaming, 

interactive, etc. The lower level of protocols and applications were available by drilling down from 

the service classes. The system connected to a cloud application to provide reporting throughput 

SparkSQL and to query the stored data in a Big Data framework allowing investigation of worst 

cells and subscribers.  Fiadino et al. [91] also focused on the OTT internet services and 

developed a framework called RCATool. The RCAtool used the DNS protocol to detect and 

diagnose the traffic anomalies. The diagnostic features such as the device information, the error 

codes and the host name were used for the investigation of the root cause. The RCATool 

essentially employed two methods. The first one was applied to the entropy of the diagnostic 

features while the second one considered the statistical distribution of features such as the traffic.  

Miyazawa and Nishimura [92] proposed an RCA approach to investigate services failures in a 

converged (fixed and mobile) network. The approach used alarms classification and a 



38 
 

hierarchical alarm data model on different types of alarms such as the resource alarms and the 

service alarms to pinpoint the causes of the failures and potential correlation between the alarms. 
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Chapter 3: Methodology 

 

3.1. Introduction 

The chapter describes the research methodology that was employed. It further outlines the model 

architecture and the data collection. The methods used to process and analyse the data are also 

described, including the approach implemented to validate and evaluate the performance of the 

system. 

3.2. System Architecture 

The physical architecture of the system consisted of a physical laptop (Computer1) running 

RStudio [93] and a virtual machine (VM) based on VMware [94] running a single node Cloudera 

platform with Hadoop as shown in Figure 19.  

 

 

Figure 19: Physical architecture 

 

Computer1 was used to prepare scripts and queries using R programming language, and to 

connect via a Cloudera Impala connector to the VM which contained the HDFS with the stored 

dataset files. Cloudera Impala [95] is a massively parallel processing (MPP) SQL query engine 

for Apache Hadoop, released via an Apache license to provide an open-source system. 

The logical architecture of the system as shown in Figure 20 is made of: 
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1. Hadoop platform: The Hadoop platform via the HDFS was used to store the data in a 

format optimized for Big Data. 

2. A parsing and aggregating module: This module was used to collect, parse and 

aggregate the data before loading them into the Hadoop platform. 

3. Core engine: The core engine was used to design different models and implement the 

algorithms used for this research. 

4. API using R programming language: the API was used to ensure the communication 

between the core engine and the Hadoop platform. 

 

 

Figure 20: Logical architecture 

 

3.3. Data Collection 

We collected transactions data from the Iub and the Gn interfaces of a real mobile network 

operator. The raw data was parsed and stored in the Hadoop platform and based on the pre-

processing requirements, aggregated into different datasets with a limited number of records to 

allow the training and testing of the models. 

3.3.1. Iub Interface data collection 

The data from the Iub interface was gathered from a full day collection of subscribers’ related 

radio transactions on one RNC from an urban area. The details of the data collected from the 

Iub interface are shown in Table 4. 
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Table 4: Iub interface transaction data collection 

field name Description Example 

Timestamp 
The time the transaction occurred in Unix format. This time 

is used to reference the transaction chronologically 1538025250 

subscriber 

The subscriber ID based on the International Mobile 

Subscriber Identity (IMSI). This is a unique identifier of a 

subscriber responsible of the transaction  ******13992 

handset 

The device type based on the Type Approval Code (TAC). 

This is a unique identifier of mobile device used during the 

transaction 35195507 

cell 
The cell ID. This is unique identifier of the cell (network 

element) used by a subscriber for a specific transaction  ******467 

EcNo 
The energy per chip and noise to provide information about 

the quality of the radio signal 
-9 dB 

RSCP 
The received signal code power to provide the radio signal 

strength 
-85 dBm 

propagation 

delay The distance at which the radio activity initiated 
1 Km 

Termination 

type of the 

packet-switched 

calls 

The termination type provides details if the packet-switched 

transaction completed normally (Normal) or with a failure 

(Drop) 

Drop 

 

3.3.2. Gn Interface data collection  

For the core networks, the raw data was collected for a single day on the Gn interface between 

the SGSN and the GGSN for both the uplink and the downlink traffic. The details of the data 

collected from the Gn interface are shown in Table 5. 
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Table 5: Gn interface transaction data collection 

field name Description Example 

Timestamp 
The time the transaction occurred in Unix format. This 

time is used to reference the transaction chronologically 1538025197 

service 
The types of services used by the subscriber during the 

transaction (browsing, video, etc.) browsing 

subscriber 

The subscriber ID based on the International Mobile 

Subscriber Identity (IMSI). This is a unique identifier of a 

subscriber responsible of the transaction ******13992 

handset 

The device type based on the Type Approval Code 

(TAC). This is a unique identifier of mobile device used 

during the transaction 35195507 

cell 
The cell ID. This is unique identifier of the cell (network 

element) used by a subscriber for a specific transaction  ******467 

dlsec_bins 
String of second-based bytes usage on the downlink (60 

values) 

20854,1046,2359, 

727,776,…,1698 

ulsec_bins 
String of second-based bytes usage on the uplink (60 

values) 

1251,25946,1202, 

955,624,…,704 

sec_dl The active second on the downlink 60 

retransbytes_dl The bytes retransmission on the downlink 655594 

bytes_dl The bytes transmitted on the downlink 2451800 

dns_successful The number of success full DNS transaction 80 

dns_failure The number of failed full DNS transaction 0 

latency_dl The latency on the downlink 518ms 

 

3.4. Facebook video traffic classification  

While there are solutions  known as the DPIs that dig into the packet-level to either understand 

the well-known ports, the IP addresses or signature patterns, the classification of services 

remains challenging. Social network platforms such as Facebook were usually classified as 

social media. But with the introduction of new features oriented to browsing and video services 

such as Facebook live and Facebook video streaming, there is a need for different QoS 



43 
 

management compared to the classical social media application. Adding to this, another 

challenging front in data classification due to the implication of encrypted traffic which could leave 

several sessions unlabelled or unknown. To enable proper classification of traffic, in this section 

we proposed a classification approach based on ANN for Facebook video traffic using second-

based bytes usage on both downlink and uplink directions. From a sample of 4210 observations 

and 121 attributes, using different ANN topologies and varying the number of hidden neurons, 

the best model was selected based on the accuracy.  

3.4.1. Data preparation 

For every data session, transactions were produced every minute to generate an output of 121 

attributes. The first attribute was the protocol name and the rest consisted of the byte’s usage. 

The data was cleaned based on the protocol names to focus only on Facebook transactions and 

discard other protocols from the dataset. The selected 4210 observations based on Facebook 

transactions were further classified according an embedded DPI into chat (36%), browsing (37%) 

and video (27%) as shown in Figure 21. 

 

Figure 21: Facebook raw data distribution 

 

Generally, over a relatively long period, video traffic is easy to classify since the average tends 

to be higher than the rest of the protocols. But for short period (less than 1 minute), classification 

by average can produce errors, due to outliers from other protocols, especially those from the 
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audio streaming and the browsing categories. Figure 22 shows some of the outliers that were 

observed from the collected data. This was done by checking the first byte’s usage pattern with 

“dl” and “ul” representing the volume of the bytes used on the downlink and on the uplink 

respectively. 

The ANN was selected as the machine learning technique to train the model for the classification 

of traffic, as it works well in modelling very complex patterns. As ANN works well with continuous 

variables rather than categorical values, we created two new outputs for the categorical variable 

using one-hot encoding with values of 0 for no and 1 for yes. It must be noted that having 2 

outputs instead of 1 will not improve the results in case of binary classification but we have 

chosen this approach to enable dynamic configuration using one-hot encoding to support 

multiclass cases for the future. The full details of the final Attributes used for training and testing 

are shown in Table 6. 

 

 

Figure 22: First- and second-bytes usage pattern 
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Table 6: Facebook video traffic classification attributes details 

Attributes name Description Example 

X1 Bytes down sec1 0 

X2 Bytes down sec2 0 

X3 Bytes down sec3 50 

. 

. 

. 

. 

. 

. 

. 

. 

. 

X60 Bytes down sec60 50 

X61 Bytes up sec1 0 

X62 Bytes up sec2 0 

X63 Bytes up sec3 0 

. 

. 

. 

. 

. 

. 

. 

. 

. 

X120 Bytes up sec60 12 

X121 Is Facebook-Others traffic? (1 for yes and 0 for no) 0 

X122 Is Facebook-Video traffic? (1 for yes and 0 for no) 1 

 

To ensure that the numerical values of the attributes are within the activation boundaries, while 

training neural networks, the normalization was applied to all the attributes except the targets 

output of X121 and X122 which were already designated as  binary 0 or 1 based on hot  encoding. 

The formula used to normalize is shown in equation (8):  

 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                             (8) 
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Where  𝑥𝑛𝑜𝑟𝑚 is  the new value of variables after normalization, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are respectively 

the  minimum and maximum values of the attributes in the dataset. 

3.4.2. Model design  

The dataset was divided into two new datasets with a ratio of 80% for the training dataset (3,368 

Observations) and 20% for the validation dataset (842 Observations).  

The ANN was used to train and compare four topologies based on the accuracy. The four 

topologies were multilayer-feedforward networks that used the logistic sigmoid function. The 

training algorithm of the ANN topologies was the resilient backpropagation algorithm with an 

error function as the cross-entropy. While all the topologies had IN = 120 inputs nodes, ON = 2 

output nodes and 1 hidden layer, the main difference between them resides on number of 

neurons HN calculated as follows: 

1. Topology 1 was based on the arbitrary function as proposed by [50] Which resulted in HN 

= 4 hidden neurons: 

𝐻𝑁 =  
4𝐼𝑁

2 + 3

𝐼𝑁
2 − 8

                                                                      (9) 

2. Topology 2 was based on the arbitrary function as proposed by [52] Which resulted in 

HN = 5 hidden neurons: 

𝐻𝑁 =  log2(𝐼𝑁 + 1) − 𝑂𝑁                                                   (10) 

3. Topology 3 was based on the arbitrary function as proposed by [49]: 

 

𝐻𝑁 =  
√(1 + 8𝐼𝑁) − 1

2
                                                         (11) 

And the one proposed by [51]: 

𝐻𝑁 =  √𝐼𝑁𝑂𝑁                                                                          (12) 

Which both resulted in HN = 15 hidden neurons.  
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4. Topology 4 was based on the thumb’s rule as proposed by [48]:  

𝐻𝑁 = (
2

3
) (𝐼𝑁 + 𝑂𝑁)                                                                 (13) 

Which resulted in HN = 81 hidden neurons.  

For each of these topologies, a confusion matrix was generated to calculate the accuracy that 

was the chosen metric to select the best model. 

3.5. A quadri-dimensional approach for poor performance prioritization in 

mobile networks using Big Data 

The network optimization and the incident management determine the level of maturity the CSPs 

since the reduction of the MTTR has a direct impact on the revenue, especially the OPEX. A fast 

RCA mechanism is therefore crucial to improve the efficiency of the operational team within the 

CSPs. This section proposed a quadri-dimensional (service, subscribers, handsets and cells)  

approach to build  an SQM tree in a Big Data platform to speed up the RCA and prioritize the 

elements impacting the performance of the network. Two algorithms have been proposed to 

normalize the performance indicators and to build the SQM tree by aggregating the performance 

indicators for different dimensions and services to allow ranking and detection of tree paths with 

the worst performance. 

3.5.1. Data preparation 

With the objective to optimize the RCA which takes a lot of time, especially in the case of Big 

Data and the complexity of the services and other network related element, the system model is 

an SQM-tree approach where each node held information to enable sorting and prioritization of 

tree paths to understand which service, dimension and KPI is negatively influencing the 

performance of network. 

From the Gn interface transaction data collection, an SQM file was built and stored in the HDFS 

containing 11 columns with 1 Million records aggregated based on 4 keys and 7 core network 

performance indicators. The 4 keys were the service, the subscriber based on the IMSI, the 

handset based on the TAC and the cell based on the cell-id The 7 core network performance 

indicators were the total number of events (events), the total time of data connection (sec_dl), 

the total bytes retransmitted on the downlink (retransbytes_dl), the total bytes transmitted on the 
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downlink (bytes_dl), the number of successful DNS transactions (dns_successful), the number 

of unsuccessful DNS transactions (dns_failure) and the latency from the core to the user 

equipment (latency_dl). The details of the SQM file is shown in Table 7. 

Table 7 : SQM file fields description 

field name Description Example 

service 
The types of services used by the subscriber during the 

transaction (browsing, video, etc.) browsing 

subscriber 

The subscriber ID based on the International Mobile 

Subscriber Identity (IMSI). This is a unique identifier of a 

subscriber responsible of the transaction ******13992 

handset 

The device type based on the Type Approval Code (TAC). This 

is a unique identifier of mobile device used during the 

transaction 35195507 

cell 
The cell ID. This is unique identifier of the cell (network 

element) used by a subscriber for a specific transaction  ******467 

events The number of events for every aggregation 3 

sec_dl The active second on the downlink 148 

retransbytes_dl The bytes retransmission on the downlink 655594 

bytes_dl The bytes transmitted on the downlink 2451800 

dns_successful The number of success full DNS transaction 80 

dns_failure The number of failed full DNS transaction 0 

latency_dl The latency on the downlink 518 

 

3.5.2. Model design  

3.5.2.1. Quadri-dimensional approach 

To implement the quadri-dimensional approach, an SQM-tree was built based on four 

dimensions which were the service, the subscriber, the handset and the cell with four levels 

representing the depth of the tree nodes as shown in Figure 23. From the top to the bottom, we 

had the global level which is the highest aggregation providing visibility of the performance of the 

whole network, the service dimension consisting of the SQI for the services: browsing, video, 
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facebook, peer-to-peer (p2p) and others;  the other dimensions SQI level: the subscriber, the 

handset and cell; and the KPI level: the round-trip time on the downlink (rtt_dl), the retransmission 

rate on the downlink (rtx_dl), the DNS success rate (dns_sr) and the throughput on the downlink 

(thp_dl). 

 

 

Figure 23: SQM Tree-based approach 

 

To make sure we have meaningful data transactions, we used a flag for transactions with bytes 

transmitted on the downlink above 1,5 MBytes and a connection time above 50 seconds and 

only records with a set flag were considered. The calculated KPIs are as follows: 

 

𝑡ℎ𝑝_𝑑𝑙 = {

8 ∗ (∑ 𝑏𝑦𝑡𝑒𝑠_𝑑𝑙)

1024 ∗ (∑ 𝑠𝑒𝑐_𝑑𝑙)
, 𝑓𝑙𝑎𝑔 > 0

𝑁/𝐴, 𝑓𝑙𝑎𝑔 ≤ 0

                                        (14) 

 

𝑟𝑡𝑥_𝑑𝑙 =  
100 ∗ (∑ 𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑏𝑦𝑡𝑒𝑠_𝑑𝑙)

∑ 𝑏𝑦𝑡𝑒𝑠_𝑑𝑙
                                                     (15) 

 

𝑑𝑛𝑠_𝑠𝑟 =  
100 ∗ (∑ 𝑑𝑛𝑠_𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙)

∑(𝑑𝑛𝑠_𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 + 𝑑𝑛𝑠_𝑓𝑎𝑖𝑙𝑢𝑟𝑒)
                                     (16) 
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𝑟𝑡𝑡_𝑑𝑙 =  
∑ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑑𝑙

∑ 𝑒𝑣𝑒𝑛𝑡𝑠
                                                                                     (17) 

 

3.5.2.2. SQM-Tree construction 

To build the SQM-Tree, we used two algorithms, the first one to normalize the KPI level and the 

second one to build and fill the SQM tree following a quadri-dimensional approach.  

Since the KPIs such as the throughput (thp_dl) and the round-trip time (rtt_dl) are numbers that 

can range from 0 to several thousands, the first algorithm as shown in Algorithm 1 was used to 

normalize the KPI level by receiving the original KPI value Kk and returning a normalized value 

Kk’ ranging between 0 and 100. Since the data used were based on a 3G packet-switched 

network, we considered a thp_dl value less than 500Kbps as worst and normalized at 0, a value 

ranging from 500Kbps to 1Mbps normalized between 0 and 100 while any value above 1Mbps 

is considered as the best case and normalized at 100. For the rtt_dl, we considered a value less 

than 500ms as best and normalized at 100, a value between 500ms and 1000ms normalized 

between 100 and 0 while any value above 1000ms is considered as the worst case and 

normalized at 0. For the rtx_dl, as it is in percentage with 0% as the best value, the normalized 

value was considered as the complementary value to 100. Finally, the dns_sr remained the same 

because it is already a percentage and 100% is the best value.  

The second algorithm as shown in algorithm 2 was the algorithm used to construct the SQM-tree 

nodes based on a quadri-dimensional approach focusing on the four dimensions: service, 

subscriber, handset and cell and to dynamically design Big Data queries to fill in the tree with 

both the KPIs and the aggregated SQIs data. To provide a quality indicator that does not only 

consider the aggregated values of the KPIs but also the impact of the performance on each 

dimension. All the nodes in the tree had three types of information which were the value, the 

impact and the quality. The value was the weighted aggregation of different KPIs, the impact was 

the percentage of a dimension (subscriber, handset, etc) with better service performance 

(normalized KPIs >50) and the quality was the weighted aggregation of both the value and the 

impact. The Algorithm 2 received three sets of data and returned the built and filled SQM-tree 

following the quadri-dimensional approach. The sets of data received were the service set S 

defined as S = { "browsing", "video", "facebook", "p2p", "others"} where Si represented each 
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service with i ∈ {1, 2, 3, 4, 5}, the dimension set D defined as D = {"service", "subscriber", 

"handset", "cell"} where Dj represented each dimension with j ∈ {1, 2, 3, 4} and the KPI set K 

defined as K = { "rtt_dl", "rtx_dl", "dns_sr", "thp_dl"} where Kk represented each KPI with k ∈ 

{1,2,3,4}.  

 

 

Algorithm 1 KPI level normalization 

1: Input: Kk 

2: Output: Kk' 

3: if Kk == 'thp_dl' then 

4:     if Kk>1024 then 

5:         Kk'=100; 

6:     else if Kk>500 then 

7:         Kk'=100*(Kk-500)/500; 

8:     else  

9:         Kk'=0; 

10:     end if 

11: else if Kk == 'rtt_dl' then 

12:     if Kk<500 then 

13:         Kk' = 100; 

14:     else if Kk<1000 then  

15:         Kk' = 100*(1000-Kk)/Kk 

16:     else  

17:         Kk' = 0; 

18: else if Kk == 'rtx_dl' then 

19:     Kk' = 100-Kk;     

20: else  

21:     Kk' = Kk     

22: end if 
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Algorithm2 SQM-tree Construction  

1: Input: D, S, K 

2: Output: SQM-tree  

3: initialise global = node. New("global"); 

4: for each Si in S do 

5:     serv = global.AddChild(Si); 

6:     for each Dj in D do 

7:         if Dj != "service" then 

8:             dim = serv.AddChild(Dj); 

9:             for each Kk in K do 

10:                 kpi = dim.AddChild(Kk); 

11:                 query1 = “SELECT Algorithm1(Kk) FROM SQM WHERE service = Si”;                                                                                        

12:   query2 = “SELECT COUNT(DISTINCT(Dj)) FROM  SQM WHERE service = Si AND Algorithm1(Kk)>50”; 

13:                 query3 = “SELECT COUNT(DISTINCT(Dj)) FROM  SQM WHERE service = Si”; 

14:                 global.Si.Dj.Kk.value= dbGetQuery(impala,query1); 

15:                 global.Si.Dj.Kk.impact= 100*dbGetQuery(impala,query2)/dbGetQuery(impala,query3); 

16:                 global.Si.Dj.Kk.quality = 0.5*global.Si.Dj.Kk.value + 0.5*global.Si.Dj.Kk.impact; 

17:             end for 

18:         global.Si.Dj.value = 0.25*global.Si.Dj.K1.value + 0.25*global.Si.Dj.K2.value +  

                                         0.25*global.Si.Dj.K3.value+ 0.25*global.Si.Dj.K4.value; 

19:         global.Si.Dj.impact = 0.25*global.Si.Dj.K1.impact + 0.25*global.Si.Dj.K2.impact +  

                                           0.25*global.Si.Dj.K3.impact + 0.25*global.Si.Dj.K4.impact;  

20:         global.Si.Dj.quality = 0.5*global.Si.Dj.value + 0.5*global.Si.Dj.impact; 

21:         end if 

22:     global.Si.value = 0.5*global.Si.D2.value + 0.25*global.Si.D3.value+ 0.25*global.Si.D4.value;  

23:     global.Si.impact = 0.5*global.Si.D2.impact + 0.25*global.Si.D3.impact + 0.25*global.Si.D4.impact;  

24:     global.Si.quality = 0.5*global.Si.value + 0.5*global.Si.impact; 

25:     end for 

26: end for 

27: global.value = 0.2*global.S1.value + 0.2*global.S2.value + 0.2*global.S3.value +  

                        0.2*global.S4.value + 0.2*global.S5.value;  

28: global.impact = 0.2*global.S1.impact + 0.2*global.S2.impact +  

                          0.2*global.S3.impact + 0.2*global.S4.impact + 0.2*global.S5.impact;  

29: global.quality = 0.5*global.value + 0.5*global.impact; 
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3.6. User-based QoS categorization from radio conditions  

As the new data greedy services increase the complexity of service management and the level 

of customers’ expectations on the QoS delivered, this section introduced machine learning 

techniques to predict user-based QoS category using radio conditions parameters. A 

comparative analysis of the accuracy performance of different data mining techniques was 

proposed. 

3.6.1. Data preparation 

The data collected from the Iub interface was aggregated per IMSI which is the unique identifier 

of a subscriber so as to reduce the number of records. To clean the data, transactions without 

the important fields such as IMSI, EcNo, RSCP and propagation delay were discarded and only 

subscribers with at least 10 packet-switched calls a day were selected to ensure the 

representativeness of the collected data. 

The final dataset had a total number of 28,468 observations with each record representing an 

IMSI aggregated transaction for a day with different new computed metrics based on the three 

radio conditions information from the measurement reports. The new metrics were classes of 

radio conditions where a combination of EcNo and RSCP, propagation delay and the average of 

each radio condition were considered. The thresholds used for the radio conditions were: 

1. Threshold EcNo = -15dB, any value below this is considered as poor radio signal quality. 

2. Threshold RSCP = -100dBm, any value below this is considered as poor radio signal 

strength. 

3. Threshold propagation delay = 6km, any value above this was considered as an 

overshooting distance for cells in an urban area as all the data were collected from urban 

areas.  

The other attributes considered were the total number of packet-switched calls and the user-

based QoS category. The user-based QoS category was derived from the packet-switched 

dropped call rate. The full list of attributes with their description is shown in Table 8.  
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Table 8: Packet-switched radio conditions QoS attributes details  

Attributes name Description Example 

X1 IMSI ******13992 

X2 
Percentage of transactions with good EcNo and good 

RSCP 
0 

X3 
Percentage of transactions with bad EcNo and good 

RSCP 
50 

X4 
Percentage of transactions with good EcNo and bad 

RSCP 
0 

X5 Percentage of transactions with bad EcNo and bad RSCP 50 

X6 Percentage of transactions with long Propagation delay 0 

X7 Average EcNo -9 dB 

X8 Average RSCP -85 dBm 

X9 Average propagation delay 1 Km 

X10 Number of packet-switched calls 12 

X11 User-based packet-switched QoS category BAD 

 

 

3.6.2. Model design  

The system model is a user-centric one and focuses on the users’ perception of the QoS from 

categorization between “BAD” users with a daily packet-switched call dropped rate higher than 

20% and “GOOD” users with a daily packet-switched call dropped rate less than 20%. A common 

subscriber considers 2 packet-switched call drops out of ten to be acceptable while over that 

threshold, the feedback on the experience becomes unacceptable. To derive the categorization 

from the measurements of the radio conditions, three parameters were considered from the 
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measurement reports: the EcNo to provide information about the radio signal quality, the RSCP 

to provide the radio signal strength and the propagation delay for the indication of the distance 

at which the transaction was initiated respective to the network cell. 

After comparing five different machine learning algorithms for training, the best model was 

selected based on the accuracy. The machine learning algorithms that were used for 

comparisons were the LDA, the KNN, the CART, the RF and the SVM. 

3.6.2.1. Training and testing approach 

The dataset was gathered from an urban 3G packet-switched network with a total of 28,468 

observations that was divided into two subsets with a ratio of 80% for the training dataset (22,775 

observations) and 20% for the testing dataset (5,693 observations). Although the original dataset 

was balanced, to avoid risk of over-fitting, during the training phase, the cross-validation method 

was applied to randomly divide the training dataset into further ten subsets. All the machine 

learning techniques used ten rounds and one subset was selected for validation (Testing fold) 

and the aggregation of the rest used as training set. The results of the ten rounds were then 

averaged to get the final result. 

 

 

Figure 24: 10 folds cross-validation 

 

Figure 24 shows the 10-fold cross-validation where each iteration provided a result Ri with i as 

the number of iteration or number of folds. 
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R =  
1

10
  ∑ 𝑅𝑖

10

𝑖=1

                                                                                     (18) 

To ensure normal distribution of each of the numerical attribute, the data was transformed using 

the z-score: 

Zscore =  
𝑋 −  µ

σ 
                                                                                  (19) 

Where X is the value of the attribute to be transformed, µ as the mean and σ as the standard 

deviation:  

µ =  
∑ 𝑋𝑖𝑛

𝑖=1

n 
                                                                                 (20) 

 

σ =  √
∑ (𝑋𝑖 − µ)2 𝑛

𝑖=1

𝑛
                                                                (21) 

 

where n as the number of observations in the dataset. 5 different models which are LDA, KNN, 

CART, RF and SVM will be  trained involving 10-fold cross-validation and hyperparameters 

tuning to select the best model during training based on the accuracy will be used for testing. 

3.7. Poor data throughput root cause analysis (RCA) 

This section proposed a deep learning approach based on a DNN architecture to train and 

evaluate a model for a poor throughput root cause analysis using both the radio and the core 

network performance indicators of a 3G packet-switched network as inputs. The approach is a 

user-centric one and is based on user perception of QoS from categorization between “BAD” for 

3G data throughput less than 500Kbps and “GOOD” throughput higher than 500Kbps. To ensure 

end-to-end visibility, both the performance from the radio and the core network have been 

correlated based on subscribers as common keys. For the radio part, the radio conditions were 

derived from the measurement reports considering essentially two parameters: The energy per 

chip and noise (EcNo) to provide information about the quality of the radio signal and the received 

signal code power (RSCP) to provide the radio signal strength. For the core network part, seven 
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parameters were considered: the total time of data connection (act_dl), the total bytes transmitted 

on the downlink (bytes_dl), the total bytes retransmitted on the downlink (retransbytes_dl), the 

latency from the core to the user equipment (latency_dl), the total number of events (event), the 

number of successful DNS transactions (dns_successful) and number of unsuccessful DNS 

transactions (dns_failure). 

3.7.1. Data preparation  

The data was hourly aggregated and cleaned from unnecessary information. Each record 

represented an IMSI aggregated transaction for an hour with different new computed metrics 

based on the two radio conditions information from the measurement report and the seven core 

network parameters. The seven core network parameters reused the equations (14), (15), (16) 

and (17) to compute the four core network metrics which are the round-trip time on the downlink 

(rtt_dl), the retransmission rate on the downlink (rtx_dl), the DNS success rate (dns_sr) and the 

throughput on the downlink (thp_dl). Instead, the two radio parameters based on equations (22) 

and (23) computed new metrics with good EcNo (ecno_good), the sum of transactions with bad 

EcNo (ecno_bad), the sum of transactions with critical EcNo (ecno_critical), the sum of 

transactions with good RSCP (rscp_good), the sum of transactions with bad RSCP (rscp_bad), 

the sum of transactions with critical RSCP (rscp_critical).  

 

 𝑒𝑐𝑛𝑜 = {
𝑔𝑜𝑜𝑑,                              Threshold EcNo > −10𝑑𝐵 
𝑏𝑎𝑑,         − 15𝑑𝐵 < Threshold EcNo < −10𝑑𝐵  
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,                          Threshold EcNo ≤ −15𝑑𝐵

                  (22) 

 

𝑟𝑠𝑐𝑝 = {
𝑔𝑜𝑜𝑑,                               Threshold RSCP > −90𝑑𝐵𝑚 
𝑏𝑎𝑑,        − 100𝑑𝐵 < Threshold RSCP < −90𝑑𝐵𝑚  
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,                         Threshold RSCP ≤ −100𝑑𝐵𝑚

                (23) 

 

A total number of 44,711 observations that were later split for the training, validation and testing 

of the model considering the average thp_dl higher than 500Kbps as “GOOD” and less than 

500Kbps as “BAD”. Table 9 provides the full list of attributes with their description. 
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Table 9: Poor data throughput attributes description 

Attributes name Description Example 

X1 IMSI ************13992 

X2 thp_dl BAD 

X3 rtx_dl 21% 

X4 dns_sr 96% 

X5 rtt_dl 111msec 

X6 ecno_good 9 

X7 ecno_bad 14 

X8 ecno_critical 2 

X9 rscp_good 7 

X10 rscp_bad 13 

X11 rscp_critical 5 

 

 

3.7.2. Model design 

3.7.2.1. Training and testing approach  

The dataset has been divided into two new datasets with a ratio of 70% for the training and 

validation dataset (31,298 Observations) and 30% for the testing dataset (13,413 Observations). 

nine attributes were used as predictors: rtx_dl, dns_sr, rtt_dl, ecno_good, ecno_bad, 

ecno_critical, rscp_good, rscp_bad and rscp_critical. The response variable for training and 

testing was the thp_dl that was one-hot encoded to provide two outputs (first output for “BAD” 

throughput response and the second output for the “GOOD” throughput response) each with 
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binary possibility of 0 or 1 (0 for “No” and 1 for “Yes”). It must be noted that having two outputs 

instead of one will not improve the results in case of binary classification, but we have chosen 

this approach to enable dynamic configuration using one-hot encoding to support multiclass 

cases for the future. The normalization transformation based on equation (8) was applied to all 

the attributes except the targets outputs which were already binary 0 or 1 as result of one-hot 

encoding.  

The DNN training has an objective of finding the neural network parameters that would minimize 

the loss or cost function while improving the performance. The proposed model was a sequential 

model as a linear stack of layers as shown in Figure 25.   

 

 

Figure 25: Proposed DNN architecture 

 

The activation function used for the hidden layers was the rectified linear unit (ReLu) which is 

one of the common modern non-linear activation functions as shown in Figure 26 in comparison 

to traditional non-linear activation functions such as the Hyperbolic Tangent. 



60 
 

 

Figure 26: Non-linear activation functions 

 

The output layer instead used the Softmax activation function which output the probability of an 

instance to belong to a specific class or category. The configuration summary of the model built 

is described in Table 10. 

 

Table 10: Proposed deep neural network architecture 

Layer type Number of units Activation function 

Input layer 9 - 

Hidden layer 1 5 ReLu 

Hidden layer 2 5 ReLu 

Output layer 2 Softmax 
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One of the difficult tasks in deep learning is the optimization of the learning rate, since small 

learning rate causes many iterations until convergence and trapping in local minima while large 

learning rate causes overshooting. Different methods are used to guess the learning rate when 

using the stochastic gradient descent (SGD), but most of them are time consuming. We used 

the approach proposed by Kingma and Ba [96] with the adaptive learning rate optimizer such as 

the “Adam” providing better performance as shown in Figure 27 [96]. 

 

 

Figure 27: Convolutional neural networks training cost comparison [96] 

  

With adaptive learning rate, the learning rate is no longer fixed and can be made larger or smaller 

depending on the size of the gradient, how fast learning is happening and the size of weights. 

We used the minibatch technique to fit model since it provides much accurate estimation of the 

gradient with smoother convergence allowing larger learning rates and therefore faster training.  

The parameters used to compile and fit the model are shown Table 11. 
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Table 11: Proposed deep neural network model parameters 

Model parameters Value 

optimizer Adam 

loss function      Cross-entropy 

Optimization metric    Accuracy 

batch size 32 

epochs    50 

validation split    20% 

 

The accuracy and the loss of both training and validation phase were used to tune the parameters 

while the F1_Score and the AUC were used to evaluate the final model. 

3.7.2.2. Root cause analysis (RCA) approach 

Very often the blackbox data mining techniques such as DNN are not used in the environment 

of root cause analysis because of lack of explanation from the results, but this study proposed a 

root cause analysis using the feature importance during the prediction phase to derive the 

predictors that impacted the most the final output of the throughput. The user-based root cause 

analysis required a different approach since the poor QoE of different users might have different 

reasons. To be able to understand single poor throughput reason,  we used a R library based on 

the local interpretable model-agnostic explanations (LIME) technique which provides explanation 

of complex machine learning classifiers. 

While the model could retrieve the features importance for any subscribers in the testing dataset, 

for demonstration, only the first four subscribers have been used to outline the influence of 

predictors focusing on the output response “BAD” for poor data throughput. For this, the interest 

was only on the top four features based on importance using a kernel width of 0.7. 

 

https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime
https://shiring.github.io/machine_learning/2017/04/23/lime
https://shiring.github.io/machine_learning/2017/04/23/lime
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Chapter 4: Experimental Results and Discussions 

 

4.1. Introduction 

This chapter presents an analysis of results of the various models that we developed. The results 

are presented in four section: Facebook video traffic classification, a quadri-dimensional 

approach for poor performance prioritization in mobile networks using Big Data, user-based QoS 

categorization from radio conditions using machine learning techniques and poor data 

throughput RCA. The specification of the hardware used for the experiments and their 

configuration parameters are shown in Table 12. 

Table 12: Hardware configuration 

Parameter Value 

Computer1 Processor Intel Core i7 (4 Processors) 

Computer1 Memory 16 GB (8GB used for the VM) 

Computer1 Storage 1 Terabytes HDD 

Computer1 IP 198.168.68.1 

VM Processor Hosted on VMware in Computer1 (4 Virtual Processors) 

VM Memory 8 GB 

VM Storage 64 GB  Dedicated Virtual HDD 

VM IP 198.168.68.120 

. 

 

4.2. Facebook video traffic classification  

4.2.1. Model implementation  



64 
 

The experiments were carried out on RStudio using the R programming language with the 

“neuralnet” library. During the experiment for Facebook video traffic classification, four topologies 

were built based on the variation of the number of hidden neurons. The topologies were trained 

with the training dataset and validated with the unseen data from the testing dataset. For each 

case, a topology was generated with the prediction confusion matrix to enable computation of 

the accuracy which was the metric used to benchmark the models. 

Topology 1 

Figure 28 shows the number of hidden neurons configured for the first topology with HN = 4. 

Table 13 shows the results of the prediction confusion matrix that was used to compute the 

accuracy of this model. 

 

 

Figure 28: Topology 1 (4 Hidden Neurons) 
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Table 13: Topology 1 confusion matrix 

 

Reference 

Prediction OTHERS VIDEO 

OTHERS 571 38 

VIDEO 15 218 

 

Topology 2 

Figure 29 shows the number of hidden neurons configured for the second topology with HN = 5. 

Table 14 shows the results of the prediction confusion matrix that was used to compute the 

accuracy of this model. 
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Figure 29: Topology 2 (5 Hidden Neurons) 

 

Table 14: Topology 2 confusion matrix 

 

Reference 

Prediction OTHERS VIDEO 

OTHERS 547 33 

VIDEO 39 223 

 

 

Topology 3 

Figure 30 shows the number of hidden neurons configured for the third topology with HN = 15. 

Table 15 shows the results of the prediction confusion matrix that was used to compute the 

accuracy of this model. 
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Figure 30: Topology 3 (15 Hidden Neurons) 

 

Table 15: Topology 3 confusion matrix 

 

Reference 

Prediction OTHERS VIDEO 

OTHERS 545 64 

VIDEO 41 192 

 

 

Topology 4 

Figure 31 shows the number of hidden neurons configured for the fourth topology with HN = 81. 

Table 16 shows the results of the prediction confusion matrix that was used to compute the 

accuracy of this model. 
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Figure 31: Topology 4 (81 Hidden Neurons) 

 

Table 16: Topology 4 confusion matrix 

 

Reference 

Prediction OTHERS VIDEO 

OTHERS 545 64 

VIDEO 41 192 

 

 

4.2.2. Prediction performance benchmark 

The metric used to benchmark the models during the experiments was the accuracy. Although 

the results were quite closer to each other for all the built topologies, the best topology 
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considering the test prediction (accuracy), was topology 1 with 93.7% of prediction accuracy on 

unseen data as shown in Figure 32. 

 

 

Figure 32: benchmark of prediction performances 

 

The initial assumption was to increase the number of hidden nodes to improve the learning 

capability of the model, as more iterations provides the optimal weights of the neural networks. 

However, this experiment showed that after a certain threshold, in this case four hidden neurons, 

the model started to overfit by memorizing the training data rather than learning from the 

relationship between them. The prediction performance started to deteriorate rather than 

improving.  
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During training of ANN models, it is important to test different scenarios starting from a relatively 

small number of hidden nodes and gradually increase while benchmarking the accuracy of the 

models.  

4.3. A quadri-dimensional approach for poor performance prioritization in 

mobile networks using Big Data 

4.3.1. Model implementation 

During the experiment for quadri-dimensional approach was conducted running Rstudio on the 

hosting machine and the Cloudera platform on the virtual machine. To demonstrate the benefits 

of the Big Data platform we run a parallel experience using MySQL to compare the results. Table 

17 shows the average performance comparison between MySQL and Cloudera Impala using the 

queries from Algorithm 2. The results show that using a Big Data platform, even on a single 

machine has a performance three times better than the traditional MySQL. 

 

Table 17: MySQL and Big Data performance comparison 

Test MySQL execution time Cloudera Impala execution time 

Query1 2.2 sec 0.7 sec 

Query2 6.1 sec 2.3 sec 

 

 

4.3.2. SQM-tree results 

From the SQM-tree output of algorithm 2, we had the value, the impact and the quality, all ranging 

from 0 to 100 for all the nodes in the tree represented by the “levelName” as shown in Figure 33.  
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Figure 33: SQM-tree result screenshot 

 

The benefit of the quadri-dimensional approach being the fast troubleshooting and root cause 

analysis capability, it is therefore possible from the SQM-tree, to sort the specific “levelName” by 

quality and identify the worst paths instead of running multiple Big Data queries and KPIs analysis 

as it is done in most of the NOC/SOC. Since the SQM-tree paths were build following the quadri-

dimensional approach, the worst paths provide also information about which service, dimension 

and KPIs have the most impacted the network quality, the QoS and the QoE.  

4.3.3. Worst SQM-Tree paths 

Figure 34 shows a screenshot of the ten worst paths ranked by the performance quality. From 

the list of the worst paths and based on the KPIs, the worst path is linked to the throughput on 

the downlink. This in essence, affects several network dimensions and services. Of this most 

impacted is the Facebook network service. An investigation and troubleshooting can then be 

performed by prioritizing the paths with poor performance so as to reduce the mean time to 

detection and the MTTR. This will  improve the efficiency of the CSPs operation team. 
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Figure 34: 10 Worst SQM-Tree paths ranked by performance quality (%) 

 

4.4. User-based QoS categorization from radio conditions  

4.4.1. Model implementation 

The training and testing of the model were implemented using R programming language with the 

library “caret”, providing several data processing tools and machine learning models. The models 

trained and compared were based on the following algorithms: LDA, KNN, CART, RF and SVM. 

The best model based on accuracy turned out to be the RF as shown in Figure 35.  
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Figure 35: Models Accuracy metrics 

 

Based on cross-validation, the resampling results focused on tuning the accuracy as the chosen 

evaluation metric by varying the mtry which is number of available variables to split at each tree 

node. The optimal result was achieved with mtry = 2 with an accuracy mean of 86.74% during 

training process as shown in Table 18. 

 

Table 18: Random Forests mtry vs accuracy 

mtry Accuracy 

2 0.867399 

5 0.854709 

9 0.847728 
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One of the reasons that could justify a better performance of the RF model is the fact that it can 

handle extremely large datasets where other models tend to underperform due to "curse of 

dimensionality". Models based on the RF also prone less to overfitting and can handle very noisy 

data while selecting only the most important features. 

4.4.2. Prediction using the best model 

Prediction was done using the testing dataset which contained 5,693 observations where the 

best model during training phase was the RF. The prediction accuracy was 86.35% with a 

precision of 95.7% considering the class “BAD” as the positive class as shown in the confusion 

matrix in Table 19.  

Table 19: Random Forests prediction confusion matrix 

 

Reference 

Prediction BAD GOOD 

BAD 1980 89 

GOOD 688 2936 

 

Table 20 provides details of other metrics after prediction: 

 

Table 20: Detailed prediction metrics 

Metrics Values 

Accuracy 0.8635 

Sensitivity 0.7421 

Specificity 0.9706 

Prediction of "BAD" class 0.957 

Prediction of "GOOD" class 0.8102 
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4.5. Poor data throughput root cause analysis (RCA) 

4.5.1. Model implementation 

The training and testing of the model was implemented in R programming language using the 

library “Keras”, which is a high-level neural network API for deep learning based on TensorFlow 

developed by Google.  The training and validation of the model was done using 70% of the data 

with 31,298 observations from which the model trained on 25,038 samples and validated on 

6,260 samples in different epochs. Figure 36 shows the summary of the performance of the 

training data against cross-validation over time showing the training accuracy (acc), the training 

loss (loss), the validation accuracy (val_acc) and the validation loss (val_loss). 

 

 

Figure 36: DNN training and validation metrics 
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The final performance during the training and validation phase are shown Table 21. 

 

Table 21: DNN training evaluation metrics 

Training evaluation metrics Value 

training loss    0.03522 

validation loss 0.04641 

training accuracy 0.9886 

validation accuracy 0.9856 

 

4.5.2. Prediction using the testing dataset 

Prediction was done using the testing dataset which contained 13,413 unseen data. The 

prediction accuracy on unseen data was 98.9% with an AUC of 99.87% and an F1-Score of 

99.23%. Table 22 shows the confusion matrix of the results after the prediction. 

 

Table 22: DNN prediction confusion matrix 

   Reference 

Prediction BAD GOOD 

BAD 3753   134 

GOOD 13 9513 

 

4.5.3. Global RCA 

The global RCA was done through the throughput correlation analysis showing the features with 

negative correlation that prevented a better throughput. Those features for the overall network 

view were the rtt_dl, the ecno_critical and the rscp_critical as shown in Figure 37. 
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Figure 37: thp_dl correlation analysis 

 

4.5.4. User-based RCA 

Figure 38 represents detailed views of the RCA focusing on the first four subscribers that were 

labelled as “BAD” by the model. The green colour represents the features that contribute to the 

poor throughput performance as follows: 

1. The 1st case shows a poor performing subscriber with 100% probability. The rtt_dl is the 

feature influencing the most the poor QoE, followed by the rscp_critical. 

2. The 2nd case shows a poor performing subscriber with 85% probability. The rscp_bad is 

the feature influencing the most the poor QoE. 

3. The 3rd case shows a poor performing subscriber with 99% probability. The rtt_dl is the 

feature influencing the most the poor QoE, followed by the ecno_critical. 

4. The 4th case shows a poor performing subscriber with 100% probability. The rtt_dl is the 

feature influencing the most the poor QoE. 
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Figure 38: LIME feature importance 

 

Although the throughput in the network is globally impacted by the rtt_dl, the ecno_critical and 

the rscp_critical; the reasons for poor performance could be unique for different users. This is 

why in a user-centric quality improvement, a global network view is not enough and a look at 

either a segment of customers or a view of single customer investigation is important to 

determine the root cause of poor QoE.  
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Chapter 5: Conclusion  

 

5.1. Conclusion 

In this research, we have proposed an SQM design approach considering the four dimensions 

in the mobile networks (service, subscriber, handset and the cell). The SQM designed followed 

a tree approach designed based on a KPI normalization algorithm and an SQM-tree construction 

algorithm dynamically preparing Big Data queries essential for the tree node weights. The tree 

nodes hold values not only from KPI aggregation but also considered the impact of the KPIs on 

the mobile network’s dimensions. The final tree results could then be sorted to provide faster 

RCA and prioritization to manage first the issues affecting the most the network.  

To solve the challenge of the Facebook video traffic misclassification, we used an ANN to build, 

train and test four different models for a prediction of traffic classification. As a trend, Facebook 

data usage is essentially made of video and social networking, we considered classification of 

Facebook video traffic among Facebook traffics such as chatting and browsing. While several 

methods in the literature have used the packet transmission patterns, the well-known ports and 

the IP addresses to classify the traffic, we  used a new approach based on the subscriber’s bytes 

usage of every second for both uplink and downlink traffic. Different ANN topologies were built 

by varying the number of hidden neurons using arbitrary functions suggested by previous 

literature and the best model was selected based on the prediction accuracy. This research not 

only demonstrated the robustness of ANN to predict large sets of data based on different 

attributes   but also the fact that a higher number of hidden neurons does not necessary implies 

better performance. Therefore, several tests and comparison studies should be done while 

training neural networks to achieve an optimal result.  

This research also proposed an approach to show the relationship between the radio conditions 

and the user QoS perception on real 3G packet-switched network from an urban area. We have 

trained and compared five different models from which the best model, based on accuracy, was 

selected.  The approach demonstrated the relationship between the user-based QoS on packet-

switched based on drop and the radio conditions while predicting an 86.35% of accuracy on the 

QoS perceived by the users. The perception was based on two categories: i.e.: “BAD” and 

“GOOD”; and took into consideration attributes such as the EcNo, the RSCP and the propagation 

delay collected from events in the measurement reports.  
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Finally, the last step of the research was to use a DNN architecture to train a model predicting 

poor QoE based on the poor throughput. The final proposed model not only predicted with higher 

accuracy but was also able to extract the features importance to derive the factors from either 

the radio or the core network of a 3G packet-switched network that influence the poor QoE.  

5.2. Recommendation and future works 

For future research, the following topics need to be subjected for further research: 

1. Training and comparison of different deep learning methods to improve the performance 

of the models. 

2. Training and comparison of models based on GPUs methods and performance 

evaluation.  

3. Extension of the Big Data platform with either clusters of VMs or multiple physical nodes.  

4. Usage of latest Real-time analytics technologies such as Kafka for data collection and 

processing. 

5. Consideration of billing information and correlation with the QoS information to enhance 

the evaluation of the QoE. 

6. Consideration of social media and surveys information through NLP and correlation with 

the QoS information to enhance the evaluation of the QoE. 
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