24 research outputs found

    Coded Index Modulation for Non-DC-Biased OFDM in Multiple LED Visible Light Communication

    Full text link
    Use of multiple light emitting diodes (LED) is an attractive way to increase spectral efficiency in visible light communications (VLC). A non-DC-biased OFDM (NDC OFDM) scheme that uses two LEDs has been proposed in the literature recently. NDC OFDM has been shown to perform better than other OFDM schemes for VLC like DC-biased OFDM (DCO OFDM) and asymmetrically clipped OFDM (ACO OFDM) in multiple LEDs settings. In this paper, we propose an efficient multiple LED OFDM scheme for VLC which uses {\em coded index modulation}. The proposed scheme uses two transmitter blocks, each having a pair of LEDs. Within each block, NDC OFDM signaling is done. The selection of which block is activated in a signaling interval is decided by information bits (i.e., index bits). In order to improve the reliability of the index bits at the receiver (which is critical because of high channel correlation in multiple LEDs settings), we propose to use coding on the index bits alone. We call the proposed scheme as CI-NDC OFDM (coded index NDC OFDM) scheme. Simulation results show that, for the same spectral efficiency, CI-NDC OFDM that uses LDPC coding on the index bits performs better than NDC OFDM

    Visible light communication using new Flip-FBMC modulation system technique

    Get PDF
    Filter bank multi-carrier (FBMC) modulation in the visible light communication (VLC) system is one of the most promising modulation systems in optical wireless communications (OWC), especially in 5G and 6G future applications. FBMC has a wide bandwidth compared to other modulation systems. One of the highest degree essential conditions for utilising the signal in VLC is that the signal is real positive, the signal is agreeable with intensity modulation/direct detection (IM/DD), where Hermitian symmetry (H.S) is utilised to get a real signal (RE) and to be unipolar direct current (DC)-bias is used. Here the challenge arises as this method increases complicating, due to the modulation of the N number of frequency symbols, these symbols need 2N inverse fast fourier transform (IFFT) and fast fourier transform (FFT), in addition to energy consumption. This research focused on the time domain and not the frequency domain by using the traditional complex FBMC generation signal, and to obtain the RE signal by placing the RE signal side by side with the imaginary signal (IMs) in a row, and then using new Flip-FBMC technology, which saves more energy. The proposed technologies provide approximately 57% of the number of IFFT/FFT. The use of Flip-FBMC technology consumes less energy than traditional technologies with better bit error rate (BER) performance

    Improved Receiver Design for Layered ACO-OFDM in Optical Wireless Communications

    Full text link

    A novel unipolar transmission scheme for visible light communication

    Get PDF
    This paper proposes a novel unipolar transceiver for visible light communication (VLC) by using orthogonal waveforms. The main advantage of our proposed scheme over most of the existing unipolar schemes in the literature is that the polarity of the real-valued orthogonal frequency division multiplexing (OFDM) sample determines the pulse shape of the continuous-time signal and thus, the unipolar conversion is performed directly in the analog instead of the digital domain. Therefore, our proposed scheme does not require any direct current (DC) biasing or clipping as it is the case with existing schemes in the literature. The bit error rate (BER) performance of our proposed scheme is analytically derived and its accuracy is verified by using Matlab simulations. Simulation results also substantiate the potential performance gains of our proposed scheme against the state-of-the-art OFDM-based systems in VLC; it indicates that the absence of DC shift and clipping in our scheme supports more reliable communication and outperforms the asymmetrically clipped optical-OFDM (ACO-OFDM), DC optical-OFDM (DCO-OFDM) and unipolar-OFDM (U-OFDM) schemes. For instance, our scheme outperforms ACO-OFDM by at least 3 dB (in terms of signal to noise ratio) at a target BER of 10 −4 , when considering the same spectral efficiency for both schemes

    Receiver Algorithms for Single-Carrier OSM Based High-Rate Indoor Visible Light Communications

    Get PDF
    In intensity-modulation and direct-detection (IM/DD) multiple-input and multiple-output (MIMO) visible light communication (VLC) systems, spatial subchannels are usually correlated, and spatial modulation is a good choice to achieve the advantages of MIMO technology. Peak-to-average power ratio (PAPR) is a key issue in VLCs due to the limited linear dynamic range of light emitting diodes (LEDs). Single-carrier communication systems have a lower PAPR than orthogonal frequency division multiplexing (OFDM) communication systems. However, it is challenging to design a single-carrier spatial modulation for high-rate transmissions because of the time domain intersymbol interference. This paper develops an optical spatial modulation (OSM) scheme based on bipolar pulse amplitude modulation (PAM) and spatial elements for high-rate indoor VLC systems. Multiple data streams can be transmitted simultaneously in the proposed scheme. Based on the transmit strategy, we develop a low-complexity receiver algorithm that achieves better bit-error rate performance than reference schemes, and the proposed OSM scheme has a much lower PAPR than OFDM based OSM schemes. When the spatial subchannels are highly correlated, a spatial area division strategy is applied, and the receiver algorithm is investigated. The symbol-error rate expression of the proposed OSM scheme is derived, and the computational complexity is analyzed

    Estudio y simulación de un sistema Flip-OFDM para sistemas de comunicación por luz visible (VLC)

    Get PDF
    El objetivo de este Trabajo Fin de Grado es implementar y simular dos técnicas de modulación para sistemas Li-Fi mediante la herramienta Matlab. Posteriormente, los resultados de las simulaciones serán analizados, comparados y corroborados con los artículos de investigación en los que se basa este proyecto. Además, también se hará una investigación y estudio del Estado del Arte de los distintos esquemas de modulación que existen para desarrollar un sistema Li-Fi.The aim of this project is to implement and simulate two modulation techniques for Li-Fi systems using Matlab. Later, the results of the simulations will be analyzed, compared and corroborated with the research articles on which this project is based. In addition, there will also be a research and a study of the State of the Art of various modulation schemes that exist to develop a Li-Fi system.Universidad de Sevilla. Grado en Ingeniería de las Tecnologías de Telecomunicació
    corecore