287,861 research outputs found

    The use of intellectual capital information by sell-side analysts in company valuation

    Get PDF
    This paper investigates the role of intellectual capital information (ICI) in sell-side analysts’ fundamental analysis and valuation of companies. Using in-depth semi-structured interviews, it penetrates the black box of analysts’ valuation decision-making by identifying and conceptualising the mechanisms and rationales by which ICI is integrated within their valuation decision processes. We find that capital market participants are not ambivalent to ICI, and ICI is used: (1) to form analysts’ perceptions of the overall quality, strengths and future prospects of companies; (2) in deriving valuation model inputs; (3) in setting price targets and making investment recommendations; and (4) as an important and integral element in analyst–client communications. We show that: there is a ‘pecking order’ of mechanisms for incorporating ICI in valuations, based on quantifiability; IC valuation is grounded in valuation theory; there are designated entry points in the valuation process for ICI; and a number of factors affect analysts’ ICI use in valuation. We also identify a need to redefine ‘value-relevant’ ICI to include non-price-sensitive information; acknowledge the boundedness and contextuality of analysts’ rationality and motives of their ICI use; and the important role of analyst–client meetings for ICI communication

    Accounting of nitrogen attenuation in agricultural catchments : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Earth Science at Massey University, Palmerston North, New Zealand

    Get PDF
    Figure 2.1 has been removed for copyright reasons but may be accessed through the source listed in the References.The transport and fate of the nitrate that leaches from the root zone of farms, via groundwaters, to receiving surface waters is poorly understood, particularly for New Zealand’s agricultural catchments. Monitoring nitrate concentrations in rivers clearly demonstrates that not all of the nitrate leached across the catchment enters the river. As nitrate moves from land to receiving waters there is potential for subsurface denitrification and hence the attenuation of the nitrate flux to receiving surface waters. A good understanding of the influence of catchment characteristics on the spatial variations of nitrate attenuation is essential for targeted and effective water quality outcomes across agricultural landscapes. This thesis analysed large datasets of geographical information (land use, soils and geology) and water quality records at 20 sites in two large agricultural catchments, the Tararua and Rangitikei, which are located in the lower parts of the North Island New Zealand. The results demonstrated that the influence of land use on river soluble inorganic nitrogen (SIN) concentrations in the Tararua catchment was outweighed by other catchment characteristics such as soil type and hydrological indices. A simple approach, that is not data-intensive, was developed and applied to quantify the capacity of a catchment to attenuate nitrogen. The nitrogen attenuation factor (AFN) is a key component of this approach. AFN is defined as the average annual land use nitrogen leaching losses minus the average annual river SIN river loads, divided by the average annual land use nitrogen leaching losses. AFN was determined for 5 and 15 sub-catchments in the Rangitikei and Tararua catchments, respectively, and was found to be highly spatially variable with values ranging from 0.14 to 0.94. To assess the uncertainty associated with AFN, the uncertainty in the average annual river SIN loads was evaluated. Five load calculation methods (global mean GM, rating curve RC, ratio estimator RE, flow-stratified FS, and flow-weighted FW) and four sampling frequencies (2 days, weekly, fortnightly, and monthly) were investigated to calculate average annual river loads at one of the long-term, representative water quality monitoring sites in the study catchment. The FS method using a monthly sampling frequency resulted in the lowest bias (0.9%) for average annual river SIN loads and therefore was used in the quantification of AFN across the study catchments. A robust uncertainty analysis of AFN showed two distinct groups of sub-catchments; sub-catchments with higher (>0.7) and less uncertain nitrogen attenuation factors, and sub-catchments with lower (<0.4) and more uncertain nitrogen attenuation factors. This supports the use and applicability of AFN as a sub-catchment descriptor of the capacity of a sub-catchment to attenuate nitrogen. AFN was positively related to poorly drained soils and mudstones, and negatively related to well-drained soils and gravels in the study catchments. A novel but simple hydrogeologic-based model was developed to evaluate the potential to use soil and rock indices to predict average annual river SIN loads from different land uses in a catchment. Four different versions of the model (uniform nitrogen attenuation, variable nitrogen attenuation based on soil indices only; variable nitrogen attenuation based on rock indices only; and variable nitrogen attenuation based on both soil and rock indices) were developed. Accounting for the spatial distribution of the nitrogen attenuation capacities of both soils and rocks resulted in markedly better predictions of river SIN loads in the Tararua and Rangitikei sub-catchments. The novel findings of this thesis clearly suggest that effective and targeted measures to improve water quality at a catchment scale should account not only for land use but also for other catchment characteristics, such as the subsurface nitrogen attenuation capacity. This new knowledge will be instrumental in the future development of the models and planning tools required to reduce the detrimental impacts of agriculture, by aligning spatially intensive land use practices with high nitrogen attenuation pathways in sensitive agricultural catchments

    Water Integration for Squamscott Exeter (WISE): Preliminary Integrated Plan, Final Technical Report

    Get PDF
    This document introduces the goals, background and primary elements of an Integrated Plan for the Lower Exeter and Squamscott River in the Great Bay estuary in southern New Hampshire. This Plan will support management of point (wastewater treatment plant) and nonpoint sources in the communities of Exeter, Stratham and Newfields. The Plan also identifies and quantifies the advantages of the use of green infrastructure as a critical tool for nitrogen management and describes how collaboration between those communities could form the basis for an integrated plan. The Plan will help communities meet new wastewater and proposed stormwater permit requirements. Critical next steps are need before this Plan will fulfill the 2018 Nitrogen Control Plan requirements for Exeter and proposed draft MS4 requirements for both Stratham and Exeter. These next steps include conducting a financial capability assessment, development of an implementation schedule and development of a detailed implementation plan. The collaborative process used to develop this Plan was designed to provide decision makers at the local, state and federal levels with the knowledge they need to trust the Plan’s findings and recommendations, and to enable discussions between stakeholders to continue the collaborative process. This Plan includes the following information to guide local response to new federal permit requirements for treating and discharging stormwater and wastewater: Sources of annual pollutant load quantified by type and community; Assessment and evaluation of different treatment control strategies for each type of pollutant load; Assessment and evaluation of nutrient control strategies designed to reduce specific types of pollutants; Evaluation of a range of point source controls at the wastewater treatment facility based on regulatory requirements; Costs associated with a range of potential control strategies to achieve reduction of nitrogen and other pollutants of concern; and A preliminary implementation schedule with milestones for target load reductions using specific practices for specific land uses at points in time; Recommendations on how to implement a tracking and accounting program to document implementation; Design tools such as BMP performance curves for crediting the use of structural practices to support nitrogen accounting requirements; and Next Steps for how to complete this Plan

    Measuring performance in healthcare

    Get PDF
    Hospitals invest in process management and process optimization from an organizational and patient perspective to increase efficiency and simultaneously the quality of their operations. Consequently, the use of process-oriented performance measurement systems gains importance. This study contributes to the development of a dashboard for the process of hip surgery using a case study design. We integrate strategic goals of hospital management and different stakeholders with the analysis of Business Process Management and Hospital Information Systems’ data. Process-oriented KPIs were integrated into the dashboard using a three-step approach. Dashboards enable healthcare organizations to put process-oriented performance measurement into practice

    Planning and Design Soa Architecture Blueprint

    Full text link
    Service Oriented Architecture (SOA) is a framework for integrating business processes and supporting IT infrastructure as secure, standardized components-services-that can be reused and combined to address changing business priorities. Services are the building blocks of SOA and new applications can be constructed through consuming these services and orchestrating services within a business process. In SOA, services map to the business functions that are identified during business process analysis. Upon a successful implementation of SOA, the enterprise gain benefit by reducing development time, utilizing flexible and responsive application structure, and following dynamic connectivity of application logics between business partners. This paper presents SOA reference architecture blueprint as the building blocks of SOA which is services, service components and flows that together support enterprise business processes and the business goals

    The Creation, Validation, and Application of Synthetic Power Grids

    Get PDF
    Public test cases representing large electric power systems at a high level of fidelity and quality are few to non-existent, despite the potential value such cases would have to the power systems research community. Legitimate concern for the security of large, high-voltage power grids has led to tight restrictions on accessing actual critical infrastructure data. To encourage and support innovation, synthetic electric grids are fictional, designed systems that mimic the complexity of actual electric grids but contain no confidential information. Synthetic grid design is driven by the requirement to match wide variety of metrics derived from statistics of actual grids. The creation approach presented here is a four-stage process which mimics actual power system planning. First, substations are geo-located and internally configured from seed public data on generators and population. The substation placement uses a modified hierarchical clustering to match a realistic distribution of load and generation substations, and the same technique is also used to assign nominal voltage levels to the substations. With buses and transformers built, the next stage constructs a network of transmission lines at each nominal voltage level to connect the synthetic substations with a transmission grid. The transmission planning stage uses a heuristic inspired by simulated annealing to balance the objectives associated with both geographic constraints and contingency reliability, using a linearized dc power flow sensitivity. In order to scale these systems to tens of thousands of buses, robust reactive power planning is needed as a third stage, accounting for power flow convergence issues. The iterative algorithm presented here supplements a synthetic transmission network that has been validated by a dc power flow with a realistic set of voltage control devices to meet a specified voltage profile, even with the constraints of difficult power flow convergence for large systems. Validation of the created synthetic grids is crucial to establishing their legitimacy for engineering research. The statistical analysis presented in this dissertation is based on actual grid data obtained from the three major North American interconnects. Metrics are defined and examined for system proportions and structure, element parameters, and complex network graph theory properties. Several example synthetic grids are shown as examples in this dissertation, up to 100,000 buses. These datasets are available online. The final part of this dissertation discusses these specific grid examples and extensions associated with synthetic grids, in applying them to geomagnetic disturbances, visualization, and engineering education

    Assessing the Financial Health of Medicaid Managed Care Plans and the Quality of Patient Care They Provide

    Get PDF
    Examines the administrative and medical expenses, quality of care, and financial stability of publicly traded health plans contracted to manage the care of Medicaid beneficiaries by plan characteristics and compared with non-publicly traded plans
    • …
    corecore