1,048 research outputs found

    Power computation for the triboelectric nanogenerator

    Full text link
    We consider, from a mathematical perspective, the power generated by a contact-mode triboelectric nanogenerator, an energy harvesting device that has been well studied recently. We encapsulate the behaviour of the device in a differential equation, which although linear and of first order, has periodic coefficients, leading to some interesting mathematical problems. In studying these, we derive approximate forms for the mean power generated and the current waveforms, and describe a procedure for computing the Fourier coefficients for the current, enabling us to show how the power is distributed over the harmonics. Comparisons with accurate numerics validate our analysis

    Study of systems powered by triboelectric generators for bioengineering applications

    Get PDF
    Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2020-2021. Director: Pere Lluís Miribel Català. Co-director: Manel Puig i Vida

    Wearable Fall Detector using Integrated Sensors and Energy Devices

    Get PDF
    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

    Natural and Eco-Friendly Materials for Triboelectric Energy Harvesting

    Get PDF
    Triboelectric nanogenerators (TENGs) are promising electric energy harvesting devices as they can produce renewable clean energy using mechanical excitations from the environment. Several designs of triboelectric energy harvesters relying on biocompatible and eco-friendly natural materials have been introduced in recent years. Their ability to provide customizable self-powering for a wide range of applications, including biomedical devices, pressure and chemical sensors, and battery charging appliances, has been demonstrated. This review summarizes major advances already achieved in the field of triboelectric energy harvesting using biocompatible and eco-friendly natural materials. A rigorous, comparative, and critical analysis of preparation and testing methods is also presented. Electric power up to 14 mW was already achieved for the dry leaf/polyvinylidene fluoride-based TENG devices. These findings highlight the potential of eco-friendly self-powering systems and demonstrate the unique properties of the plants to generate electric energy for multiple applications.[Figure not available: see fulltext.]. © 2020, © 2020, The Author(s).Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção, INCT-ENMinistry of Education and Science of the Russian Federation, MinobrnaukaFundação para a Ciência e a Tecnologia, FCT: SFRH/BPD/117475/2016, CENTRO-01-0145-FEDER-031679, POCI-01-0145-FEDER-031132This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, refs. UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the FCT/MEC. S.K. and A.K. were partly supported by FCT (Portugal) through the project “BioPiezo”- PTDC/CTM–CTM/31679/2017 (CENTRO-01-0145-FEDER-031679). M. Soares dos Santos was also supported by FCT, through the grant reference SFRH/BPD/117475/2016. All authors were partly supported by FCT through the project “SelfMED” (POCI-01-0145-FEDER-031132). Part of this work was funded by national funds (OE), through FCT—Fundação para a Ciência e a Tecnologia, I.P., in the scope of the framework contract foreseen in the numbers 4, 5, and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. The research was also supported by the Ministry of Education and Science of the Russian Federation in the framework of the Increase Competitiveness Program of NUST « MISiS » (No. K2-2019-015)

    Optimization principles and the figure of merit for triboelectric generators

    Get PDF
    Energy harvesting with triboelectric nanogenerators is a burgeoning field, with a growing portfolio of creative application schemes attracting much interest. Although power generation capabilities and its optimization are one of the most important subjects, a satisfactory elemental model that illustrates the basic principles and sets the optimization guideline remains elusive. We use a simple model to clarify how the energy generation mechanism is electrostatic induction but with a time-varying character that makes the optimal matching for power generation more restrictive. By combining multiple parameters into dimensionless variables, we pinpoint the optimum condition with only two independent parameters, leading to predictions of the maximum limit of power density, which allows us to derive the triboelectric material and device figure of merit. We reveal the importance of optimizing device capacitance, not only load resistance, and minimizing the impact of parasitic capacitance. Optimized capacitances can lead to an overall increase in power density of more than 10 times

    Small-Scale Energy Harvesting from Environment by Triboelectric Nanogenerators

    Get PDF
    The increasing needs to power trillions of sensors and devices for the Internet of Things require effective technology to harvest small-scale energy from renewable natural resources. As a new energy technology, triboelectric nanogenerators (TENGs) can harvest ambient mechanical energy and convert it into electricity for powering small electronic devices continuously. In this chapter, the fundamental working mechanism and fundamental modes of a TENG will be presented. It can harvest all kinds of mechanical energy, especially at low frequencies, such as human motion, walking, vibration, mechanical triggering, rotating tire, wind, moving automobile, flowing water, rain drops, ocean waves, and so on. Such variety of energy harvesting methods promises TENG as a new approach for small-scale energy harvesting

    Piezo-Tribo Dual Effect Hybrid Nanogenerators for Health Monitoring

    Get PDF
    Over the years, nanogenerators for health monitoring have become more and more attractive as they provide a cost-effective and continuous way to successfully measure vital signs, physiological status, and environmental changes in/around a person. Using such sensors can positively affect the way healthcare workers diagnose and prevent life-threatening conditions. Recently, the dual piezo-tribological effect of hybrid nanogenerators (HBNGs) have become a subject of investigation, as they can provide a substantial amount of data, which is significant for healthcare. However, real-life exploitation of these HBNGs in health monitoring is still marginal. This review covers piezo-tribo dual-effect HBNGs that are used as sensors to measure the different movements and changes in the human body such as blood circulation, respiration, and muscle contractions. Piezo-Tribo dual-effect HBNGs are applicable within various healthcare settings as a means of powering noninvasive sensors, providing the capability of constant patient monitoring without interfering with the range of motion or comfort of the user. This review also intends to suggest future improvements in HBNGs. These include incorporating surface modification techniques, utilizing nanowires, nanoparticle technologies, and other means of chemical surface modifications. These improvements can contribute significantly in terms of the electrical output of the HBNGs and can enhance their prospects of applications in the field of health monitoring, as well as various in vitro/in vivo biomedical applications. While a promising option, improved HBNGs are still lacking. This review also discusses the technical issue which has prevented so far, the real use of these sensors

    Towards Intelligent Tire and Self-Powered Sensing Systems

    Get PDF
    Tires are the interface between a vehicle and the ground providing forces and isolation to the vehicle. For vehicle safety, stability, maintenance, and performance, it is vital to estimate or measure tire forces, inflation pressure, and contact friction coefficient. Estimation methods can predict tire forces to some extent however; they fail in harsh maneuvers and are dependent on road surface conditions for which there is no robust estimation method. Measurement devices for tire forces exist for vehicle testing but at the cost of tens of thousands of dollars. Tire pressure-monitoring sensors (TPMS) are the only sensors available in newer and higher end vehicles to provide tire pressure, but there are no sensors to measure road surface condition or tire forces for production vehicles. With the prospect of autonomous driving on roads in near future, it is paramount to make the vehicles safe on any driving and road condition. This is only possible by additional sensors to make up for the driver’s cognitive and sensory system. Measuring road condition and tire forces especially in autonomous vehicles are vital in their safety, reliability, and public confidence in automated driving. Real time measurement of road condition and tire forces in buses and trucks can significantly improve the safety of road transportation system, and in miming/construction and off-road vehicles can improve performance, tire life and reduce operational costs. In this thesis, five different types of sensors are designed, modelled, optimized and fabricated with the objective of developing an intelligent tire. In order to design these sensors,~both electromagnetic generator (EMG) and triboelectric nanogenerators (TENG) are used. In the first two initial designed sensors, with the combination of EMG and TENG into a single package, two hybridized sensors are fabricated with promising potential for self-powered sensing. The potential of developed sensors are investigated for tire-condition monitoring system (TCMS). Considering the impressive properties of TENG units of the developed hybridized devices, three different flexible nanogenerators, only based on this newly developed technology, are developed for TCMS. The design, modelling, working mechanism, fabrication procedure, and experimental results of these TENG sensors are fully presented for applications in TCMS. Among these three fabricated sensors, one of them shows an excellent capability for TCMS because of its high flexibility, stable and high electrical output,and an encapsulated structure. The high flexibility of developed TENG sensor is a very appealing feature for TCMS, which cannot be found in any available commercial sensor. The fabricated TENG sensors are used for developing an intelligent tire module to be eventually used for road testing. Several laboratory and road tests are performed to study the capability of this newly developed TENG-based sensor for tire-condition monitoring system. However the development of this sensor is in its early stage, it shows a promising potential for installation into the hostile environment of tires and measuring tire-road interacting forces. A comparative studies are provided with respect to Michigan Scientific transducer to investigate the potential of this flexible nanogenerator for TCMS. It is worth mentioning that this PhD thesis presents one of the earliest works on the application of TENG-based sensor for a real-life system. Also, the potential of commercially available thermally and mechanically durable Micro Fiber Composite (MFC) sensor is experimentally investigated for TCMS with fabricating another set of intelligent tire. Several testing scenarios are performed to examine the potential of these sensors for TCMS taking into account a simultaneous measurement from Michigan Scientific transducer. Although both flexibility and the cost of this sensor is not comparable with the fabricated TENG device, they have shown a considerable and reliable performance for online measuring of tire dynamical parameters in different testing scenarios, as they can be used for both energy harvesting and sensing application in TCMS. The extensive road testing results based on the MFC sensors provide a valuable set of data for future research in TCMS. It is experimentally shown that MFC sensor can generate up to 1.4 μW\mu W electrical power at the speed of 28 [kph][kph]. This electrical output shows the high capability of this sensor for self-powered sensing application in TCMS. Results of this thesis can be used as a framework by researchers towards self-powered sensing system for real-world applications such as intelligent tires
    corecore