11 research outputs found

    Flexible composition and execution of high performance, high fidelity multiscale biomedical simulations

    Get PDF
    Multiscale simulations are essential in the biomedical domain to accurately model human physiology. We present a modular approach for designing, constructing and executing multiscale simulations on a wide range of resources, from laptops to petascale supercomputers, including combinations of these. Our work features two multiscale applications, in-stent restenosis and cerebrovascular bloodflow, which combine multiple existing single-scale applications to create a multiscale simulation. These applications can be efficiently coupled, deployed and executed on computers up to the largest (peta) scale, incurring a coupling overhead of 1–10% of the total execution time

    MPWide: a light-weight library for efficient message passing over wide area networks

    Full text link
    We present MPWide, a light weight communication library which allows efficient message passing over a distributed network. MPWide has been designed to connect application running on distributed (super)computing resources, and to maximize the communication performance on wide area networks for those without administrative privileges. It can be used to provide message-passing between application, move files, and make very fast connections in client-server environments. MPWide has already been applied to enable distributed cosmological simulations across up to four supercomputers on two continents, and to couple two different bloodflow simulations to form a multiscale simulation.Comment: accepted by the Journal Of Open Research Software, 13 pages, 4 figures, 1 tabl

    Performance of distributed multiscale simulations

    Get PDF
    Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption

    Patterns for High Performance Multiscale Computing

    Get PDF
    We describe our Multiscale Computing Patterns software for High Performance Multiscale Computing. Following a short review of Multiscale Computing Patterns, this paper introduces the Multiscale Computing Patterns Software, which consists of description, optimisation and execution components. First, the description component translates the task graph, representing a multiscale simulation, to a particular type of multiscale computing pattern. Second, the optimisation component selects and applies algorithms to find the most suitable mapping between submodels and available HPC resources. Third, the execution component which a middleware layer maps submodels to the number and type of physical resources based on the suggestions emanating from the optimisation part together with infrastructure-specific metrics such as queueing time and resource availability. The main purpose of the Multiscale Computing Patterns software is to leverage the Multiscale Computing Patterns to simplify and automate the execution of complex multiscale simulations on high performance computers, and to provide both application-specific and pattern-specific performance optimisation. We test the performance and the resource usage for three multiscale models, which are expressed in terms of two Multiscale Computing Patterns. In doing so, we demonstrate how the software automates resource selection and load balancing, and delivers performance benefits from both the end-user and the HPC system level perspectives

    VPH-HF: A software framework for the execution of complex subject-specific physiology modelling workflows

    Get PDF
    Computational medicine more and more requires complex orchestrations of multiple modelling & simulation codes, written in different programming languages and with different computational requirements, which when validated need to be run many times on large cohorts of patients. The aim of this paper is to present a new open source software, the VPH Hypermodelling Framework (VPH-HF). The VPH-HF overcomes the limitations of most workflow execution environments by supporting both Taverna and Muscle2; the addition of Muscle2 support makes possible the execution of very complex orchestrations that include strongly-coupled models. The overhead that the VPH-HF imposes in exchange for this is small, and tends to be flat regardless of the complexity and the computational cost of the hypermodel being executed. We recommend the use of the VPH-HF to orchestrate any hypermodel with an execution time of 200 s or higher, which would confine the VPH-HF overhead to less than 10%. The VPH-HF also provide an automatic caching system over the execution of every hypomodel, which may provide considerable speed-up when the orchestration is run repeatedly over large numbers of patients or within stochastic frameworks, and the input sets are properly binned. The caching system also makes it easy to form large input set/output set databases required to develop reduced-order models, and the framework offers the possibility to dynamically replace single models in the orchestration with reduced-order versions built from cached results, an essential feature when the orchestration of multiple models produces a combinatory explosion of the computational cost
    corecore