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Abstract—This paper presents a state-of-the-art survey on
robotic systems, sensors, actuators and collaborative strategies
for Physical Human-Robot Collaboration (pHRC). The paper
starts with an overview of some robotic systems with cutting-
edge technologies (sensors and actuators) suitable for pHRC
operations and the intelligent assist devices employed in pHRC.
Sensors being among the essential components to establish
communication between a human and a robotic system are
surveyed. The sensor supplies the signal needed to drive the
robotic actuators. The survey reveals that the design of new
generation collaborative robots and other intelligent robotic
systems has paved the way for sophisticated learning techniques
and control algorithms to be deployed in pHRC. Furthermore,
it revealed relevant components needed to be considered for
effective pHRC to be accomplished. Finally, a discussion of
the major advances made, some research directions, and future
challenges are presented.

Index Terms—Robotic Systems, Sensors, Actuators, Collab-
orative Robots, Physical Human-Robot Collaboration, Human-
Robot Collaboration, Human-Robot Interaction.

I. INTRODUCTION

FOR decades, robots have been employed in various areas
of human endeavours. A robot can operate either in

autonomous or collaborative modes. In the autonomous mode,
the operational process often requires little or no human sup-
port. However, this mode of operation limits the applicability
of a robot to certain domains of human endeavours as it is
challenging for a robot to accomplish assigned task alone
in a real-world environment, which is full of uncertainties
and, dynamic in nature [1]. Besides the autonomous mode of
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operation, a robot can collaborate with humans physically or
remotely to perform a task. The collaboration perhaps includes
shared knowledge, experience, and belief about the task goal
to be achieved [2].

By collaborating, human dexterity and flexibility are com-
bined with the repeatability and precision of a robot which
result in reduced human workload, increased productivity and
applicability of robots in more areas of human endeavours [3],
[4]. The collaboration could be seen in human-exoskeleton
skill transfer where the exoskeleton may be required to repli-
cate the human operator's arm impedance performance or to
compensate external disturbance. Some recently conducted
works to investigate human-exoskeleton skill transfer capable
of achieving desirable performance both in parametrised and
unparametrised circumstances are discussed in [5] and [6].
However, not all robots can collaborate with humans. Those
capable are conventionally called collaborative robots and built
with unique technologies to ensure compliances with the Inter-
national Organization for Standardization (ISO) specifications
for designing and manufacturing collaborative robots [7], [8],
[9].

To achieve intuitive physical human-robot collaboration
(pHRC), a robot must be able to observe its surrounding
in order to take cognizance and continuous update of the
current state of its surroundings. With such information in
place, a robot could be endowed with the ability to estimate
desired actions to be performed and the best possible way
to perform them. For instance, a robot collaborating with
a human in a table lifting task is expected to identify the
items in the environment, including the table, predict human
future intention and coordinate its activities towards successful
completion of the task. These capabilities cannot be naturally
endowed in the robot directly from the manufacturers but could
be learned through the appropriate learning method. In recent
years, robots are increasingly being taught predominantly
using machine learning techniques. This partially solves the
dimensionality problem and the computational challenge of
actively coding all the steps required for every collaborative
action. However, after a task is learned, the issue of optimal
implementation of the task follows. But with proper task
planning and effective collaborative strategies, a robot can
effectively collaborate with a human to accomplish a desired
goal [10].

All these functionalities could not be possible in the absence
of the state-of-the-art technologies especially, the sensors and
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actuators. In robotics, sensors serve as channels through which
a robot can acquire knowledge about their surroundings,
communicate contents and give feedback to the environment
or users. On the other hand, actuators convert the control
signals into motions in the relative joints and body of the
robots (e.g. soft robotic systems). Hence, these technologies
either embedded or physically attached are the hallmarks of
any robotic systems suitable for effective pHRC. More details
of these two important components are further discussed in
Section III of the paper.

Several scholars have carried out a survey to describe the
synergy that could exist between human and robot in a view to
accomplish a task [11]. In [12] Chandrasekaran et al. presented
a survey on Human-Robot Collaboration (HRC), however,
little attention was paid on the collaborative strategies and
sensing technologies involved. Further work has addressed
the sensing and collaborative strategies [13], [14], but both
works focused on the safety interaction between human and
robots in an industrial setting. Furthermore, Ajoudani et al.
work reported the control strategies, interaction modalities
and collaborative interfaces for pHRC [15]. Although, these
scholars made efforts to present an up-to-date overview on
HRC, but to the best of the authors' knowledge, none of
them covered exhaustively the most relevant challenges due
to the fast-growing trends in the pHRC technologies and the
tremendous demands in the applicability of robotic systems in
our day-to-day activities.

In these regards, an updated overview of the state-of-the-
art survey on pHRC is presented. The paper presents a com-
prehensive review of the state-of-the-art robotic systems with
cutting-edge technologies, such as sensors and actuators for
pHRC. The collaborative strategies and the learning methods
useful for pHRC are also discussed.

Fig. 1: A block diagram to describe how collaborative strate-
gies relate to the learning methods, and both the sensors and
actuators, and the robotic system.

Figure 1, depicts that for an effective pHRC to be im-
plemented, relevant components such as sensors, actuators,
suitable robotic system, appropriate collaborative strategies,
and learning methods need to be carefully considered and
chosen.

The rest of this paper is organized as follows: Section II
provides a highlight of the robotic systems and other intelligent
assist devices for pHRC. In section III, different kinds of
sensors and actuators used in pHRC are discussed. Section IV
concentrates on the formulation of actions, task planning, and
other collaborative strategies. Robot learning methodologies
in different collaborative scenarios are discussed in Section V.
Safety issues, control designs and human factors are presented

and discussed in Section VI while discussion and conclusion
are presented in Section VII.

II. ROBOTIC SYSTEMS

The robotic systems discussed herein are grouped based on
their application purposes, prominent mechanical structures,
and adaptive features. However, we acknowledge the possi-
bilities of overlap of the robotic system, making it possible
to have a robotic assist device that is also a wearable robotic
system.

A. Collaborative Robotic Arms
The collaborative robot can work safely in a shared space

with humans. In addition, they are power, and force limited,
compact, lightweight, dexterous, and majority could be could
be hand guided through a path by the user in order to
accomplish a task, hence allowing users with little or no
knowledge of programming to use them. Various prominent
collaborative robots with cutting edge technologies suitable
for pHRC operations are presented in this section. They are
grouped into single-arm (see Fig. 2) and dual-arm ( see Fig.
3) for clarity and better understanding, and based on their
physical features and areas of application. Table I and II
present unique features found in single-arms and dual-arms
collaborative robots respectively. Apart from the physical and
structural difference between the single-arm and the dual-arm
collaborative robots, there are some salient global features
which serve as strengths of each group. For instance, the
single-arm robots are faster and highly efficient in carrying out
their tasks. They are accurate and precise, flexible deployment
and fast set-up procedures. While the dual-arm robots provide
users with more human-like control over their environments,
multiple simultaneous tasks, and synchronized motion which
enables safe handling of larger and heavier parts.

1) Single-Arm Robots: Sawyer is a product of Rethink
Robotic and was manufactured while targeting on high pre-
cision tasks. Sawyer comes with Intera Studio which is a
graphical user interface (GUI) that allows users with limited
technical skills to program the robot. Other unique features
include that it is faster, lighter and more precise than Baxter
(see Section IIA2). Having been designed to manoeuvre in a
tight space or occupy a small space, Sawyer can perform more
tasks and stand the chance of being a better candidate for the
industries.

(a) (b) (c) (d)

Fig. 2: The figures show single-arm collaborative robots: (a)
Sawyer [16], (b) Universal [17], (c) KUKA 7 R800 [18] and
(d) Fanuc-CR35ia [19].

Universal Robots (UR) came up with 3 sets of 6-DOF col-
laborative robots namely UR3, UR5, and UR10. The working
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ranges for the UR3, UR5 and UR10 are 50mm, 850mm and
1300mm respectively. This set of UR robots are known for
low noise when in production, easy to handle, adaptive and
easy to customize the end-effector.

TABLE I: The single-arm robots and their unique features

Robot DOF Rep(mm) Payload(kg)

Sawyer 7 ±0.1 4
UR3, UR5, UR10 6 ±0.1 3, 5, 10
KUKA LBR 7R800 7 ±0.1 7
Fanuc RC-35iA 4 ±0.08 35

Robot Simulator Actuator R/C

Sawyer Moveit, Gazebo SEAs R/C
& V-REP

UR3, UR5, UR10 RoboDK, V-REP SEAs R/C
Moveit & Polyscope

KUKA LBR 7R800 KUKA Sim SEAs R/C
Fanuc RC-35iA ROBOGUIDE N/A C

Rep = Repeatability, R/C = Research and Commercial Oriented,
and C = Commercial Oriented

KUKA, a German robot manufacturer also joined the league
of collaborative robot manufacturers and came up with a
lightweight collaborative robot called LBR IIWA 7-R800
[3]. Although, KUKA has excellent power to weight ratio,
equipped with unique sensors that detect micro impact at the
joints; however, it is quite expensive, and that might discourage
buyers.

Fanuc RC-35iA is known as the strongest collaborative
robot; it weighs 990kg and can operate at a maximum payload
of 35kg. Fanuc is good for heavy industrial applications,
machine tending, and automation services. It is dexterous,
compact but lacks the teaching by demonstration feature and
has no research version. Some of these missing features
perhaps can discourage potential users from acquiring the
robot.

2) Dual-Arm Robots: Baxter makes use of the same operat-
ing system and end-effector design interface with the Sawyer
robot. It has a very nice looking structure suitable for handling
and manipulating objects simultaneously, however, it lacks
a good precision when compared with Sawyer (see Section
IIA1). It also occupies more space, making it less attractive
to the industries.

(a) (b) (c) (d)

Fig. 3: The figures show dual-arm collaborative robots: (a)
Baxter robot [16], (b) Yumi [20], (c) NEXTAGE Open [21]
and (d) PR2 [22].

Yumi was developed by ABB Robotic and the target is for
small part assembly and for testing and packaging operations
in the industries [23]. Yumi is a low-cost adaptable robot. It
is also flexible, easy to program, and very sensitive to outside

forces. Furthermore, its compact and small-sized appearance
makes it portable and suitable for many industries and research
institutions.

NEXTAGE has 6-DOF per arm. It weighs 29kg and can
support a maximum of 1.5kg payload on each arm. It is also
compatible with ROS. Other interesting features include low
power motors at its joints, making it safer if it collides with an
object or a human, and the ability to perform complex tasks
and fine manipulation due to the high DOFs of the rotating
axes at its neck and waist. However, it is only sold in the
Asian market.

The PR2 which is purposely for research is equipped
with a lot of sensors including fingertip pressure sensors and
accelerometers at the end-effectors. The PR2 is also equipped
with a laser-based scan rangefinder [24] and is compatible with
ROS [25]. Considering the shape and size, PR2 is suitable for
both small-sized and narrow-spaced research labs; it is also
mobile and could easily be moved from one lab to another.

TABLE II: The dual-arm robots and their unique features

Robot DOF Rep(mm) Payload(kg)

Baxter 7 ±0.1 2.2
Yumi 7 ±0.2 0.5
NEXTAGE 6 ±0.03 1.5
PR2 4 ± N/A 1.8

Robot Simulator Actuator R/C

Baxter Moveit, Gazebo SEAs R/C
& V-REP

Yumi RoboDK, V-REP SEAs R/C
Moveit & Polyscope

NEXTAGE RoboDK, V-REP SEAs R/C
Moveit & Polyscope

PR2 RoboDK, V-REP SEAs R
Moveit & Polyscope

Rep = Repeatability, R/C = Research and Commercial Oriented,
C = Commercial Oriented and R = Research Oriented

B. Wearable Robotic Systems

Wearable robotic systems are currently employed in differ-
ent areas including to improve a damaged body function or to
enhance the physical abilities.

1) Upper-Limb Wearable Robotic Systems: Different types
of upper-limb wearable robotic arms have been proposed
and designed by various researchers. Some notable wearable
upper-limb robotic arms and their unique features are pre-
sented in Table III.

(a) (b) (c) (d)

Fig. 4: The wearable robotic arms (a) EXO-UL7 [26], (b)
LIMPACT [27], (c) ARMinV [28] and (d) A CAD model of
the parallel actuated exoskeleton [29].



4

University of California Los Angeles (UCLA), Bionic Lab
developed exoskeleton robot (EXO-UL7) which has the same
DOF as a human hand [30]. In order to support human-
machine interaction, the robot is equipped with force/torque
sensors on the upper arm, the lower arm, the hand and on
the tips [26]. The operation of this device is based on a
muscular signal generated from the human-machine interface
(bioport) using electromyography (EMG). Similarly, Zhijun
et al. proposed an asymmetric bimanual coordinate control
for the dual-arm exoskeleton to perform human-cooperative
manipulation [31]. The contribution of the work focused on
handling physical constraints such as joint limits and torque
limits via the use of human motion intention reflected during
interaction and the use of impedance parameters approxima-
tion for estimating variable stiffness which measures the force
and position of the dual-arm end-effector.

The major aim of developing LIMPACT is for reflex iden-
tification on the arm of a stroke survivor. The identified reflex
could be used to design an optimised program therapy for
stroke survivors [27]. The LIMPACT has a torque controlled
motors with a maximum of 79Hz bandwidth which allows
for smooth zero impedance control. The actuation mechanism
in LIMPACT is based on hydraulics powered by an electric
motor. LIMPACT is equipped with a passive weight balancing
mechanism to compensate for the heavy load, usually experi-
enced in the exoskeleton, and to maintain a smooth trajectory.

The ARMin-V is a 7-DOF exoskeleton robot that is actuated
by direct current (DC) motor [32]. The earlier version was pro-
posed for rehabilitation of stroke patient; but, does not incor-
porate online adaptive compensation. This feature is the major
contribution of ARMin-V and it increased the performance
of the robot to the level of adjusting patient's anthropometry
automatically [28]. Another work in [33] presents a frame-
work for adaptive admittance control by incorporating and
considering human motion intention in order to perform more
accurately in the actual physical interaction. The framework
consists of double control loops with the inner loop overseeing
the unknown masses and inertia of the robot dynamics while
the outer loop harmonies the interaction based on the observed
intention of the subject.

A parallel actuated exoskeleton was proposed in [29] to
provide after stroke rehabilitation. The system is a 6-DOF
exoskeleton which comes with two linear SEA for interactive
force control and two gravity mechanisms to increase the
device compatibility and minimize the load of the motor [29].
Hsieh et al. claim that using SEA reduces the impedance of
the exoskeleton more than what the result of using feedback
from pressure and force sensors could do [34].

TABLE III: The upper-limb wearable robotic arms

Robot DOF Actuator R/C

EXO-UL7 7 DC motors R
LIMPACT N/A Hydraulic R/C
ARMin V 7 Electric motor R
[29] 6 SEAs R/C
HEXAR 6 Electric motor R
R/C = Research and Commercial Oriented, and
R = Research Oriented

2) Lower-Limb Wearable Robotic Systems: Several lower-
limp wearable robotic systems have been developed in the past
for rehabilitation and enhancement of the strength of the lower-
limb to help in carrying heavy loads. Aguilar designed a hybrid
actuated lower-limb wearable robot for force augmentation
and cyclic rehabilitation [35] (see Fig.5 a). The lower-limb
wearable robotic systems have also received great attention in
the study to minimize the metabolic cost by using the powered
ankle-foot orthosis [36], [37], [38]. Furthermore, Collins et, al.
developed a recent ankle exoskeleton device which has been
able to lower metabolic cost by 7.2% [39]. This came after
the breakthrough of the one developed by the Massachusetts
Institute of Technology (MIT) which led to an 8% reduction
in the metabolic cost of the user [40] (see Fig.5 b). Another,
authors developed a human-cooperative control exoskeleton
for human locomotion assistance in climbing stairs without
clutches [41]. This is achieved by the adaptive controller
designed to simultaneously incorporate human and robot's
capabilities.

Fig. 5: (a) The system uses a hybrid of pneumatic-electric
system with a harmonic drive actuator to enhance its strength
[35], (b) The autonomous leg exoskeleton consists of a winch
actuator and fiberglass struct that directly apply a resultant
torque about the human ankle joint during walking [40].

The lower-limb wearable robotic systems are often used
interchangeably with the walking assist devices (see Section
IIC2), however the former mainly aim at supporting healthy
people and for lower-limb rehabilitation while the latter aims
at supporting elderly people or paraplegics. Furthermore, the
lower-limb wearable robotic systems are mainly employed to
enhance the strength of healthy people in performing heavy
tasks, like in carrying heavy loads, and as a therapy for lower-
limb movement rehabilitation, like in a stroke patient. While
the walking assist devices are mainly employed to reduce the
load on human legs and provide motion support necessary to
generate the force needed to perform the intended stride.

3) Prosthetics: The prosthesis is receiving great attention
both the upper-extremity and lower-extremity [42]. Despite,
the success of prosthesis, Kairu et al. [42] and [43] noted
that most common commercial prostheses can not support
users in performing daily life activities such as grasping and
holding onto an object without slip, due to either the absence
of perceptual tactile feedback or no tactile feedback at all. It
was recorded that by measuring the characteristics of touch,
tactile sensing can improve the ability of amputee to achieve a
stable grasp and prevent slip [44], [45]. Various methods have
been proposed to sense slip in the prosthesis. Masuda et al.



5

proposed object displacement measurement to detect when slip
is obvious [46]. However, it is hard to determine the minimum
displacement required before a slip can occur. Hence the object
could be lost from the hand before appropriate actions could
be taken to prevent slip. Alternatively, sensing vibration on the
hand can be an indication that a slip is about to occur and an
accurate estimation of friction coefficient can help determine
the possibility of slip occurring [47].

Fig. 6: Prototypes of the prostheses (a) A powered prosthesis
with a hybrid controlled piecewise-passive impedance-based
designed to provide level walking functionality for amputees
[48], (b) The University of Utahs neuroprosthetic prosthetic
arm which allows amputees to regain the sense of pressure,
vibration, temperature, pain, and movements by creating a
connection between their brain and a computer [49].

C. Robotic Assist Devices

1) Power Assist Suits (PAS): This device is designed spe-
cially to support workers with lifting or carrying heavy objects.
In 2016, Panasonic unveiled the Assist Suit AWN-03 (AWN-
03) which provides a worker with lower back support [50]. The
AWN-03 senses the motion of the user while lifting an object
and then send a signal to the motors to rotate the machine gears
to support the weight of the object. In addition, it makes the
strain on the back to decrease by 15kg as it raises the user's
upper body and pushes down on their thighs, hence increasing
the quality of work and reducing the burden of the weight on
the user. The MuscleSuits (INNOPHYS CO., LTD) which is
powered by compressed air and Hybrid Assistive Limb (HAL)
exoskeleton suits produced by CYBERDYNE INC., perform
similar functions as AWN-03 [51].

2) Walking Assist Devices (WADs): This was developed
to support body weight and reduce the load on human legs
while walking. In 2009, Honda published a paper detailing
the working principles of their WAD first product. The control
mechanism of the WAD is based on finding a balancing point
between the target assist desired force of the user with the
generated force feedback from the force sensors attached to the
foot arches of the WAD [52]. Similarly, the WalkON Suit was
designed to assist paraplegics to walk and exercise [53]. The
control technology is based on a hybrid actuation mechanism
and a biarticular transmission system.

3) Intelligent Assist Devices: Tan et al. described IAD
as an intelligent machine that optimizes moving and lifting
operations by reducing the physical force involvement of
a human partner [54]. Compared to the traditional lifting
manipulators, IAD is better because it is easier to operate,

safer and allows for easy control of the payload motion (see
Fig.7 a). The IADs have gained huge applications in the airport
where they are used to load baggage from the chute to the open
cart, in the automobile assembly plant to assembly parts, and
to load and offload parcels in the parcel distribution centres
like TNT and StarTrack.

(a) (b) (c)

Fig. 7: (a) A handle controlled IAD for load lifting assistance,
(b) and (c) depict a CAD model of the cable angle sensor and
a prototype of the cable angle sensor respectively [55].

In most IADs, the operator manipulates the system through
an instrumented control handle which could be equipped with
force sensors to measure the force applied on the load by the
operator [54]. However, the force is affected by the dynamical
effects of the payload. This must be accounted for, in order
to properly estimate the force needed to effectively move the
payload around. Based on that, the cable angle sensor [55],
(see Fig.7 b and c) was introduced by researchers to deal
with this challenge. The suspended cable (see Fig.7 c) is
passed through the concentric groove parts in order to drives
them individually as it moves along one of the concentric
parts. Each concentric part is attached at each end to a shaft
and the cable angles are obtained by measuring the shaft
rotation. The authors claim that the effect of dynamics on
the cable is negligible because the design makes moving the
payload smoother and lighter. Despite the research progress,
there is still demand for a researchable solution, as it is still
challenging to find the most appropriate way to measure the
inclination of the cable sensor.

III. SENSORS AND ACTUATORS

A. Robotic Sensors

1) Vision-Based Sensors: Recently, camera sensors are
mostly used in pHRC to observe the environment because they
are convenient, relatively cheap and easy to use. A camera
sensor can provide RGB information and depth information
for robot utilization. The Kinect sensor is a popular camera
sensor that is designed to provide RGB-D information at the
rate of 30Hz. It can also provide human tracking API [56],
which works effectively even in real-time [57]. Kinect sensor
has been significantly utilised in [58], [59] and [60] to track
human body motion that is employed for robot control. The
limitation of a camera sensor is that it is prone to occlusion and
suffers from light conditions such as reflection and contrast.

2) Robotic Skin: A lot of attention has been paid on
classifying sensing technologies based on their sensing prin-
ciples and designed technologies such as resistive, capacitive,
piezoelectric, acoustic and so on; for a more detailed review
see [61], [62]. However, the design could be done differently
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by paying attention to the tactile information processing. One
interesting and useful sensor that has moved towards this
direction is the robotic skin. The technology provides rich and
direct feedback that enables robotic systems to identify objects
via multiple contact points.

• Optical Skin-Based Sensors: The general idea of optical
skin-based sensor is to develop a multi-modal sensor
capable of providing both tactile and visual information.
Inline with that, some researchers proposed to cover
the skin surface of the sensor with an opaque material
meant to shut out external light from entering the sensor.
However, the use of an opaque material limits the infor-
mation provided by the visual sensor; hence making them
focus only on tactile sensing. To address this, a prototype
consisting of transparent skin, cameras, and the coloured
markers was proposed in [63]. The proposed sensing skin
gives a high resolution of contact force and proximity
vision. The markers are used to track skin deformation
which is proportional to the displacement caused by the
external force. The cameras lens are focused on the
markers as shown in Fig. 8 to improve the markers
tracking quality. The authors discovered that the tracked
skin deformed information could be used for contact force
and torque estimation [64].

Fig. 8: A conceptual design of the optical skin-based sensor
as it is installed on a robotic gripper.

• Soft Skin-Based Sensors: A wide variety of conventional
flexible sensors are faced with technical issues that reduce
the sensitivity of the sensor. For example, aging and
mechanical stress can lead to hysteresis and reduction
in the sensitivity of the sensor [65], [66]. To address this
challenge, Kawasetsu et al. proposed a magnetorheologi-
cal tactile sensor consisting of a flexible upper and lower
layers elastomer [67]. A deformation on the elastomer
sheet causes a change in the magnetic flux which affects
the spatial response of the sensor. This is because the
applied force (see Fig. 9) causes a decrease in the distance
between the upper layer and the transducer which in
turn increases the level of magnetic flux penetrating the
transducer.
In a similar work, Kaboli et al. developed an in-hand ob-
ject exploration tactile descriptor to extract robust tactile
information from generated vibrotactile signal [68].
The proposed learning transfer algorithm works by first
measuring the dynamic pressure signal at a sample rate of
2KHz and secondly the Shadow Hand via the impedance-
sensing electrodes explores the texture of the object at
a sample rate of 50KHz. Then the impedance-sensing
electrodes enable the deformation on the skin surface to

Fig. 9: A certain amount of magnetic flux generated by the
magnet penetrates the elastomer as shown in the left section
of the figure, however in the presence of contact force, the
magnetic flux penetration increases because of a decrease in
the distance between the magnet and the transducer as shown
in the right section of the figure.

Fig. 10: (A) NAO equipped with the sensor on the chest,
the fore and upper arms. (B) and (C) show the front and
back views of the multi-sensing devices, connectors, voltage
regulator, ports and Micro controllers.

be measured. The measured deformation amounts to the
force applied on the surface of the skin. The drawback is
that the vibrotactile signal is prone to noise and filtering it
out is computationally expensive. In another work, a set
of novel tactile descriptors for multimodal robotic skin
(see Fig.10) to discriminate among objects and material
via their textural properties was proposed in [69]. Their
tactile descriptors considered the statistical properties of
the tactile signals both in stationary and dynamic states.
Hence, making it invariant with respect to exploratory
movement and time.

3) Electromyography (EMG) and Electroencephalography
(EEG): Electromyography (EMG) sensor is used to record
the activities of electrical signals that are generated when a
muscle contracts. Information from the systems could be used
to estimate human limb motion [70], [71] which is essential
for the reconstruction of robotic prosthetic for amputees and
also important for limb rehabilitation [72], [73]. This system
has been applied to detect hand grasping actions in [74] and
in [75] to transfer writing skill from a human to a robot.

Electroencephalography (EEG) signal has been used pur-
posely for communication between the human brain and a
computer system, to diagnose epilepsy [76] and other brain
disorders [77]. Currently, this signal capability is extended
to establish communication between the human brain and a
robotic system [78], and to send a control signal from a human
to a robotic system [79].

4) Data Gloves: A data glove can provide information
about a human hand motion, hand pose and orientation in 3D
space [80] and even force information [81]. The application of
enhanced sensors such as Inertial measurement Unit has made
it possible for other information of the human hand activities
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TABLE IV: Strengths and weaknesses of the pHRC sensors

Sensing method Strengths Weaknesses

Vision-based sensors
Popular and support available
from community of users
and easy to use

Affected by occlusion,
suffers from light
conditions such as
reflection and contrast

Optical-based
tactile robotic
skin sensor

Grasp stability and
slip detection, contact
force and torque estimation,
robust to electrical
interference.

Fragility and rough
estimation

Soft tactile
robotic skin
sensor

Suitable for object
exploration, contact point
manipulation, Object
recognition texture &
classification.

Ageing and mechanical
Stress causes hysteresis &
reduction in the sensitivity
of the sensor

EMG/EEG Versatile and quick
user adaptation

Drift in sensing output,
information redundancy,
required advance processing
technique to extract reliable
control signal

Data Glove Complementary Inputs
Calibration required, selection
is technically specific, limited
portability

such as acceleration, angular velocity, and magnetic field to be
measured using the data glove [82], [83]. Fang et al. proposed
a novel data glove which can capture human arm-hand motions
simultaneously [84]. This allows the glove to be fully mapped
to a robotic arm-hand system, hence allowing the robot to
perform intuitive motions when teleoperated. For convenience
sake, the device is compact, portable and uses Bluetooth for
operational data transfer to the robotic system.

B. Actuators for Collaborative Robots

Generally, actuators could be categorised into pneumatic
which uses compressed air to cause motion, hydraulic which
uses compressed fluid to cause motion, electric which uses
electric current or magnet to cause motion, and a hybrid of
the aforementioned categories.

1) Pneumatic Technologies: Pneumatic technology has
been applied to create artificial muscle in robot hands [85],
[86] and to cause motion in soft-robotics [87], [88]. This
kind of actuator is desirable in safety-conscious robotic design
especially those intended to interact with human and delicate
contact surfaces [87]. One of its drawbacks is that it is
difficult to control due to the non-linearity of the actuator.
Considering the unpredictable and unstructured nature of the
space environment, Booth et al. proposed a multi-functional
robotic skin to enable complex motions and functions [89].

The device integrates both actuation and sensing into a
single material to enable multiple motions control that can
turn inanimate objects into multifunctional robots. The skin
is modulated (see Fig. 11a) and could be wrapped around
deformable objects (see Fig. 11b) so they could be manipulated
(see Fig. 11c) to achieve complex motions (see Fig. 11d). The
devices are easy to be removed and applied on other objects
with little or no reconfiguration.

2) Electric Motors: Electric motors often produce high
speed but poor torque density. However, using reduced gear
can improve the torque with a trade-off to speed. Other
disadvantages of using reduced gear includes that it introduces
friction, backlash, torque ripple and noise to the robotic
systems [90]. Because of these challenges, the Series Elastic

Fig. 11: (a) The robotic skins with embedded distributed actu-
ators used to transform inanimate object into a moving object.
(b) The robotic skins can be wrapped around deformable
objects to produce different forms of deformetions as shown in
(c). (d) Multiple robotic skins can be wrapped on a deformable
object to produce complex motions [89].

TABLE V: Strengths and weaknesses of the pHRC actuators

Sensing method Strengths Weaknesses

Pneumatic Technologies

Desirable in safety-conscious
robotic design, especially those
intended to interact with
human and delicate contact surfaces

Difficult to control due to
the non-linearity of the
actuator

Electric Motors

Has good shock absorbing
properties,
robust to electrical
interference.

Often produces poor
torque density

Hydraulic Actuators

Can provide high torque,
stays robust to burnout,
and can maintain very strong
linear motion without gears.

Susceptible to the temperature
of the liquid it is made of &
difficult to miniaturize.

Actuator (SEA) could be used in their place. The SEA protects
the robot from shock when it collides with an object [57]. It
is even applied in exoskeletons for interactive force control
between human and the robot co-worker [91]. Despite the
success of SEA, it may not be the best actuator for robots that
need high degrees of stiffness. In that case, Variable Stiffness
Actuator (VSA) is the remedy [92], [93]. The technology
could also be in the form of Variable Impedance Actuator
(VIA) which varies its stiffness as a response to change in the
impedance [94]. VSA and VIA actuators have a better shock
absorbing properties than SEA as they can store and release
energy in passive elastic elements [95].

3) Hydraulic Actuators: The hydraulic actuator is good
for carrying heavy loads and it is generally known to have
fewer problems when exposed to heat. It can also provide high
torque, stays robust to burnout and maintain very strong linear
motion without gears. However, hydraulic actuators could be
susceptible to the temperature of the liquid used and difficult
to miniaturize. Despite, its limitations, it has found favour in
wearable and in mobile robotic systems as demonstrated in
[96] and in [97] where the authors utilized the actuator to
assist human users to carry a heavier load.

IV. COLLABORATIVE STRATEGIES OF PHRC

Collaborative strategies deal with different levels of ideas:
joint attention formulation, turn-taking, task planning and
knowledge representation.

A. Joint Attention Formulation

Several techniques and methods have been used in different
fields to bring the attention of individual towards activating
their readiness to participate in a joint task or to establish either
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a common ground or bond between the minds of the collabora-
tors [98], [99]. A successfully formulated joint attention draws
the participants towards a shared focus on an object or other
areas of interest [99]. These techniques have been successfully
applied in HRI for children with Autism Spectrum Disorders
(ASD) [100], [101]. Attention formulation could be achieved
either by deictic words or vocal expressions such as “look
here, see me, look right, or next one”, by pointing gesture, by
using line of sight, by using communication cue such as eye
gazing [102], [103] or by combination of vocal and gesture
commands [104], [105].

B. Turn-Taking

Turn-taking is one of the mechanisms for coordinating
smooth and excellent conversation between two or more per-
sons [106]. This idea has advanced from human-human con-
versation to earn applications in human-robot interaction and
collaboration [107]. Several approaches have been proposed to
implement turn-taking. Among others are the use of signaling
approach such as gaze [108], [109], gesture [110] and body
language [111]; and by means of verbal communications
[107]. Not only does a robot needs to understand when turn-
taking occurs, but it is also necessary for a robot to recognize
when a human is yielding to a turn and the end of a turn for
a timely response to be given to the human partner.

C. Task Planning and Knowledge Representation

The most commonly used task planner is the Human Aware
Task Planner (HATP). HATP is a hierarchical task planning ap-
proach that is capable of taking into account both the state and
the task preferences of a human in a collaborative task with
a robot as demonstrated in [112], [113]. Similarly, a Human
Aware Task Motion Planning was presented in [114], to endow
a robot with the ability to estimate human intents and produce
acceptable behaviours. Furthermore, some researchers have
also employed Stanford Research Institute Problem Solver
(STRIP) planner due to its simplicity and capability to solidly
represent a domain of interest [115], [116]. Continues update
of symbolic knowledge about the robot belief of the world
could be made available and maintained in a knowledge base
like the Spatial Reasoning Knowledge (SPARK) [117]. Sisbot
et al. in [118] proposed a situation assessment framework that
focused on HRC in the object manipulation. The authors built
an Open Robots Ontology (ORO) knowledge-base to maintain
a symbolic representation of the state of the world.

V. ROBOT LEARNING METHODOLOGIES

It is practically impossible to precode a robot to cope with
all the actions needed to satisfactorily collaborate with humans
in a complex and dynamic environment like ours. Because of
this reason, learning algorithms are employed to facilitate the
ability of a robotic system to cope in such situations.

Recently, Artificial Neural Network (ANN) and its deriva-
tive Deep Learning are increasingly applied in different sce-
narios involving pHRC. A neural network human emotional
expression recognition model was proposed in [119]. In the

paper, Vircikova et al. trained a humanoid robot to learn a
human emotional expression and respond to it accordingly.
Also in [120], the authors applied Recurrent Neural Networks
(RNNs) to learn surgical knotting for Minimally Invasive
Surgery framework. Yang et al. [121] proposed a Neural-
learning-based telerobot control at both kinematic and dy-
namic levels. Neural networks are generally known for having
strong approximation and good at handling redundancy, noise
control and a large volume of data [122]. Pinto and Gupta
in [123], used a Convolutional Neural Networks to train
a robot on how to randomly grasp an object. The authors
argued that their method eliminates the issue of bias that often
come up when a human being manually annotates grasping
location of the objects. The two major drawbacks of Deep
Learning are that it requires a long training period and has
high computational cost [124].

Support Vector Machine (SVM) is another technique that
has earned popularity in human action recognition and human
motion prediction due to its good recognition accuracy and
fast training time [125]. In [126], the authors proposed a
model to optimize task performance human-robot collaborative
minimally invasive surgery operations using SVM classifier.
The SVM classifier was used to train the robot to predict
the future human motion [127] which enables it to estimate
human's region of interest and comply accordingly.

Gaussian Mixture Model (GMM) is one of the most popular
methods amongst the learning techniques employed in pHRC
research work. Some of the features that made it unique are:

1) The ability to tolerate an arbitrarily large number of
Gaussian components and a small number of variances.

2) The fast convergence process, which makes it computa-
tional inexpensive.

GMM technique was systematically used in [128] to per-
form a human to a robot object manipulation skill transfer
based on active learning. In the work, the robot observed
the demonstration via motion sensing system while GMM
was used to encode sets of trajectories gathered from the
sensor. Furthermore, GMM was employed in [129] to learn
a trajectory tube insertion for surgery task. Rozo et al. [130]
proposed a framework to exploit both position and force data
in HRC. The authors tested the proposed scenarios on two
different experiments involving robot handling both position
and force constraints in a collaborative box transportation task
and collaborative assembly of a wooden IKEA table.

Hidden Markov Model (HMM) has been widely used to
model robot learning collaborative interaction with humans
[131], [132], [133]. HMM is derived from a Markov process
which believes that the current state of a system depends solely
on the system's prior state. Several authors have suggested
using HMM to encode and reproduce demonstrated action
where noise in the observation is inevitable [134], [135].

Dynamic movement primitive (DMP) has been extensively
used in pHRC especially in learning control policy of human
motion trajectories [136], [137]. Prada et al. [138] proposed a
generic dynamic movement primitive framework for ensuring
human-friendly and fluent robot motion in object hand-over
interaction between human and robot collaborator. Using a
collection of sequences of captured motion configurations
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of two people demonstrating object hand-over task in an
industrial context, the authors trained a robot to learn the
control motion hand-over task.

Reinforcement Learning (RL) applies a reward policy upon
which an agent depends to improve its learned behaviour. In
RL, the error outcome of a previously performed action is used
to update the action state policy of the robot thereby serving
as a way of strengthening the belief state of the robot [139].
In [140], the authors proposed a RL technique to improve
the rate at which a robot learns dynamic tasks and motor
primitives [141]. In this case, the tasks learned are to hold
a table in a suitable position and cooperatively lift the table
with human collaborator while keeping it horizontal. Dimeas et
al. in [142] applied reinforcement learning technique to learn
variable admittance control for human-robot co-manipulation.

VI. SAFETY ISSUES, CONTROL DESIGNS AND HUMAN
FACTORS

A. Safety Issues

The coexistence of human and robot poses a safety threat
both to humans and the collaborating environment. Because
of that, the ISO enacted a safety standard (ISO TS 15066)
for the collaborative industrial robotic systems as specified in
[9]. Hence most of the recently produced collaborative robots
have the collision detection sensors embedded in them. The
sensors could be in the form of an embedded accelerometer,
tactile sensors or current feedback which could be felt when an
abnormal force is sensed by the robot [143]. Other approaches
applied in safety include collision avoidance and collision
detection. This feature could be achieved in robot applications
by proper motion planning and control of some sensory
systems [144], [145]. In [146], the authors used a potential
field approach to implement collision avoidance. In their work,
repulsive and attractive fields were associated with the obstacle
and the target objects respectively.

B. Control Designs in pHRC

In the context of this research, pHRC control is classified
into direct, supervisory and fully collaborative controls as
presented in Figure 12.

Fig. 12: A block diagram to describe the different design
control concepts in pHRC.

In direct control design, a human is totally in control of the
robot manipulation and as such the control decision is wholly
taken by a human while the robotic system plays a passive
role only. This is not an efficient system control design as

the performance of the operation depends soley on the skills
and experience of the human operator. This kind of control
model has found applications in motor control learning [147],
[148], [149] and robot imitating human actions [150]. Using
agonistic and antagonistic signals extracted from the human
joint, Zhijun et al. [151] proposed EMG based upper-limb
robot assistant exoskeleton control system. In the paper, the
authors employed linear discriminant analysis-based classifier
to indicate the kind of motion in the joint which enables them
to estimate the torque control signal.

In supervisory control design, human and robot establish a
shared control or traded control scenario. A robot makes most
of the decision while humans are required in the control loop
occasionally and when necessary. This contributes so much
in reducing the idle time of a robotic system in operation.
A group of researchers from NASA's Johnson Space Center
(JSC) has developed a graphic interface suite called Predictive
Interactive Graphical Interface (PIGI) to accomplish suspen-
sory control of a robot in the space using a communication
latency of 5-10 sec. [152].

In fully collaborative control, the robot is made to be
aware of its environment and play both adaptive and self-
reliance roles hence, making the collaboration between human
and robot intuitive. A lot of efforts have been made to
address the interactive behaviour between human and robot as
demonstrated in [153]. In [154], the authors proposed a robot
adaptive control focusing on allowing the robot to play the
roles of either a task leader or follower based on the intention
of human collaborator. Using game theory, Li et al. [155]
proposed a role adaptive framework that enables the robot to
adjust its role in accordance with human intention.

C. Human Factors

Several human factors could be issues in the usability,
effectiveness, safety, and administering of a robotic system
for human-robot collaboration. Based on this, administering
exoskeleton to a subject could be challenging due to the
vast variation and compositions of various human body parts.
In Cybathlon [53], earlier evaluation revealed that the bone
mineral density of the subject was within the normal limit,
however, later evaluation showed that the rate of motion of
his knee joints has been limited due to prolonged use of a
wheelchair. Hence, how to analyze wearable robotic devices
and prosthesis to obtain the best physical form remains a
challenge. Human attitude and perception toward robotic sys-
tems are essential in the performance cooperation of human-
robot teammate. The level of trust will directly affect the
willingness of a human teammate to follow robot's suggestions
or instructions [156]. The need for the robotic system and a
human team worker to build a mental model of each other has
been suggested long ago as it would reduce the risk of human
error and ensure safer interaction of them [157], [158].

VII. DISCUSSION AND CONCLUSION

Considering the unstructured and dynamic nature of the
human environment, most of the collaborative robots are
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equipped with inbuilt sophisticated sensors, collaborative in-
terfaces and enhanced control systems to improve safety and
collaborative abilities of the robotic systems. Furthermore, the
enhanced physical dexterity of the robotic systems has paved
way for their potential application and relevance in various
aspects of human endeavours. Similarly, wearable and assistive
robotic systems have withnessed rapid development in the last
decades. This has led to the development of improved systems
that could allow human upper or lower limbs movements in
multiple dimensions. Despite the advancement in this research
area, it is still saddled with the challenges of accomplishing a
compact, lightweight and comfortably aligned upper and lower
limp exoskeletons [159]. Hence, limiting the ability of the
systems to be employed in accomplishing complex interaction
with human users. Furthermore, research in this area is still
in a premature state as most of the proposed systems are
just prototypes and have not been evaluated across different
application scenarios.

Recent trends in EEG technology is looking at extracting
human neural response with different spatial frequencies for
estimating human intention [160]. Future research direction
could look at developing a high-density EEG system that
can capture more neural information for better inference of
the brain activities. Different kinds of sensors are currently
employed in the design of data glove to provide high accuracy
and to measure the activities of human fingers. Apart from
designing low-cost data gloves, currently, researchers have
focused on modular and expansible data glove design in order
to improve adaptability [82]. Future research direction includes
the addition of multiple feedback in a single finger of the
data glove while ensuring consistent data across a large range
of the hand. Some researchers have coupled more than one
sensing devices together in order to produce more capable
and adaptive sensors such as vision-based tactile sensors.
The prospect of this system in the future is promising as it
possesses the ability to enable the robotic hand to process
complex dexterous manipulative tasks. Moreover, future re-
search direction could focus on using new flexible materials
and innovative mechanisms to further achieve enhanced soft
skin-based sensors suitable for practical applications in the
field of medical implant services, and in other potential fields.

A lot of learning systems have been proposed to equip
a robot with cognitive and cooperative capabilities that will
enable it to understand its environment, acquire desired skills
that will enhance its collaborative abilities with humans but
there are still some challenges seeking for solutions. For
instance, it is still challenging for a robot to infer the state and
belief of a human collaborator with multi-directional intents.
It is also very hard to model and transfer human preference
because of the variation in peoples' preferences. With this
little knowledge variance, research on robot predicting human
preferences is still an open research question. In addition, Deep
Learning technique has been applied in several applications
including in robotic perception for object detection, object
recognition, robotic grasps identification, environmental and
place recognition and, for learning sensory-motor control.
However, few previous studies have investigated applying
Deep Learning-based methods in pHRC; thus, further studies

are needed.
In pHRC, safety collaboration is of paramount importance

and still have several unanswered research questions. To the
best of our knowledge, no research work has fully answered
the question ”what is the best way to differentiate between ac-
cidental collision and simply touch from a robot to a human?”
Improving ergonomically collision detection and avoidance in
pHRC is seeking further research attention.

Finally, an overview of the state-of-the-art Physical Human-
Robot Collaboration (pHRC) cutting across the hardware and
software concerning the implementation of effective collabo-
ration has been reviewed. Considering the wide coverage and
rigorous studies carried out in this survey, the authors have
no doubt that the outcome could serve as a guide or starting
point to scholars interested in pHRC.
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