1,639 research outputs found

    Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks

    Full text link
    Autonomous robots need to interact with unknown, unstructured and changing environments, constantly facing novel challenges. Therefore, continuous online adaptation for lifelong-learning and the need of sample-efficient mechanisms to adapt to changes in the environment, the constraints, the tasks, or the robot itself are crucial. In this work, we propose a novel framework for probabilistic online motion planning with online adaptation based on a bio-inspired stochastic recurrent neural network. By using learning signals which mimic the intrinsic motivation signalcognitive dissonance in addition with a mental replay strategy to intensify experiences, the stochastic recurrent network can learn from few physical interactions and adapts to novel environments in seconds. We evaluate our online planning and adaptation framework on an anthropomorphic KUKA LWR arm. The rapid online adaptation is shown by learning unknown workspace constraints sample-efficiently from few physical interactions while following given way points.Comment: accepted in Neural Network

    Data-driven robotic manipulation of cloth-like deformable objects : the present, challenges and future prospects

    Get PDF
    Manipulating cloth-like deformable objects (CDOs) is a long-standing problem in the robotics community. CDOs are flexible (non-rigid) objects that do not show a detectable level of compression strength while two points on the article are pushed towards each other and include objects such as ropes (1D), fabrics (2D) and bags (3D). In general, CDOs’ many degrees of freedom (DoF) introduce severe self-occlusion and complex state–action dynamics as significant obstacles to perception and manipulation systems. These challenges exacerbate existing issues of modern robotic control methods such as imitation learning (IL) and reinforcement learning (RL). This review focuses on the application details of data-driven control methods on four major task families in this domain: cloth shaping, knot tying/untying, dressing and bag manipulation. Furthermore, we identify specific inductive biases in these four domains that present challenges for more general IL and RL algorithms.Publisher PDFPeer reviewe

    Learning for a robot:deep reinforcement learning, imitation learning, transfer learning

    Get PDF
    Dexterous manipulation of the robot is an important part of realizing intelligence, but manipulators can only perform simple tasks such as sorting and packing in a structured environment. In view of the existing problem, this paper presents a state-of-the-art survey on an intelligent robot with the capability of autonomous deciding and learning. The paper first reviews the main achievements and research of the robot, which were mainly based on the breakthrough of automatic control and hardware in mechanics. With the evolution of artificial intelligence, many pieces of research have made further progresses in adaptive and robust control. The survey reveals that the latest research in deep learning and reinforcement learning has paved the way for highly complex tasks to be performed by robots. Furthermore, deep reinforcement learning, imitation learning, and transfer learning in robot control are discussed in detail. Finally, major achievements based on these methods are summarized and analyzed thoroughly, and future research challenges are proposed

    Automatic Curriculum Learning For Deep RL: A Short Survey

    Full text link
    Automatic Curriculum Learning (ACL) has become a cornerstone of recent successes in Deep Reinforcement Learning (DRL).These methods shape the learning trajectories of agents by challenging them with tasks adapted to their capacities. In recent years, they have been used to improve sample efficiency and asymptotic performance, to organize exploration, to encourage generalization or to solve sparse reward problems, among others. The ambition of this work is dual: 1) to present a compact and accessible introduction to the Automatic Curriculum Learning literature and 2) to draw a bigger picture of the current state of the art in ACL to encourage the cross-breeding of existing concepts and the emergence of new ideas.Comment: Accepted at IJCAI202

    Physical human-robot collaboration: Robotic systems, learning methods, collaborative strategies, sensors, and actuators

    Get PDF
    This article presents a state-of-the-art survey on the robotic systems, sensors, actuators, and collaborative strategies for physical human-robot collaboration (pHRC). This article starts with an overview of some robotic systems with cutting-edge technologies (sensors and actuators) suitable for pHRC operations and the intelligent assist devices employed in pHRC. Sensors being among the essential components to establish communication between a human and a robotic system are surveyed. The sensor supplies the signal needed to drive the robotic actuators. The survey reveals that the design of new generation collaborative robots and other intelligent robotic systems has paved the way for sophisticated learning techniques and control algorithms to be deployed in pHRC. Furthermore, it revealed the relevant components needed to be considered for effective pHRC to be accomplished. Finally, a discussion of the major advances is made, some research directions, and future challenges are presented

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    Peripersonal Space in the Humanoid Robot iCub

    Get PDF
    Developing behaviours for interaction with objects close to the body is a primary goal for any organism to survive in the world. Being able to develop such behaviours will be an essential feature in autonomous humanoid robots in order to improve their integration into human environments. Adaptable spatial abilities will make robots safer and improve their social skills, human-robot and robot-robot collaboration abilities. This work investigated how a humanoid robot can explore and create action-based representations of its peripersonal space, the region immediately surrounding the body where reaching is possible without location displacement. It presents three empirical studies based on peripersonal space findings from psychology, neuroscience and robotics. The experiments used a visual perception system based on active-vision and biologically inspired neural networks. The first study investigated the contribution of binocular vision in a reaching task. Results indicated the signal from vergence is a useful embodied depth estimation cue in the peripersonal space in humanoid robots. The second study explored the influence of morphology and postural experience on confidence levels in reaching assessment. Results showed that a decrease of confidence when assessing targets located farther from the body, possibly in accordance to errors in depth estimation from vergence for longer distances. Additionally, it was found that a proprioceptive arm-length signal extends the robot’s peripersonal space. The last experiment modelled development of the reaching skill by implementing motor synergies that progressively unlock degrees of freedom in the arm. The model was advantageous when compared to one that included no developmental stages. The contribution to knowledge of this work is extending the research on biologically-inspired methods for building robots, presenting new ways to further investigate the robotic properties involved in the dynamical adaptation to body and sensing characteristics, vision-based action, morphology and confidence levels in reaching assessment.CONACyT, Mexico (National Council of Science and Technology
    • …
    corecore