1,100 research outputs found

    Cloud RAN for Mobile Networks - a Technology Overview

    Get PDF
    Cloud Radio Access Network (C-RAN) is a novel mobile network architecture which can address a number of challenges the operators face while trying to support growing end-user’s needs. The main idea behind C-RAN is to pool the Baseband Units (BBUs) from multiple base stations into centralized BBU Pool for statistical multiplexing gain, while shifting the burden to the high-speed wireline transmission of In-phase and Quadrature (IQ) data. C-RAN enables energy efficient network operation and possible cost savings on base- band resources. Furthermore, it improves network capacity by performing load balancing and cooperative processing of signals originating from several base stations. This article surveys the state-of-the-art literature on C-RAN. It can serve as a starting point for anyone willing to understand C-RAN architecture and advance the research on C-RA

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Cloud Radio Access Network architecture. Towards 5G mobile networks

    Get PDF

    ISDN at NASA Lewis Research Center

    Get PDF
    An expository investigation of the potential impact of the Integrated Services Digital Network (ISDN) at NASA Lewis Research Center is described. To properly frame the subject, the paper contains a detailed survey of the components of Narrowband ISDN. The principles and objectives are presented as decreed by the Consultative Committee for International Telephone and Telegraph (CCITT). The various channel types are delineated and their associated service combinations are described. The subscriber-access network functions are explained pictorially via the ISDN reference configuration. A section on switching techniques is presented to enable the reader to understand the emergence of the concept of fast packet switching. This new technology is designed to operate over the high bandwidth, low error rate transmission media that characterizes the LeRC environment. A brief introduction to the next generation of networks is covered with sections on Broadband ISDM (B-ISDN), Asynchronous Transfer Mode (ATM), and Synchronous Optical Networks (SONET). Applications at LeRC are presented, first in terms of targets of opportunity, then in light of compatibility constraints. In-place pilot projects and testing are described that demonstrate actual usage at LeRC

    Towards Terabit Carrier Ethernet and Energy Efficient Optical Transport Networks

    Get PDF

    Control Plane Strategies for Elastic Optical Networks

    Get PDF

    Switching techniques in data-acquisition systems for future experiments

    Get PDF
    An overview of the current state of development of parallel event-building techniques is given, with emphasis of future applications in the high-rate experiments proposed at the Large Hadron Collider (LHC). The paper describes the ain architectural options in parallel event builders, the proposed event-building architectures for LHC experiments, and the use of standard net- working protocols for event building and their limitations. The main issues around the potential use of circuit switching, message switching and packet switching are examined. Results from various laboratory demonstrator systems are presented

    Transporte de pacotes em redes óticas

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesIn this dissertation is performed a study of packet and circuit switch on optical transport networks, considering network nodes architecture specifications, functionalities and limitations. It is presented an optimization model for nodes dimensioning, considering network traffic requirements and associated costs, using integer linear programming (ILP) tools. To start, an analysis of the client signal is done, before it enters the optical domain, presenting the main protocols, procedures and transport containers for data. When in optical domain, various grooming configurations, considering client signals bit rate are analysed. Considering the node's architecture and transport modes, mathematical models capable to minimize the costs associated with the network nodes are developed for each considered architecture. Results for different simulation scenarios, continuously increasing network traffic are presented and discussed. This document is finalized with the main conclusions driven by techno-economic analysis.Nesta dissertação é efetuado um estudo sobre comutação de pacotes e circuitos em redes de transporte óticas, considerando especificidades da arquitetura dos nós, funcionalidades e limitações. É apresentado um modelo de optimização para dimensionamento dos nós, considerando requisitos de tráfego da rede e custos associados, utilizando ferramentas de programação linear inteira (PLI). Analisando o sinal de cliente, antes de este entrar no domínio ótico, apresentando os principais protocolos, procedimentos e contentores para transporte de dados. No domínio ótico, diversas configurações de agregação são analisadas, considerando o bit rate dos sinais. Após análise da arquitetura dos nós e modos de transporte, desenvolve- -se um modelo matemático capaz de minimizar os custos associados aos nós da rede, para as arquiteturas consideradas. Os resultados dos diferentes cenários de simulação, com crescimento constante do tráfego são discutidos, finalizando o documento com as principais conclusões obtidas através de análise técnico-económica
    corecore