11 research outputs found

    Flexibility evaluation of hybrid WDM/TDM PONs

    Get PDF
    A hybrid WDM/TDM passive optical network (PON) is a promising candidate for next-generation optical access (NGOA) solutions. Several hybrid WDM/TDM PON architectures can be designed, each with a different degree of flexibility, going from fully static, over partially flexible to fully flexible architectures. A flexible architecture can serve several advantages, like energy efficiency, network migration and network extensibility. The more flexible architectures, however, are either more expensive, experience a higher power loss or are less secure. A question that arises is if a fully flexible architecture really needed. An important assessment parameter is the number of wavelengths required at a certain network load. In this paper, we introduce and compare two different flavors of flexibility based on the multicasting and switching functionality of different architectures. By exhaustive simulation, we study the gains of different variants of flexibility with different traffic models

    Wavelength switched hybrid TDMA/WDM (TWDM) PON: a flexible next-generation optical access solution

    Get PDF
    In this paper, we propose the system concepts of a next-generation wavelength switched hybrid time division multiple access and wavelength division multiplexing (TWDM) passive optical network (PON) architecture. In this architecture, wavelength selective switches (WSSs) are used at the remote node to improve flexibility, data security and power budget compared to other TWDM-PON variants. We map the proposed architecture to the requirements of next-generation optical access networks in a 2020 perspective. Finally, we benchmark the proposed architecture with other proposed TWDM-PON solutions

    Efficient protection schemes for hybrid WDM/TDM passive optical networks

    Get PDF
    Hybrid WDM/TDM Passive Optical Network (PON) is a promising candidate for next-generation optical access (NGOA) solutions as it is able to offer a high splitting ratio and consequently achieves a relatively low cost and power consumption on a per-user basis compared with other NGOA architectures. On the other hand, the end users require a certain level of connection availability while the operators need to reduce the failure impact (i.e. to avoid a huge number of end users being affected by any single failure). Therefore, by evaluating the connection availability and failure impact robustness we identify the most efficient parts to provide resilience in a hybrid WDM/TDM PON from an operator and an end-user perspective. Then, we select the appropriate protection schemes to construct some novel reliable architectures and analyze their reliability performance in urban and rural scenarios. In this way, this paper provides a comprehensive insight into the most relevant protection mechanisms for hybrid WDM/TDM PONs

    Trade-off between end-to-end reliable and cost-effective TDMA/WDM passive optical networks

    Get PDF
    Hybrid TDMA/VVDM (TWDM) Passive Optical Network (PON) is a promising candidate for Next-Generation PON (NG-PON) solutions. We propose end-to end reliable architectures for business users and a cost-effective network for residential users. We evaluate the proposed reliable architectures in terms of protection coverage, connection availability, impact of failure (i.e. to avoid a huge number of end users being affected by any single failure) and cost in different populated scenarios

    Toward reliable hybrid WDM/TDM passive optical networks

    Get PDF
    Individual users and enterprises are increasingly relying on the access to internet services and cannot accept long interruption time as easily as before. Moreover, the main characteristics of next generation optical access (NGOA) networks, such as long reach and a large number of users per feeder line, turn the network reliability to an important design parameter to offer uninterrupted service delivery. In this regard, protection mechanisms become one of the crucial aspects that need to be considered in the design process of access networks. On the other hand, it should be noted that not all users can afford to pay a high extra cost for protection; hence, it is important to provide resilience in a cost-efficient way. A PON combining WDM and TDM technologies, referred to as hybrid WDM/TDM PON or HPON, is one of the most promising candidates for NGOA networks due to its ability to serve a large number of subscribers and offer high capacity per user. For these reasons, in this article, we propose HPON architecture offering different degrees of resilience depending on the user profiles (i.e., partial and full protection for residential and business access, respectively). Also, the investment cost of providing resilience for the proposed schemes is investigated considering various protection upgrade road maps. Our results confirm that protecting the shared part of network with a large number of users is required in order to keep the failure impact at an acceptable level, with less than 5 percent increase of investment cost compared to the unprotected case. Meanwhile, the proposed end-to-end protection for business users considerably reduces the risk of service interruption for this type of demanding user without a need to duplicate the deployment cost of an unprotected connection. Furthermore, a sensitivity analysis is performed to investigate the impact of changes in business user percentage and protection upgrade time on the deployment cost. The results may be used as advice on cost-efficient deployment of reliable fiber access networks

    A green open access optical distribution network with incremental deployment support

    Get PDF
    This paper proposes an optical distribution network (ODN) architecture for open access networks. The proposed scheme ensures co-existence of multiple business partners (BPs) e.g., service, network equipment, and infrastructure providers at different levels of the distribution network, along with physicallayer security. Further, physical-layer isolation is provided to each subscriber, preventing network disruption by malicious subscribers. The proposed open access ODN supports BPs with different granularities (sizes) and discourages monopoly; thus, allowing multiple BPs to co-exist. It also supports incremental deployability (ID) which allows the BPs to cope with an expanding user base. Thus, small BPs can take up a market share with reasonable initial investment and grow with differential expenditures. ID further allows us to incrementally scale up the power consumption as a function of the network load, making the architecture green. The proposed ODN is based on a passive optical network (PON) architecture resulting in low operational expenditures (OpEx) and high availability. Besides a new ODN architecture, a novel architecture for the optical line terminal (OLT), based on hybrid time and wavelength-division multiplexing (TWDM), is proposed. The BPs can adopt typical TWDM, wavelength division multiplexing, or the TWDM-based OLT architecture (introduced in this paper) over the proposed ODN

    Toward reliable hybrid WDM/TDM passive optical networks

    Full text link
    corecore