10 research outputs found

    Laplacian Meshes for Monocular 3D Shape Recovery

    Get PDF
    We show that by extending the Laplacian formalism, which was first introduced in the Graphics community to regularize 3D meshes, we can turn the monocular 3D shape reconstruction of a deformable surface given correspondences with a reference image into a well-posed problem. Furthermore, this does not require any training data and eliminates the need to pre-align the reference shape with the one to be reconstructed, as was done in earlier methods

    Monocular 3D Reconstruction of Locally Textured Surfaces

    Get PDF
    Most recent approaches to monocular non-rigid 3D shape recovery rely on exploiting point correspondences and work best when the whole surface is well-textured. The alternative is to rely either on contours or shading information, which has only been demonstrated in very restrictive settings. Here, we propose a novel approach to monocular deformable shape recovery that can operate under complex lighting and handle partially textured surfaces. At the heart of our algorithm are a learned mapping from intensity patterns to the shape of local surface patches and a principled approach to piecing together the resulting local shape estimates. We validate our approach quantitatively and qualitatively using both synthetic and real data

    A Book Reader Design for Persons with Visual Impairment and Blindness

    Get PDF
    The objective of this dissertation is to provide a new design approach to a fully automated book reader for individuals with visual impairment and blindness that is portable and cost effective. This approach relies on the geometry of the design setup and provides the mathematical foundation for integrating, in a unique way, a 3-D space surface map from a low-resolution time of flight (ToF) device with a high-resolution image as means to enhance the reading accuracy of warped images due to the page curvature of bound books and other magazines. The merits of this low cost, but effective automated book reader design include: (1) a seamless registration process of the two imaging modalities so that the low resolution (160 x 120 pixels) height map, acquired by an Argos3D-P100 camera, accurately covers the entire book spread as captured by the high resolution image (3072 x 2304 pixels) of a Canon G6 Camera; (2) a mathematical framework for overcoming the difficulties associated with the curvature of open bound books, a process referred to as the dewarping of the book spread images, and (3) image correction performance comparison between uniform and full height map to determine which map provides the highest Optical Character Recognition (OCR) reading accuracy possible. The design concept could also be applied to address the challenging process of book digitization. This method is dependent on the geometry of the book reader setup for acquiring a 3-D map that yields high reading accuracy once appropriately fused with the high-resolution image. The experiments were performed on a dataset consisting of 200 pages with their corresponding computed and co-registered height maps, which are made available to the research community (cate-book3dmaps.fiu.edu). Improvements to the characters reading accuracy, due to the correction steps, were quantified and measured by introducing the corrected images to an OCR engine and tabulating the number of miss-recognized characters. Furthermore, the resilience of the book reader was tested by introducing a rotational misalignment to the book spreads and comparing the OCR accuracy to those obtained with the standard alignment. The standard alignment yielded an average reading accuracy of 95.55% with the uniform height map (i.e., the height values of the central row of the 3-D map are replicated to approximate all other rows), and 96.11% with the full height maps (i.e., each row has its own height values as obtained from the 3D camera). When the rotational misalignments were taken into account, the results obtained produced average accuracies of 90.63% and 94.75% for the same respective height maps, proving added resilience of the full height map method to potential misalignments

    Linear Local Models for Monocular Reconstruction of Deformable Surfaces

    Get PDF
    Recovering the 3D shape of a nonrigid surface from a single viewpoint is known to be both ambiguous and challenging. Resolving the ambiguities typically requires prior knowledge about the most likely deformations that the surface may undergo. It often takes the form of a global deformation model that can be learned from training data. While effective, this approach suffers from the fact that a new model must be learned for each new surface, which means acquiring new training data and may be impractical. In this paper, we replace the global models by linear local ones for surface patches, which can be assembled to represent arbitrary surface shapes as long as they are made of the same material. Not only do they eliminate the need to retrain the model for different surface shapes, they also let us formulate 3D shape reconstruction from correspondences as either an algebraic problem that can be solved in closed-form or a convex optimization problem whose solution can be found using standard numerical packages. We present quantitative results on synthetic data, as well as qualitative ones on real images

    Registration and categorization of camera captured documents

    Get PDF
    Camera captured document image analysis concerns with processing of documents captured with hand-held sensors, smart phones, or other capturing devices using advanced image processing, computer vision, pattern recognition, and machine learning techniques. As there is no constrained capturing in the real world, the captured documents suffer from illumination variation, viewpoint variation, highly variable scale/resolution, background clutter, occlusion, and non-rigid deformations e.g., folds and crumples. Document registration is a problem where the image of a template document whose layout is known is registered with a test document image. Literature in camera captured document mosaicing addressed the registration of captured documents with the assumption of considerable amount of single chunk overlapping content. These methods cannot be directly applied to registration of forms, bills, and other commercial documents where the fixed content is distributed into tiny portions across the document. On the other hand, most of the existing document image registration methods work with scanned documents under affine transformation. Literature in document image retrieval addressed categorization of documents based on text, figures, etc. However, the scalability of existing document categorization methodologies based on logo identification is very limited. This dissertation focuses on two problems (i) registration of captured documents where the overlapping content is distributed into tiny portions across the documents and (ii) categorization of captured documents into predefined logo classes that scale to large datasets using local invariant features. A novel methodology is proposed for the registration of user defined Regions Of Interest (ROI) using corresponding local features from their neighborhood. The methodology enhances prior approaches in point pattern based registration, like RANdom SAmple Consensus (RANSAC) and Thin Plate Spline-Robust Point Matching (TPS-RPM), to enable registration of cell phone and camera captured documents under non-rigid transformations. Three novel aspects are embedded into the methodology: (i) histogram based uniformly transformed correspondence estimation, (ii) clustering of points located near the ROI to select only close by regions for matching, and (iii) validation of the registration in RANSAC and TPS-RPM algorithms. Experimental results on a dataset of 480 images captured using iPhone 3GS and Logitech webcam Pro 9000 have shown an average registration accuracy of 92.75% using Scale Invariant Feature Transform (SIFT). Robust local features for logo identification are determined empirically by comparisons among SIFT, Speeded-Up Robust Features (SURF), Hessian-Affine, Harris-Affine, and Maximally Stable Extremal Regions (MSER). Two different matching methods are presented for categorization: matching all features extracted from the query document as a single set and a segment-wise matching of query document features using segmentation achieved by grouping area under intersecting dense local affine covariant regions. The later approach not only gives an approximate location of predicted logo classes in the query document but also helps to increase the prediction accuracies. In order to facilitate scalability to large data sets, inverted indexing of logo class features has been incorporated in both approaches. Experimental results on a dataset of real camera captured documents have shown a peak 13.25% increase in the F–measure accuracy using the later approach as compared to the former

    Innovative Techniques for Digitizing and Restoring Deteriorated Historical Documents

    Get PDF
    Recent large-scale document digitization initiatives have created new modes of access to modern library collections with the development of new hardware and software technologies. Most commonly, these digitization projects focus on accurately scanning bound texts, some reaching an efficiency of more than one million volumes per year. While vast digital collections are changing the way users access texts, current scanning paradigms can not handle many non-standard materials. Documentation forms such as manuscripts, scrolls, codices, deteriorated film, epigraphy, and rock art all hold a wealth of human knowledge in physical forms not accessible by standard book scanning technologies. This great omission motivates the development of new technology, presented by this thesis, that is not-only effective with deteriorated bound works, damaged manuscripts, and disintegrating photonegatives but also easily utilized by non-technical staff. First, a novel point light source calibration technique is presented that can be performed by library staff. Then, a photometric correction technique which uses known illumination and surface properties to remove shading distortions in deteriorated document images can be automatically applied. To complete the restoration process, a geometric correction is applied. Also unique to this work is the development of an image-based uncalibrated document scanner that utilizes the transmissivity of document substrates. This scanner extracts intrinsic document color information from one or both sides of a document. Simultaneously, the document shape is estimated to obtain distortion information. Lastly, this thesis provides a restoration framework for damaged photographic negatives that corrects photometric and geometric distortions. Current restoration techniques for the discussed form of negatives require physical manipulation to the photograph. The novel acquisition and restoration system presented here provides the first known solution to digitize and restore deteriorated photographic negatives without damaging the original negative in any way. This thesis work develops new methods of document scanning and restoration suitable for wide-scale deployment. By creating easy to access technologies, library staff can implement their own scanning initiatives and large-scale scanning projects can expand their current document-sets

    Design of an Automated Book Reader as an Assistive Technology for Blind Persons

    Get PDF
    This dissertation introduces a novel automated book reader as an assistive technology tool for persons with blindness. The literature shows extensive work in the area of optical character recognition, but the current methodologies available for the automated reading of books or bound volumes remain inadequate and are severely constrained during document scanning or image acquisition processes. The goal of the book reader design is to automate and simplify the task of reading a book while providing a user-friendly environment with a realistic but affordable system design. This design responds to the main concerns of (a) providing a method of image acquisition that maintains the integrity of the source (b) overcoming optical character recognition errors created by inherent imaging issues such as curvature effects and barrel distortion, and (c) determining a suitable method for accurate recognition of characters that yields an interface with the ability to read from any open book with a high reading accuracy nearing 98%. This research endeavor focuses in its initial aim on the development of an assistive technology tool to help persons with blindness in the reading of books and other bound volumes. But its secondary and broader aim is to also find in this design the perfect platform for the digitization process of bound documentation in line with the mission of the Open Content Alliance (OCA), a nonprofit Alliance at making reading materials available in digital form. The theoretical perspective of this research relates to the mathematical developments that are made in order to resolve both the inherent distortions due to the properties of the camera lens and the anticipated distortions of the changing page curvature as one leafs through the book. This is evidenced by the significant increase of the recognition rate of characters and a high accuracy read-out through text to speech processing. This reasonably priced interface with its high performance results and its compatibility to any computer or laptop through universal serial bus connectors extends greatly the prospects for universal accessibility to documentation

    Learning and recovering 3D surface deformations

    Get PDF
    Recovering the 3D deformations of a non-rigid surface from a single viewpoint has applications in many domains such as sports, entertainment, and medical imaging. Unfortunately, without any knowledge of the possible deformations that the object of interest can undergo, it is severely under-constrained, and extremely different shapes can have very similar appearances when reprojected onto an image plane. In this thesis, we first exhibit the ambiguities of the reconstruction problem when relying on correspondences between a reference image for which we know the shape and an input image. We then propose several approaches to overcoming these ambiguities. The core idea is that some a priori knowledge about how a surface can deform must be introduced to solve them. We therefore present different ways to formulate that knowledge that range from very generic constraints to models specifically designed for a particular object or material. First, we propose generally applicable constraints formulated as motion models. Such models simply link the deformations of the surface from one image to the next in a video sequence. The obvious advantage is that they can be used independently of the physical properties of the object of interest. However, to be effective, they require the presence of texture over the whole surface, and, additionally, do not prevent error accumulation from frame to frame. To overcome these weaknesses, we propose to introduce statistical learning techniques that let us build a model from a large set of training examples, that is, in our case, known 3D deformations. The resulting model then essentially performs linear or non-linear interpolation between the training examples. Following this approach, we first propose a linear global representation that models the behavior of the whole surface. As is the case with all statistical learning techniques, the applicability of this representation is limited by the fact that acquiring training data is far from trivial. A large surface can undergo many subtle deformations, and thus a large amount of training data must be available to build an accurate model. We therefore propose an automatic way of generating such training examples in the case of inextensible surfaces. Furthermore, we show that the resulting linear global models can be incorporated into a closed-form solution to the shape recovery problem. This lets us not only track deformations from frame to frame, but also reconstruct surfaces from individual images. The major drawback of global representations is that they can only model the behavior of a specific surface, which forces us to re-train a new model for every new shape, even though it is made of a material observed before. To overcome this issue, and simultaneously reduce the amount of required training data, we propose local deformation models. Such models describe the behavior of small portions of a surface, and can be combined to form arbitrary global shapes. For this purpose, we study both linear and non-linear statistical learning methods, and show that, whereas the latter are better suited for traking deformations from frame to frame, the former can also be used for reconstruction from a single image

    Flattening Curved Documents in Images

    No full text

    Flattening Curved Documents in Images

    No full text
    Compared to scanned images, document pictures captured by camera can suffer from distortions due to perspective and page warping. It is necessary to restore a frontal planar view of the page before other OCR techniques can be applied. In this paper we describe a novel approach for flattening a curved document in a single picture captured by an uncalibrated camera. To our knowledge this is the first reported method able to process general curved documents in images without camera calibration. We propose to model the page surface by a developable surface, and exploit the properties (parallelism and equal line spacing) of the printed textual content on the page to recover the surface shape. Experiments show that the output images are much more OCR friendly than the original ones. While our method is designed to work with any general developable surfaces, it can be adapted for typical special cases including planar pages, scans of thick books, and opened books. 1
    corecore