269 research outputs found

    5g new radio performance assessment

    Get PDF
    Abstract. Each decade, a new generation of wireless cellular technology presents a step-change in what cellular wireless systems can do compared to the previous generation. It is the beginning of new wireless technology in mobile phone networks called 5th Generation Mobile Phone Network (5G), a robust technology from its predecessors. 5G New Radio (5G NR) is the first step in adapting the 5G wireless technology to the existing cellular infrastructure. This thesis analyzes the 5G NR performance as part of the 5G test network (5GTN) deployed at the University of Oulu. The architecture of the 5GTN is a so-called non- standalone (NSA) network where the 4G Long-Term Evolution (4G-LTE) cellular network provides the control plane of the network. The performance of the 5G NR was obtained by measuring a few primary Key Performance Indicators (KPI) and data transmission measurements to observe the mobile network strength. This thesis first described the importance of 5G and its history, the deployment timeline, the basic architecture of adaption and synchronization process with the current mobile network, and future possibilities. After that, the main KPI parameters, deployed software, and the test case environment are described, and the 5GTN architecture is also covered. Later, the test results are presented, and lastly, a brief discussion of the outcome of the test result is provided. Finally, a comparison between the 5G NR BTS cells within the test environment network is provided. Performance measurements have been performed at the Linnanmaa campus of the University of Oulu and the surrounding premises under the 5GTN, the broadest open- access test network of 5G. The test cases were created during the time of field testing. The measurement key performance indicators (KPIs) have been carefully chosen for these test case scenarios, where the recorded result’s output were analyzed and represented clearly through this study. Data throughput tests have been performed parallelly during the field testing within the network to assess the 5G performance in terms of data rate. Along with the KPI parameter and throughput tests, there is a clear indication that 5G NR offers the fastest connection as part of the existing mobile network infrastructure

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    Impact of regulatory aspects on 5G mobile communication systems

    Get PDF
    The fifth generation of mobile communication networks generally known as 5G is a technology that, if we read anything about it we can arrive to the conclusion that it can be a revolution in many aspects. Starting with the great change that the telephone introduced, followed by the great improvements that the mobile phones carried along with them and finally internet and broadband access from any part of the world with a pocket device, we arrive to a time where 5G not only will it improve the existing technologies but it will allow the development of new inventions such as Internet of Things (IoT) that up to the date is reduced to various experiments and trials. The fifth generation of mobile communication systems will allow the development of applications, data models, data analysis at very high speeds, sensor measurements, and data transmissions instantly and a very long list of other things that will result in a revolution in one hand for the people’s lives and in the other to the markets and the way the companies carry out their business models and their internal and external general management. People’s quality of life will be affected substantially thanks to the establishment of 5G. This will be achieved thanks to the high speeds and the characteristics that 5G includes, and it will allow, for example, that a refrigerator can inform its owner about what products are needed or about what food is about to expire. This simple example is only one of many others that we can find when talking about 5G. Nonetheless, in order to be able to enjoy these advantages that 5G incorporates, it is necessary to conduct a development and deployment in an agreed upon way between all the different organisms and bearing in mind the regulatory aspects and the legislation valid and that needs to be developed in order to have a correct deployment. To do this, the regulatory organisms, and the commissions of the different countries have to agree between them and investigate what is the best way to provide the best standards, and to ease and speed up the deployments and start-ups of this new technology. After developing a detail study of the current requirements, objectives and the legislation and standardization, as well as the state of art of the technologies that provide us with the services that we enjoy nowadays, I have studied the barriers and drivers for the deployment of 5G. Finally, and after this previous study, I have analysed the possible deployments for this technology and how will it affect to the economic and social environment the use of these types of mobile communications. At the same time I have arrived to the final conclusions that 5G will be a complete revolution and anything that enables and eases the implementation has to be welcome.La quinta generación de redes de telecomunicaciones móviles comúnmente conocida como 5G es una tecnología de la que, si leemos cualquier información, llegaremos a la conclusión de que puede suponer una revolución en muchos aspectos. Comenzando por el gran cambio que supuso la invención del teléfono, seguida por la evidente y alta mejora que introdujo el teléfono móvil y finalmente la conexión a internet y el acceso de banda ancha desde cualquier parte del mundo con un dispositivo de bolsillo, llegamos a un momento en el que el 5G no solo mejorará las tecnologías ya existentes sino que permitirá desarrollar ideas tales como el internet de las cosas que, a día de hoy, se reducen a, varios experimentos y pruebas. El 5G permitirá el desarrollo de aplicaciones, modelos de datos, análisis de datos a altas velocidades, lecturas de sensores y transmisión de datos de forma instantánea y una larga lista de mejoras más que resultará en una revolución por una parte de la vida de las personas y por otra de los mercados y de la forma en la que las empresas llevarán a cabo sus modelos de negocio y en general su gestión externa e interna. La calidad de vida de las personas se verá afectada de forma sustancial gracias a la implantación del 5G. Esto se conseguirá debido a que las altas velocidades y las características que incorpora el 5G permitirán que, por ejemplo, una nevera avise a su dueño de aquello que falte en su interior, o que le informe de aquellos productos que están a punto de caducar. Este simple ejemplo solo es uno de todos los posibles que se pueden encontrar a la hora de hablar del 5G. Sin embargo, para poder llegar a disfrutar de todas las ventajas que el 5G aporta, es necesario llevar a cabo un desarrollo y un despliegue de forma conjunta entre los diferentes organismos, y teniendo en cuenta la normativa y legislación vigente y que se necesita desarrollar, para que este despliegue sea correcto. Para ello, los organismos regulatorios y las comisiones de diferentes países, deben ponerse de acuerdo e investigar cuál será la mejor forma de proporcionar los mejores estándares y facilitar y acelerar los despliegues y puestas en marcha de esta nueva tecnología. Después de llevar a cabo un estudio detallado sobre los requisitos, objetivos y la normativa y estandarización actual, así como el estado del arte de las tecnologías que hoy nos proporcionan los servicios de los que disfrutamos, se han estudiado las barreras y los aspectos favorecedores para la implantación del 5G. Finalmente, y tras este previo estudio, se han detallado los posibles despliegues para esta tecnología y se ha estudiado como afectará al entorno económico y social la utilización de este tipo de redes de comunicaciones móviles. A su vez, se han llegado a las conclusiones finales de que el 5G supondrá toda una revolución, y que todo aquello que favorezca su despliegue e implantación, debe ser bienvenido.Ingeniería Telemátic

    A Flexible 5G Frame Structure Design for Frequency-Division Duplex Cases

    Get PDF

    Técnicas de gestão de feixe de onda para sistemas Massive MIMO nas redes 5G NR

    Get PDF
    The use of Millimeter wave (mmWave) spectrum frequencies is seen as a key enabler technology for the future wireless communication systems to overcome the bandwidth shortage of the sub 6GHz microwave spectrum band, enabling high speed data transmissions in the 5G/6G systems. Nevertheless, mmWave propagation characteristics are associated to significant free-path losses and many more attenuations that become even more harsher as the frequency increases, rendering the communication challenging at this frequencies. To overcome these distinct disadvantages, multiple antenna arrays are employed to allow beamforming techniques for the transmission of narrower concentrated beams in more precise directions and less interference levels between them, consequently improving the link budget. Thus, to constantly assure that the communication with each device is done using the beam pair that allows the best possible connectivity, a set of Beam Management control procedures is necessary to assure an efficient beamformed connection establishment and its continuous maintenance between the device and the network. This dissertation will address the description of the Initial Beam Establishment (IBE) BM procedure, focusing the selection of the most suitable transmit-receive beam pair available after completed beam sweeping techniques to measure the different power levels of the received signal. The main goal is to design a new 3GPP-standard compliant beam pair selection algorithm based on SSS angle estimation (BSAE), that makes use of multiple Synchronization Signal Blocks (SSBs) to maximize the Reference Signal Received Power (RSRP) value at the receiver, through the selected beam pair. This optimization is done using the Secondary Synchronization Signals (SSSs) present in each SSB to perform channel estimation in the digital domain (comprising the effects of the analog processing). Afterwards, the combination of those estimations were used to perform the equivalent channel propagation matrix estimation without the analog processing effects. Finally, through the channel propagation matrix, the angle that maximizes the RSRP was determined to compute the most suitable beam through the aggregated response vector. The obtained results show that the proposed algorithm achieves better performance levels compared to a conventional beam pair selection algorithm. Furthermore, a comparison with an optimal case is also done, i.e., the situation where the channel is known, and the optimal beam pair angle can be determined. Therefore, the similar performance results compared to the optimal case indicates that the proposed algorithm is interesting for practical 5G mmWave mMIMO implementations, according to 3GPP-compliant standards.O uso de frequências na banda das ondas milimétricas é visto como uma tecnologia chave para os futuros sistemas de comunicação móveis, tendo em vista a ultrapassar o problema da escassez de banda a sub-6 GHz, e por permitir as elevadas taxas de dados requeridas para sistemas 5G/6G. Contudo, a propagação deste tipo de ondas está associado a perdas acentuadas em espaço livre e várias atenuações que se tornam cada vez mais significativas com o aumento do valor da frequência, impondo obstáculos à comunicação. Para ultrapassar estas adversidades, agregados constituídos por múltiplos elementos de antena são implementados por forma a permitir técnicas de formação de feixe e possibilitar a transmissão de feixes mais estreitos e altamente direcionais, diminuindo os níveis de interferência e melhorando consequentemente o link budget. Deste modo, para assegurar constantemente que a comunicação efetuada em cada dispositivo ocorre utilizando o conjunto de feixes que proporciona o melhor nível de conectividade, é então necessário um conjunto de procedimentos de controlo de gestão de feixe, assegurando um estabelecimento eficiente da comunicação e a sua contínua manutenção entre um dispositivo e a rede. Esta dissertação descreve o procedimento de gestão de feixe conhecido como estabelecimento inicial de feixe, focando o processo de seleção do melhor par de feixe de transmissão-receção disponível após o uso de técnicas de varrimento de feixe por fim a efetuar medições dos diferentes níveis de potência do sinal recebido. O principal objetivo passa pela conceção de um novo algoritmo de estabelecimento de par de feixes baseado em estimações de ângulo (BSAE), que explora o uso de múltiplos SSBs definidos pelo 3GPP, por forma a maximizar o RSRP no recetor, através do feixe selecionado. Esta otimização é feita usando os sinais de sincronização secundários (SSSs) presentes em cada SSB para efetuar uma estimação de canal no domínio digital (que contém o efeito do processamento analógico). Depois, combinando essas estimações, foi feita uma estimação da matriz do canal de propagação, sem o efeito desse processamento analógico. Finalmente, através da matriz do canal de propagação, foi determinado o ângulo que maximiza o RSRP, e calculado o feixe através do vetor de resposta do agregado. Os resultados obtidos demonstram que o algoritmo proposto atinge melhor desempenho quando comparado com o algoritmo convencional de seleção de par de feixes. Foi feita ainda uma comparação com o caso ótimo, isto é, com o caso em que se conhece completamente o canal e se obtém um ângulo ótimo. Os resultados obtidos pelo algoritmo proposto foram muito próximos do caso ótimo, pelo que é bastante interessante para sistemas práticos 5G mmWave mMIMO, que estejam de acordo com o padrão 3GPP.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Receiver Design for Physical Broadcast Channel in 5G NR

    Get PDF
    The 5th Generation Wireless Technology known as New Radio or NR is being developed by 3GPP (3rd Generation Partnership Project) since past few years which aims to address scenarios from Mobile Broadband to highly reliable communication with very low latency. Key advances in 5G include advanced antenna systems like Massive MI-MO, operations in higher frequency bands and achievable uplink and downlink high data rates in GBps. The Radio air interface of 5G NR includes physical layer and other higher layers as well. With the focus on physical layer, the technical specifications for NR released by 3GPP provide means to state-of-art realization and implementation of physical channels for both uplink and downlink. In NR, SS/PBCH block(SSB) consists of Synchronization signal(SS) and Physical Broadcast channel(PBCH). SSB is used to carry out cell search and identification to initialize a connection between UE and eNB. It also helps to manage handovers and beam sweeping for the radio coverage within the cell. The report aims at a detailed description on PBCH design, transmission and reception subject to a time varying wireless channel. PBCH transmitter is designed based on the technical specifications by 3GPP for 5G NR. PBCH data is generated and loaded with Demodulation reference signal(DMRS) for channel estimation at receiver.The combined data thus generated is mapped on sub-carriers and converted to time domain frames using Inverse Fourier transform (IFFT) as 5G NR is uses OFDM for both uplink and downlink transmissions. The time frames generated are convoluted with a time varying channel. The time varying channel is fast fading and follows Rayleigh distribution simulated using Jake’s model and Vehicle-A type power delay profile. AWGN noise based on SNR value is added which represents the environment noise and attenuation. The distorted and attenuated signal at the receiver is converted to frequency domain using FFT. Channel estimation is performed using DMRS. The channel equalization equalizes the time varying channel effect on the symbols and is further decoded to obtain PBCH payload.Finally the performance of the PBCH receiver is analyzed at low SNR values

    Efficient Management of Flexible Functional Splits in 5G Second Phase Networks

    Get PDF
    The fifth mobile network generation (5G), which offers better data speeds, reduced latency, and a huge number of network connections, promises to improve the performance of the cellular network in practically every way available. A portion of the network operations are deployed in a centralized unit in the 5G radio access network (RAN) partially centralized design. By centralizing these functions, operational expenses are decreased and coordinating strategies are made possible. To link centralized units (CU) and distributed units (DU), and the DU to remote radio units (RRU), both the midhaul and fronthaul networks must have higher capacity. The necessary fronthaul capacity is also influenced by the fluctuating instantaneous user traffic. Consequently, the 5G RAN must be able to dynamically change its centralization level to the user traffic to maximize its performance. To try to relieve this fronthaul capacity it has been considered a more flexible distribution between the base band unit (BBU) (or CU and DU if enhanced common public radio interface (eCPRI) is considered) and the RRU. It may be challenging to provide high-speed data services in crowded areas, particularly when there is imperfect coverage or significant interference. Because of this, the macrocell deployment is insufficient. This problem for outdoor users could be resolved by the introduction of low-power nodes with a limited coverage area. In this context, this MSc dissertation explores, in an urban micro cell scenario model A (UMi_A) for three frequency bands (2.6 GHz, 3.5 GHz, and 5.62 GHz), the highest data rate achievable when a numerology zero is used. For this, it was necessary the implementation of the UMi_A in the 5G-air-simulator. Allowing the determination of the saturation level using the results for the packet loss ratio (PLR=2%). By assuming Open RAN (O-RAN) and functional splitting, the performance of two schedulers in terms of quality-of-service (QoS) were also studied. The QoS-aware modified largest weighted delay first (M-LWDF) scheduler and the QoS-unaware proportional fair (PF) scheduler. PLR was evaluated for both schedulers, whilst analyzing the impact of break point distance while changing the frequency band. The costs, revenues, profit in percentage terms, and other metrics were also estimated for the PF and M-LWDF schedulers when used video (VID) and video plus best effort (VID+BE), with or without consideration of the functional splits 7.2 and 6, for the three frequency bands. One concluded that the profit in percentage terms with functional split option 7.2 applied is always slightly higher than with functional split option 6. It reaches a maximum profit of 366.92% in the case of the M-LWDF scheduler, and 305.51% in the case of the PF scheduler, at a cell radius of 0.4 km for the 2.6 GHz frequency band, considering a price of the traffic of 0.0002 €/min.A quinta geração de redes móveis (5G), oferece ritmos de transmissão melhorados, atraso extremo-a-extremo reduzido, e um vasto número de ligações de rede. A 5G promete melhorar o desempenho das redes celulares em praticamente todos os aspectos relevantes. Uma parte da operação da rede é colocada numa unidade centralizada na rede de acesso de rádio (RAN) 5G com dimensionamento parcialmente centralizado. Ao centralizar estas funções, os custos operacionais decrescem, viabilizando-se as estratégias de coordenação. Para ligar as unidades centralizadas e unidades distribuídas, e por sua vez, unidades distribuidas e unidades de rádio remotas, ambos os midhaul e fronthaul devem ter uma capacidade mais elevada. A capacidade da fronthaul necessária é também influenciada pela flutuação do tráfego instantâneo dos utilizadores. Consequentemente, a RAN 5G deve ser capaz de alterar dinamicamente o seu nível de centralização para o tráfego de utilizadores, com objetivo de maximizar o seu desempenho. Para tentar aliviar o aumento da capacidade suportada pelo fronthaul, tem sido considerada uma distribuição mais flexível entre a unidade de banda base, BBU (ou unidade central e unidade distribuída se a interface de rádio pública comum melhorada, eCPRI, for considerada), e a unidade de rádio remota, RRU. Em áreas densamente povoadas, pode ser um desafio fornecer serviços de dados de elevada velocidade, particularmente quando existe uma cobertura deficiente ou interferência significativa. Por este motivo, o desenvolvimento de macrocélulas pode ser insuficiente, mas este problema para utilizadores em ambiente de exterior pode ser mitigado com a introdução de nós de potência reduzida com uma área de cobertura limitada. Neste contexto, esta dissertação de mestrado explora, num cenário urbano de microcélulas caracterizado pelo modelo A (UMi_A) para três bandas de frequência (2.6 GHz, 3.5 GHz, e 5.62 GHz), o débito binário máximo que se pode alcançar quando se utiliza numerologia zero. Para tal, foi necessária a implementação do UMi_A no 5G - air - simulator. Determinou-se o nivel de saturação, considerandose os resultados para a taxa de perda de pacotes (PLR=2%). Estudou-se o desempenho de dois escalonadores de pacotes em termos de qualidade de serviço (QoS), assumindo-se o OpenRAN (O-RAN) e as divisões funcionais (functionalsplitting). Um dos escalonadores é ciente da QoS, e é de atraso máximo-superior ponderado primeiro (M-LWDF), enquanto que o outro não é ciente da QoS, e é de justiça proporcional (PF). Avaliou-se o PLR para ambos os escalonadores de pacotes, estudando-se o impacto da distância de ponto de quebra (breakpointdistance), variando-se a banda de frequências. Foram também estimados os custos, proveitos, o lucro (em percentagem), e outras metricas, para os escalonadores PF e M-LWDF, considerando o vídeo (VID) e vídeo mais besteffort (VID+BE) como aplicações, com ou sem a consideração das divisões funcionais 7.2 e 6, para as três bandas de frequência. Concluiu-se que o lucro em termos percentuais, com a escolha da opção de divisão funcional 7.2, é sempre ligeiramente mais elevado do que com a opção de divisão funcional 6. Atingese um lucro máximo de 366,92% no caso do escalonador M-LWDF, e de 305,51% no caso do escalonador PF, para um raio de célula de 0,4 km, para a banda de frequência de 2,6 GHz, considerando-se um preço do tráfego de 0,0002 €/min
    corecore